Please wait a minute...
Acta Physico-Chimica Sinca
Special Issue: Graphdiyne
Accepted manuscript     
Graphdiyne for Electrochemical Energy Storage Devices
SHEN Xiangyan1,2, HE Jianjiang1, WANG Ning1, HUANG Changshui1
1 Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong Province, P. R. China;
2 University of Chinese Academy of Sciences, Beijing 100190, P. R. China
Download:   PDF(2199KB) Export: BibTeX | EndNote (RIS)      

Abstract  Electrochemical energy storage devices are becoming increasingly important in modern society for efficient energy storage. The use of these devices is mainly dependent on the electrode materials. As a newly discovered carbon allotrope, graphdiyne (GDY) is a two-dimensional full-carbon material. Its wide interlayer distance (0.365 nm), large specific surface area, special three-dimensional porous structure (18-C hexagon pores), and high conductivity make it a potential electrode material in energy storage devices. In this paper, based on the facile synthesis method and the unique porous structure of GDY, the applications of GDY in energy storage devices have been discussed in detail from the aspects of both theoretical predictions and recent experimental developments. The Li/Na migration and storage in mono-layered and bulk GDY indicate that GDY-based batteries have excellent theoretical Li/Na storage capacity. The maximal Li storage capacity in mono-layered GDY is LiC3 (744 mAh·g-1). The experimental Li storage capacity of GDY is similar to theoretical predictions. The experimental Li storage capacity of a thick GDY film is close to that of mono-layered GDY' (744 mAh·g-1). A thin GDY film with double-side storage model has two-times the Li storage capacity (1480 mAh·g-1) of mono-layered GDY. Powder GDY has lower Li storage capacity than GDY film. The maximal Na storage capacity in GDY corresponds to NaC5.14 (316 mAh·g-1), and mono-layered GDY possesses higher theoretical Na storage capacity (NaC2.57). The experimental Na storage capacity (261 mAh·g-1) is similar to its theoretical value. Besides, GDY as electrode material, applied in metal-sulfur batteries, presents excellent electrochemical performance (in Li-S battery:0.1C, 949.2 mAh·g-1; in Mg-S battery:50 mA·g-1, 458.9 mAh·g-1). This ingenious design presents a new way for the preparation of carbon-loaded sulfur. GDY electrode material is also successfully used in supercapacitors, including the traditional supercapacitor, Li-ion capacitors, and Na-ion capacitors. The traditional supercapacitor with GDY as the electrode material shows good double layer capacitance and pseudo-capacitance. Both Li-ion capacitor (100.3 W·kg-1, 110.7 Wh·kg-1) and Na-ion capacitor (300 W·kg-1, 182.3 Wh·kg-1) possess high power and energy densities. Moreover, the effects of synthesis of GDY nanostructure, heat treatment of GDY, and atom-doping in GDY on the performance of electrochemical energy storage will be introduced and discussed. The results indicate that GDY has great potential for application in different energy storage devices as an efficient electrode material.

Key wordsGraphdiyne      Electrochemical energy storage devices      Li storage      Na storage      Metal-sulphur battery      Supercapacitor     
Received: 06 December 2017      Published: 12 January 2018
MSC2000:  O646  
Fund:  The project was supported by the Hundred Talents Program and Frontier Science Research Project of the Chinese Academy of Sciences (QYZDB-SSW-JSC052) and the Natural Science Foundation of Shandong Province for Distinguished Young Scholars, China (JQ201610).
Cite this article:

SHEN Xiangyan, HE Jianjiang, WANG Ning, HUANG Changshui. Graphdiyne for Electrochemical Energy Storage Devices. Acta Physico-Chimica Sinca, 0, (): 0-0.

URL:     OR

(1) Abbasi, T.; Abbasi, S. A. <i>Renew. Sust. Energ. Rev. </i><b>2010, </b><i>14</i>, 919. doi: <a href="" target="_blank">10.1016/j.rser.2009.11.006</a><br /> (2) Wang, J.; Nie, P.; Ding, B.; Dong, S.; Hao, X.; Dou, H.; Zhang, X. <i>J. Mater. Chem. A </i><b>2017, </b><i>5</i>, 2411. 10.1039/c6ta08742f<br /> (3) Wang, Z.; Zhang, W.; Li, X.; Gao, L. <i>J. Mater. Res. </i><b>2016, </b><i>31</i>, 1648. doi: <a href="" target="_blank">10.1557/jmr.2016.195</a><br /> (4) Simon, P.; Gogotsi, Y. <i>Nat. Mater. </i><b>2008, </b><i>7</i>, 845. doi: <a href="" target="_blank">10.1038/nmat2297</a><br /> (5) Zhang, L. L.; Zhao, X. S. <i>Chem. Soc. Rev. </i><b>2009, </b><i>38</i>, 2520. doi: <a href="" target="_blank">10.1039/B813846J</a><br /> (6) Zhang, L. L.; Zhou, R.; Zhao, X. S. <i>J. Mater. Chem. </i><b>2010, </b><i>20</i>, 5983. doi: <a href="" target="_blank">10.1039/C000417K</a><br /> (7) Zhang, K.; Zhang, L. L.; Zhao, X. S.; Wu, J. <i>Chem. Mater. </i><b>2010, </b><i>22</i>, 1392. doi: <a href="" target="_blank">10.1021/cm902876u</a><br /> (8) Qie, L.; Chen, W. M.; Wang, Z. H.; Shao, Q. G.; Li, X.; Yuan, L. X.; Hu, X. L.; Zhang, W. X.; Huang, Y. H. <i>Adv. Mater. </i><b>2012, </b><i>24</i>, 2047. doi: <a href="" target="_blank">10.1002/adma.201104634</a><br /> (9) Hong, S. M.; Etacheri, V.; Hong, C. N.; Choi, S. W.; Lee, K. B.; Pol, V. G. <i>ACS Appl. Mat. Interfaces </i><b>2017, </b><i>9</i>, 18790. doi: <a href="" target="_blank">10.1021/acsami.7b03456</a><br /> (10) Bazaka, K.; Jacob, M. V.; Ostrikov, K. K. <i>Chem. Rev. </i><b>2016, </b><i>116</i>, 163. doi: <a href="" target="_blank">10.1021/acs.chemrev.5b00566</a><br /> (11) Yang, Z.; Ren, J.; Zhang, Z.; Chen, X.; Guan, G.; Qiu, L.; Zhang, Y.; Peng, H. <i>Chem. Rev. </i><b>2015, </b><i>115</i>, 5159. doi: <a href="" target="_blank">10.1021/cr5006217</a><br /> (12) Li, G.; Li, Y.; Liu, H.; Guo, Y.; Li, Y.; Zhu, D. <i>Chem. Commun. </i><b>2010, </b><i>46</i>, 3256. doi: <a href="" target="_blank">10.1039/b922733d</a><br /> (13) Jia, Z.; Li, Y.; Zuo, Z.; Liu, H.; Huang, C.; Li, Y. <i>Acc. Chem. Res.</i> <b>2017, </b><i>50</i>, 2470. doi: <a href="" target="_blank">10.1021/acs.accounts.7b00205</a><br /> (14) Chen, Y.; Liu, H.; Li, Y. <i>Chin. Sci. Bull. </i><b>2016, </b><i>61</i>, 2901. doi: <a href="" target="_blank">10.1360/N972016-00483</a><br /> (15) Xiao, J.; Shi, J.; Liu, H.; Xu, Y.; Lv, S.; Luo, Y.; Li, D.; Meng, Q.; Li, Y. <i>Adv. Energy Mater. </i><b>2015, </b><i>5</i>. doi: <a href="" target="_blank">10.1002/aenm.201401943</a><br /> (16) Kuang, C.; Tang, G.; Jiu, T.; Yang, H.; Liu, H.; Li, B.; Luo, W.; Li, X.; Zhang, W.; Lu, F.; Fang, J.; Li, Y. <i>Nano Lett. </i><b>2015, </b><i>15</i>, 2756. doi: <a href="" target="_blank">10.1021/acs.nanolett.5b00787</a><br /> (17) Li, Y.; Xu, L.; Liu, H.; Li, Y. <i>Chem. Soc. Rev. </i><b>2014, </b><i>43</i>, 2572. doi: <a href="" target="_blank">10.1039/c3cs60388a</a><br /> (18) Gao, J.; Li, J. F.; Chen, Y. H.; Zuo, Z. C.; Li, Y. J.; Liu, H. B. Li, Y. L. <i>Nano Energy </i><b>2018, </b><i>43</i>, 192. doi: <a href="" target="_blank">10.1016/j.nanoen.2017.11.005</a><br /> (19) Huang, C. S.; Li, Y. L. <i>Acta Phys. -Chim. Sin. </i><b>2016, </b><i>32</i>, 1314. [黄长水, 李玉良. 物理化学学报, <b>2016, </b><i>32</i>, 1314.]doi: <a href="" target="_blank">10.3866/pku.whxb201605035.</a><br /> (20) Zhou, Q.; Carroll, P. J.; Swager, T. M. <i>J. Org. Chem. </i><b>1994, </b><i>59</i>, 1294. doi: <a href="" target="_blank">10.1021/jo00085a016</a><br /> (21) Haley, M. M.; Bell, M. L.; English, J. J.; And, C. A. J.; Weakley, T. J.R. <i>J. Am. Chem. Soc </i><b>1997, </b><i>119</i>, 2956. doi: <a href="" target="_blank">10.1021/ja964048h</a><br /> (22) Wan, B. W.; Haley, M. M. <i>J. Org. Chem. </i><b>2001, </b><i>66</i>, 3893. doi: <a href="" target="_blank">10.1021/jo010183n</a><br /> (23) Marsden, J. A.; Haley, M. M. <i>J. Org. Chem. </i><b>2005, </b><i>70</i>, 10213. doi: <a href="" target="_blank">10.1021/jo050926v</a><br /> (24) Yoo, E.; Kim, J.; Hosono, E.; Zhou, H. S.; Kudo, T.; Honma, I. <i>Nano</i> <i>Lett. </i><b>2008, </b><i>8</i>, 2277. doi: <a href="" target="_blank">10.1021/nl800957b</a><br /> (25) Zhou, L.; Yang, L.; Yuan, P.; Zou, J.; Wu, Y.; Yu, C. <i>J. Phys. Chem. C</i> <b>2010, </b><i>114</i>, 21868. doi: <a href="" target="_blank">10.1021/jp108778v</a><br /> (26) Guo, P.; Song, H.; Chen, X. <i>Electrochim. Acta </i><b>2009, </b><i>11</i>, 1320. doi: <a href="" target="_blank">10.1016/j.elecom.2009.04.036</a><br /> (27) Shim, J.; Striebel, K. A. <i>J. Power Sources </i><b>2003, </b><i>119</i>, 934. doi: <a href="" target="_blank">10.1016/S0378-7753(03)00235-0</a><br /> (28) Gu, Z. Y.; Gao, S.; Huang, H.; Jin, X. Z.; Wu, A. M.; Cao, G. Z. <i>Acta</i> <i>Phys. -Chim. Sin. </i><b>2017, </b><i>33</i>, 1197. [谷泽宇, 高嵩, 黄昊, 靳晓哲, 吴爱民, 曹国忠. 物理化学学报, <b>2017, </b><i>33</i>, 1197.]doi: <a href="" target="_blank">10.3866/pku.whxb201703293</a><br /> (29) Kostecki, R.; Mclarnon, F. <i>J. Power Sources </i><b>2003, </b><i>119</i>, 550. doi: <a href="" target="_blank">10.1016/S0378-7753(03)00287-8</a><br /> (30) Sethuraman, V. A.; Hardwick, L. J.; Srinivasan, V.; Kostecki, R. <i>J.</i> <i>Power Sources </i><b>2010, </b><i>195</i>, 3655. doi: <a href="" target="_blank">10.1016/j.jpowsour.2009.12.034</a><br /> (31) Zhang, H.; Xia, Y.; Bu, H.; Wang, X.; Zhang, M.; Luo, Y.; Zhao, M. <i>J. Appl. Phys. </i><b>2013, </b><i>113</i>, 1. doi: <a href="" target="_blank">10.1063/1.4789635</a><br /> (32) Zhang, S.; Liu, H.; Huang, C.; Cui, G.; Li, Y. <i>Chem. Commun. </i><b>2015, </b><i>51</i>, 1834. doi: <a href="" target="_blank">10.1039/c4cc08706b</a><br /> (33) Srinivasu, K.; Ghosh, S. K. <i>J. Phys. Chem. C </i><b>2012, </b><i>116</i>, 5951. doi: <a href="" target="_blank">10.1021/jp212181h</a><br /> (34) Sun, C.; Searles, D. J. <i>J. Phys. Chem. C </i><b>2012, </b><i>116</i>, 26222. doi: <a href="" target="_blank">10.1021/jp309638z</a><br /> (35) Jang, B.; Koo, J.; Park, M.; Lee, H.; Nam, J.; Kwon, Y.; Lee, H. <i>Appl.</i> <i>Phys. Lett. </i><b>2013, </b><i>103</i>, 1. doi: <a href="" target="_blank">10.1063/1.4850236</a><br /> (36) Huang, C.; Zhang, S.; Liu, H.; Li, Y.; Cui, G.; Li, Y. <i>Nano Energy</i> <b>2015, </b><i>11</i>, 481. doi: <a href="" target="_blank">10.1016/j.nanoen.2014.11.036</a><br /> (37) Zhang, S.; Du, H.; He, J.; Huang, C.; Liu, H.; Cui, G.; Li, Y. <i>ACS</i> <i>Appl. Mat. Interfaces </i><b>2016, </b><i>8</i>, 8467. doi: <a href="" target="_blank">10.1021/acsami.6b00255</a><br /> (38) Long, M.; Tang, L.; Wang, D.; Li, Y.; Shuai, Z. <i>ACS Nano </i><b>2011, </b><i>5</i>, 2593. doi: <a href="" target="_blank">10.1021/nn102472s</a><br /> (39) Zuo, Z.; Shang, H.; Chen, Y.; Li, J.; Liu, H.; Li, Y.; Li, Y. <i>Chem.</i> <i>Commun. </i><b>2017, </b><i>53</i>, 8074. doi: <a href="" target="_blank">10.1039/c7cc03200e</a><br /> (40) Fan, Z. J.; Yan, J.; Wei, T.; Ning, G. Q.; Zhi, L. J.; Liu, J. C.; Cao, D. X.; Wang, G. L.; Wei, F. <i>ACS Nano </i><b>2011, </b><i>5</i>, 2787. doi: <a href="" target="_blank">10.1021/nn200195k</a><br /> (41) Han, F. D.; Bai, Y. J.; Liu, R.; Yao, B.; Qi, Y. X.; Lun, N.; Zhang, J.X. <i>Adv. Energy Mater. </i><b>2011, </b><i>1</i>, 798. doi: <a href="" target="_blank">10.1002/aenm.201100340</a><br /> (42) Shang, H.; Zuo, Z.; Li, L.; Wang, F.; Liu, H.; Li, Y.; Li, Y. <i>Angew.</i> <i>Chem. Int. Ed. </i><b>2017, </b><i>129</i>, 1. doi: <a href="" target="_blank">10.1002/ange.201711366</a><br /> (43) Lin, J.; Peng, Z.; Xiang, C.; Ruan, G.; Yan, Z.; Natelson, D.; Tour, J.M. <i>ACS Nano </i><b>2013, </b><i>7</i>, 6001. doi: <a href="" target="_blank">10.1021/nn4016899</a><br /> (44) Wang, Z. L.; Xu, D.; Wang, H. G.; Wu, Z.; Zhang, X. B. <i>ACS Nano</i> <b>2013, </b><i>7</i>, 2422. doi: <a href="" target="_blank">10.1021/nn3057388</a><br /> (45) Gong, Y.; Yang, S.; Zhan, L.; Ma, L.; Vajtai, R.; Ajayan, P. M. <i>Adv.</i> <i>Funct. Mater. </i><b>2014, </b><i>24</i>, 125. doi: <a href="" target="_blank">10.1002/adfm.201300844</a><br /> (46) Wang, D.; Yang, J.; Li, X.; Geng, D.; Li, R.; Cai, M.; Sham, T. K.; Sun, X. <i>Energy Environ. Sci. </i><b>2013, </b><i>6</i>, 2900. doi: <a href="" target="_blank">10.1039/c3ee40829a</a><br /> (47) Zhou, X.; Wan, L. J.; Guo, Y. G. <i>Adv. Mater. </i><b>2013, </b><i>25</i>, 2152. doi: <a href="" target="_blank">10.1002/adma.201300071</a><br /> (48) Shan, T. T.; Xin, S.; You, Y.; Cong, H. P.; Yu, S. H.; Manthiram, A. <i>Angew. Chem. Int. Ed. </i><b>2016, </b><i>55</i>, 12783. doi: <a href="" target="_blank">10.1002/anie.201606870</a><br /> (49) He, J.; Bao, K.; Cui, W.; Yu, J.; Huang, C.; Shen, X.; Cui, Z.; Wang, N. <i>Chem. Eur. J. </i><b>2017</b>, <i>23</i>, 1. doi: <a href="" target="_blank">10.1002/chem.201704581</a><br /> (50) Tarascon, J. M.; Armand, M. <i>Nature </i><b>2001, </b><i>414</i>, 359. doi: <a href="" target="_blank">10.1038/35104644</a><br /> (51) Wang, H.; Mitlin, D.; Ding, J.; Li, Z.; Cui, K. <i>J. Mater. Chem. A</i> <b>2016, </b><i>4</i>, 5149. doi: <a href="" target="_blank">10.1039/C6TA01392A</a><br /> (52) Dirican, M.; Zhang, X. <i>J. Power Sources </i><b>2016, </b><i>327</i>, 333. doi: <a href="" target="_blank">10.1016/j.jpowsour.2016.07.069</a><br /> (53) Jo, C.; Park, Y.; Jeong, J.; Lee, K. T.; Lee, J. <i>ACS Appl. Mat.</i> <i>Interfaces </i><b>2015, </b><i>7</i>, 11748. doi: <a href="" target="_blank">10.1021/acsami.5b03186</a><br /> (54) Kang, B.; Ceder, G. <i>Nature </i><b>2009, </b><i>458</i>, 190. doi: <a href="" target="_blank">10.1038/nature07853</a><br /> (55) Scrosati, B.; Hassoun, J.; Sun, Y. K. <i>Energy Environ. Sci. </i><b>2011, </b><i>4</i>, 3287. doi: <a href="" target="_blank">10.1039/C1EE01388B</a><br /> (56) David, L.; Bhandavat, R.; Singh, G. <i>ACS Nano </i><b>2014, </b><i>8</i>, 1759. doi: <a href="" target="_blank">10.1021/nn406156b</a><br /> (57) Zhu, Y.; Han, X.; Xu, Y.; Liu, Y.; Zheng, S.; Xu, K.; Hu, L.; Wang, C. <i>ACS Nano </i><b>2013, </b><i>7</i>, 6378. doi: <a href="" target="_blank">10.1021/nn4025674</a><br /> (58) Yuan, S.; Huang, X. L.; Ma, D. L.; Wang, H. G.; Meng, F. Z.; Zhang, X. B. <i>Adv. Mater. </i><b>2014, </b><i>26</i>, 2273. doi: <a href="" target="_blank">10.1002/adma.201304469</a><br /> (59) Fang, Y. J.; Chen, Z. X.; Ai, X. P.; Yang, H. X.; Cao, Y. L. <i>Acta</i> <i>Phys. -Chim. Sin. </i><b>2017, </b><i>33</i>, 211. [方永进, 陈重学, 艾新平, 杨汉西, 曹余良. 物理化学学报, <b>2017, </b><i>33</i>, 211.]doi: <a href="" target="_blank">10.3866/pku.whxb201610111</a><br /> (60) Cao, Y.; Xiao, L.; Sushko, M. L.; Wang, W.; Schwenzer, B.; Xiao, J.; Nie, Z.; Saraf, L. V.; Yang, Z.; Liu, J. <i>Nano Lett. </i><b>2012, </b><i>12</i>, 3783. doi: <a href="" target="_blank">10.1021/nl3016957</a><br /> (61) Ding, J.; Wang, H.; Li, Z.; Kohandehghan, A.; Cui, K.; Xu, Z.; Zahiri, B.; Tan, X.; Lotfabad, E. M.; Olsen, B. C. <i>ACS Nano </i><b>2013, </b><i>7</i>, 11004. doi: <a href="" target="_blank">10.1021/nn404640c</a><br /> (62) Song, H.; Li, N.; Cui, H.; Wang, C. <i>Nano Energy </i><b>2014, </b><i>4</i>, 81. doi: <a href="" target="_blank">10.1016/j.nanoen.2013.12.017</a><br /> (63) Liu, J.; Yang, Z.; Wang, J.; Gu, L.; Maier, J.; Yu, Y. <i>Nano Energy</i> <b>2015, </b><i>16</i>, 389. doi: <a href="" target="_blank">10.1016/j.nanoen.2015.07.020</a><br /> (64) Pan, H.; Lu, X.; Yu, X.; Hu, Y. S.; Li, H.; Yang, X. Q.; Chen, L. <i>Adv.</i> <i>Energy Mater. </i><b>2014, </b><i>3</i>, 1186. doi: <a href="" target="_blank">10.1002/aenm.201300139</a><br /> (65) Ding, J.; Li, Z.; Wang, H.; Cui, K.; Kohandehghan, A.; Tan, X.; Karpuzov, D.; Mitlin, D. <i>J. Mater. Chem. A </i><b>2015, </b><i>3</i>, 7100. doi: <a href="" target="_blank">10.1039/C5TA00399G</a><br /> (66) Jiang, Y.; Hu, M.; Zhang, D.; Yuan, T.; Sun, W.; Xu, B.; Yan, M. <i>Nano Energy </i><b>2014, </b><i>5</i>, 60. doi: <a href="" target="_blank">10.1016/j.nanoen.2014.02.002</a><br /> (67) Li, Z.; Ding, J.; Wang, H.; Cui, K.; Stephenson, T.; Karpuzov, D.; Mitlin, D. <i>Nano Energy </i><b>2015, </b><i>15</i>, 369. doi: <a href="" target="_blank">10.1016/j.nanoen.2015.04.018</a><br /> (68) Ahmed, B.; Anjum, D. H.; Hedhili, M. N.; Alshareef, H. N. <i>Small</i> <b>2015, </b><i>11</i>, 4341. doi: <a href="" target="_blank">10.1002/smll.201500919</a><br /> (69) Lacey, S. D.; Wan, J.; Von, W. C. A.; Russell, S. M.; Dai, J.; Bao, W.; Xu, K.; Hu, L. <i>Nano Lett. </i><b>2015, </b><i>15</i>, 1018. doi: <a href="" target="_blank">10.1021/nl503871s</a><br /> (70) Xu, Z.; Lv, X.; Li, J.; Chen, J.; Liu, Q. <i>RSC Advances </i><b>2016, </b><i>6</i>, 25594. doi: <a href="" target="_blank">10.1039/c6ra01870j</a><br /> (71) Niaei, A. H. F.; Hussain, T.; Hankel, M.; Searles, D. J. <i>J. Power</i> <i>Sources </i><b>2017, </b><i>343</i>, 354. doi: <a href="" target="_blank">10.1016/j.jpowsour.2017.01.027</a><br /> (72) Zhang, S.; He, J.; Zheng, J.; Huang, C.; Lv, Q.; Wang, K.; Wang, N.; Lan, Z. <i>J. Mater. Chem. A </i><b>2017, </b><i>5</i>, 2045. doi: <a href="" target="_blank">10.1039/c6ta09822c</a><br /> (73) Kim, H. S.; Arthur, T. S.; Allred, G. D.; Zajicek, J.; Newman, J. G.; Rodnyansky, A. E.; Oliver, A. G.; Boggess, W. C.; Muldoon, J. <i>Nat.</i> <i>Commun. </i><b>2011, </b><i>2</i>, 427. doi: <a href="" target="_blank">10.1038/ncomms1435</a><br /> (74) Li, W.; Cheng, S.; Wang, J.; Qiu, Y.; Zheng, Z.; Lin, H.; Nanda, S.; Ma, Q.; Xu, Y.; Ye, F. <i>Angew. Chem. Int. Ed. </i><b>2016, </b><i>55</i>, 6406. doi: <a href="" target="_blank">10.1002/anie.201600256</a><br /> (75) Manthiram, A.; Fu, Y.; Su, Y. S. <i>Acc. Chem. Res. </i><b>2013, </b><i>46</i>, 1125. doi: <a href="" target="_blank">10.1021/ar300179v</a><br /> (76) Shaibani, M.; Akbari, A.; Sheath, P.; Easton, C. D.; Banerjee, P. C.; Konstas, K.; Fakhfouri, A.; Barghamadi, M.; Musameh, M. M.; Best, A. S. <i>ACS Nano </i><b>2016, </b><i>10</i>, 7768. doi: <a href="" target="_blank">10.1021/acsnano.6b03285</a><br /> (77) Zhang, Z.; Li, Z.; Hao, F.; Wang, X.; Li, Q.; Qi, Y.; Fan, R.; Yin, L. <i>Adv. Funct. Mater. </i><b>2014, </b><i>24</i>, 2500. doi: <a href="" target="_blank">10.1002/adfm.201303080</a><br /> (78) Chen, R.; Zhao, T.; Wu, F. <i>Chem. Commun. </i><b>2015, </b><i>51</i>, 18. doi: <a href="" target="_blank">10.1039/C4CC05109B</a><br /> (79) Ji, L.; Rao, M.; Zheng, H.; Zhang, L.; Li, Y.; Duan, W.; Guo, J.; Cairns, E. J.; Zhang, Y. <i>J. Am. Chem. Soc. </i><b>2011, </b><i>133</i>, 18522. doi: <a href="" target="_blank">10.1021/ja206955k</a><br /> (80) Zhou, G.; Pei, S.; Li, L.; Wang, D. W.; Wang, S.; Huang, K.; Yin, L.C.; Li, F.; Cheng, H. M. <i>Adv. Mater. </i><b>2014, </b><i>26</i>, 664. doi: <a href="" target="_blank">10.1039/C4CC05109B</a><br /> (81) Zhao, M. Q.; Liu, X. F.; Zhang, Q.; Tian, G. L.; Huang, J. Q.; Zhu, W.; Wei, F. <i>ACS Nano </i><b>2012, </b><i>6</i>, 10759. doi: <a href="" target="_blank">10.1021/nn304037d</a><br /> (82) Du, H.; Yang, H.; Huang, C.; He, J.; Liu, H.; Li, Y. <i>Nano Energy</i> <b>2016, </b><i>22</i>, 615. doi: <a href="" target="_blank">10.1016/j.nanoen.2016.02.052</a><br /> (83) Zhang, H.; Zhao, M.; He, X.; Wang, Z.; Zhang, X.; Liu, X. <i>J. Phys.</i> <i>Chem. C </i><b>2011, </b><i>115</i>, 8845. doi: <a href="" target="_blank">10.1016/j.jpowsour.2009.12.034</a><br /> (84) Du, H.; Zhang, Z.; He, J.; Cui, Z.; Chai, J.; Huang, C.; Cui, G. <i>Small</i> <b>2017</b>, <i>13</i>, 18522. doi: <a href="" target="_blank">10.1002/smll.201702277</a><br /> (85) Zhao-Karger, Z.; Zhao, X.; Wang, D.; Diemant, T.; Behm, R. J.; Fichtner, M. <i>Adv. Energy Mater. </i><b>2015, </b><i>5</i>, 1401155. doi: <a href="" target="_blank">10.1002/aenm.201401155</a><br /> (86) Vinayan, B. P.; Zhaokarger, Z.; Diemant, T.; Chakravadhanula, V.S.; Schwarzburger, N. I.; Cambaz, M. A.; Behm, R. J.; Kübel, C.; Fichtner, M. <i>Nanoscale </i><b>2015, </b><i>8</i>, 3296. doi: <a href="" target="_blank">10.1039/C5NR04383B</a><br /> (87) Xia, X.; Zhang, Y.; Chao, D.; Xiong, Q.; Fan, Z.; Tong, X.; Tu, J.; Zhang, H.; Fan, H. J. <i>Energy Environ. Sci. </i><b>2015, </b><i>8</i>, 1559. doi: <a href="" target="_blank">10.1039/C5EE00339C</a><br /> (88) Wang, L.; Li, X.; Guo, T.; Yan, X.; Tay, B. K. <i>Int. J. Hydrogen</i> <i>Energy </i><b>2014, </b><i>39</i>, 7876. doi: <a href="" target="_blank">10.1016/j.ijhydene</a><br /> (89) Wu, Z.; Zhang, X. B. <i>Acta Phys. -Chim. Sin. </i><b>2017, </b><i>33</i>, 305. [吴中, 张新波. 物理化学学报, <b>2017, </b><i>33</i>, 305.]doi: <a href="" target="_blank">10.3866/pku.whxb201611012</a><br /> (90) Krishnamoorthy, K.; Veerasubramani, G. K.; Radhakrishnan, S.; Sang, J. K. <i>Mater. Res. Bull. </i><b>2014, </b><i>50</i>, 499. doi: <a href="" target="_blank">10.1016/j.materresbull</a><br /> (91) Fan, L. Q.; Liu, G. J.; Zhang, C. Y.; Wu, J. H.; Wei, Y. L. <i>Int. J.</i> <i>Hydrogen Energy </i><b>2015, </b><i>40</i>, 10150. doi: <a href="" target="_blank">10.1016/j.ijhydene</a><br /> (92) Xin, G.; Wang, Y.; Zhang, J.; Jia, S.; Zang, J.; Wang, Y. <i>Int. J.</i> <i>Hydrogen Energy </i><b>2015, </b><i>40</i>, 10176. doi: <a href="" target="_blank">10.1016/j.ijhydene.2015.06.060</a><br /> (93) Krishnamoorthy, K.; Ananth, A.; Mok, Y. S.; Kim, S. J. <i>Sci. Adv.</i> <i>Mater. </i><b>2014, </b><i>6</i>, 349. doi: <a href="" target="_blank">10.1166/sam.2014.1722</a><br /> (94) Chen, C. M.; Zhang, Q.; Yang, M. G.; Huang, C. H.; Yang, Y. G.; Wang, M. Z. <i>Carbon </i><b>2012, </b><i>50</i>, 3572. doi: <a href="" target="_blank">10.1016/j.carbon.2012.03.029</a><br /> (95) Ramachandran, R.; Saranya, M.; Velmurugan, V.; Raghupathy, B. P.C.; Jeong, S. K.; Grace, A. N. <i>Appl. Energy </i><b>2015, </b><i>153</i>, 22. doi: <a href="" target="_blank">10.1016/j.apenergy</a><br /> (96) Tahir, M.; Cao, C.; Butt, F. K.; Idrees, F.; Mahmood, N.; Ali, Z.; Aslam, I.; Tanveer, M.; Rizwan, M.; Mahmood, T. <i>J. Mater. Chem.</i> <i>A </i><b>2013, </b><i>1</i>, 13949. doi: <a href="" target="_blank">10.1039/C3TA13291A</a><br /> (97) Fan, L. Q.; Liu, G. J.; Zhang, C. Y.; Wu, J. H.; Wei, Y. L. <i>Int. J.</i> <i>Hydrogen Energy </i><b>2015, </b><i>40</i>, 10150. doi: <a href="" target="_blank">10.1016/j.ijhydene.2015.06.061</a><br /> (98) Krishnamoorthy, K.; Thangavel, S.; Veetil, J. C.; Raju, N.; Venugopal, G.; Kim, S. J. <i>Int. J. Hydrogen Energy </i><b>2016, </b><i>41</i>, 1672. doi: <a href="" target="_blank">10.1016/j.ijhydene.2015.10.118</a><br /> (99) Ren, J. J.; Su, L. W.; Qin, X.; Yang, M.; Wei, J. P.; Zhou, Z.; Shen, P. W. <i>J. Power Sources </i><b>2014, </b><i>264</i>, 108. doi:<a href="" target="_blank">10.1016/j.jpowsour.2014.04.076</a><br /> (100) Zhou, J.; Gao, X.; Liu, R.; Xie, Z.; Yang, J.; Zhang, S.; Zhang, G.; Liu, H.; Li, Y.; Zhang, J.; Liu, Z. <i>J. Am. Chem. Soc. </i><b>2015, </b><i>137</i>, 7596. doi: <a href="" target="_blank">10.1021/jacs.5b04057</a><br /> (101) Wang, K.; Wang, N.; He, J.; Yang, Z.; Shen, X.; Huang, C. <i>Electrochim. Acta </i><b>2017, </b><i>253</i>, 506. doi: <a href="" target="_blank">10.1016/j.electacta.2017.09.101</a><br /> (102) Wang, K.; Wang, N.; He, J.; Yang Z.; Shen, X.; Huang, C. <i>ACS</i> <i>Appl. Mater. Interfaces </i><b>2017, </b><i>9</i>, 40604. doi: <a href="" target="_blank">10.1021/acsami.7b11420</a><br /> (103) Yang, J.; Zhou, X.; Wu, D.; Zhao, X.; Zhou, Z. <i>Adv. Mater. </i><b>2017, </b><i>29</i>, 1604108. doi: <a href="" target="_blank">10.1002/adma.201604108</a><br /> (104) Hou, H.; Shao, L.; Zhang, Y.; Zou, G.; Chen, J.; Ji, X. <i>Adv. Sci.</i> <b>2017, </b><i>4</i>, 10. doi: <a href="" target="_blank">1002/advs.201600243</a><br /> (105) Xu, J.; Wang, M.; Wickramaratne, N. P.; Jaroniec, M.; Dou, S.; Dai, L. <i>Adv. Mater. </i><b>2015, </b><i>27</i>, 2042. doi: <a href="" target="_blank">10.1002/adma.201405370</a><br /> (106) Fan, L.; Lu, B. <i>Small </i><b>2016, </b><i>12</i>, 2783. doi: <a href="" target="_blank">10.1002/smll.201600565</a><br /> (107) Sun, T.; Li, Z. J.; Wang, H. G.; Bao, D.; Meng, F. L.; Zhang, X. B. <i>Angew. Chem. Int. Ed. </i><b>2016, </b><i>55</i>, 10662. doi: <a href="" target="_blank">10.1002/anie.201604519</a><br /> (108) Wang, H.; Mitlin, D.; Ding, J.; Li, Z.; Cui, K. <i>J. Mater.</i> <i>Chem. A </i><b>2016, </b><i>4</i>, 5149. doi: <a href="" target="_blank">10.1039/c6ta01392a</a>
[1] WANG Hai-Yan, SHI Gao-Quan. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Physico-Chimica Sinca, 2018, 34(1): 22-35.
[2] DU Wei-Shi, Lü Yao-Kang, CAI Zhi-Wei, ZHANG Cheng. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1828-1837.
[3] WU Zhong, ZHANG Xin-Bo. Design and Preparation of Electrode Materials for Supercapacitors with High Specific Capacitance[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 305-313.
[4] LIAO Chun-Rong, XIONG Feng, LI Xian-Jun, WU Yi-Qiang, LUO Yong-Feng. Progress in Conductive Polymers in Fibrous Energy Devices[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 329-343.
[5] LI Gui-Xia, JIANG Yong-Chao, LI Peng, PAN Wei, LI Yong-Ping, LIU Yun-Jie. Helium Separation Performance of the Rhombic-Graphyne Monolayer Membrane: Density Functional Theory Calculations[J]. Acta Physico-Chimica Sinca, 2017, 33(11): 2219-2226.
[6] LI Dao-Yan, ZHANG Ji-Chen, WANG Zhi-Yong, JIN Xian-Bo. Preparation of Activated Carbon from Honeycomb-Like Porous Gelatin for High-Performance Supercapacitors[J]. Acta Physico-Chimica Sinca, 2017, 33(11): 2245-2252.
[7] YU Cui-Ping, WANG Yan, CUI Jie-Wu, LIU Jia-Qin, WU Yu-Cheng. Recent Advances in the Multi-Modification of TiO2 Nanotube Arrays and Their Application in Supercapacitors[J]. Acta Physico-Chimica Sinca, 2017, 33(10): 1944-1959.
[8] LI Xue-Qin, CHANG Lin, ZHAO Shen-Long, HAO Chang-Long, LU Chen-Guang, ZHU Yi-Hua, TANG Zhi-Yong. Research on Carbon-Based Electrode Materials for Supercapacitors[J]. Acta Physico-Chimica Sinca, 2017, 33(1): 130-148.
[9] FANG Yong-Jin, CHEN Zhong-Xue, AI Xin-Ping, YANG Han-Xi, CAO Yu-Liang. Recent Developments in Cathode Materials for Na Ion Batteries[J]. Acta Physico-Chimica Sinca, 2017, 33(1): 211-241.
[10] HUANG Chang-Shui, LI Yu-Liang. Structure of 2D Graphdiyne and Its Application in Energy Fields[J]. Acta Physico-Chimica Sinca, 2016, 32(6): 1314-1329.
[11] ZHOU Xiao, SUN Min-Qiang, WANG Geng-Chao. Synthesis and Supercapacitance Performance of Graphene-Supported π-Conjugated Polymer Nanocomposite Electrode Materials[J]. Acta Physico-Chimica Sinca, 2016, 32(4): 975-982.
[12] LIN You-Cheng, ZHONG Xin-Xian, HUANG Han-Xing, WANG Hong-Qiang, FENG Qi-Peng, LI Qing-Yu. Preparation and Application of Polyaniline Doped with Different Sulfonic Acids for Supercapacitor[J]. Acta Physico-Chimica Sinca, 2016, 32(2): 474-480.
[13] LI Ya-Jie, NI Xing-Yuan, SHEN Jun, LIU Dong, LIU Nian-Ping, ZHOU Xiao-Wei . Preparation and Performance of Polypyrrole/Nitric Acid Activated Carbon Aerogel Nanocomposite Materials for Supercapacitors[J]. Acta Physico-Chimica Sinca, 2016, 32(2): 493-502.
[14] WANG Yong-Fang, ZUO Song-Lin. Electrochemical Properties of Phosphorus-Containing Activated Carbon Electrodes on Electrical Double-Layer Capacitors[J]. Acta Physico-Chimica Sinca, 2016, 32(2): 481-492.
[15] LI Zhao-Hui, LI Shi-Jiao, ZHOU Jin, ZHU Ting-Ting, SHEN Hong-Long, ZHUO Shu-Ping. Preparation and Supercapacitive Performance of N, S Co-Doped Activated Carbon Materials[J]. Acta Physico-Chimica Sinca, 2015, 31(4): 676-684.