Please wait a minute...
Acta Phys. -Chim. Sin.  2018, Vol. 34 Issue (9): 1029-1047    DOI: 10.3866/PKU.WHXB201801122
Special Issue: Graphdiyne
REVIEW     
Graphdiyne for Electrochemical Energy Storage Devices
Xiangyan SHEN1,2,Jianjiang HE1,Ning WANG1,Changshui HUANG1,*()
1 Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong Province, P. R. China
2 University of Chinese Academy of Sciences, Beijing 100190, P. R. China
Download: HTML     PDF(7618KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Electrochemicalenergy storage devices are becoming increasingly important in modern societyfor efficient energy storage. The use of these devices is mainly dependent onthe electrode materials. As a newly discovered carbon allotrope, graphdiyne(GDY) is a two-dimensional full-carbon material. Its wide interlayer distance(0.365 nm), large specific surface area, special three-dimensional porousstructure (18-C hexagon pores), and high conductivity make it a potentialelectrode material in energy storage devices. In this paper, based on thefacile synthesis method and the unique porous structure of GDY, theapplications of GDY in energy storage devices have been discussed in detailfrom the aspects of both theoretical predictions and recent experimentaldevelopments. The Li/Na migration and storage in mono-layered and bulk GDYindicate that GDY-based batteries have excellent theoretical Li/Na storagecapacity. The maximal Li storage capacity in mono-layered GDY is LiC3(744 mAh∙g-1). The experimental Li storage capacity of GDY issimilar to theoretical predictions. The experimental Li storage capacity of athick GDY film is close to that of mono-layered GDY' (744 mAh∙g-1).A thin GDY film with double-side storage model has two-times the Li storagecapacity (1480 mAh∙g-1) of mono-layered GDY. Powder GDY has lower Listorage capacity than GDY film. The maximal Na storage capacity in GDYcorresponds to NaC5.14 (316 mAh∙g-1), and mono-layeredGDY possesses higher theoretical Na storage capacity (NaC2.57). Theexperimental Na storage capacity (261 mAh∙g-1) is similar to itstheoretical value. Besides, GDY as electrode material, applied in metal-sulfurbatteries, presents excellent electrochemical performance (in Li-S battery: 0.1C, 949.2 mAh∙g-1; in Mg-S battery: 50 mA∙g-1, 458.9 mAh∙g-1).This ingenious design presents a new way for the preparation of carbon-loadedsulfur. GDY electrode material is also successfully used in supercapacitors, including the traditional supercapacitor, Li-ion capacitors, and Na-ioncapacitors. The traditional supercapacitor with GDY as the electrode material showsgood double layer capacitance and pseudo-capacitance. Both Li-ion capacitor(100.3 W∙kg-1, 110.7 Wh∙kg-1) and Na-ion capacitor (300W∙kg-1, 182.3 Wh∙kg-1) possess high power and energydensities. Moreover, the effects of synthesis of GDY nanostructure, heattreatment of GDY, and atom-doping in GDY on the performance of electrochemicalenergy storage will be introduced and discussed. The results indicate that GDYhas great potential for application in different energy storage devices as anefficient electrode material.



Key wordsGraphdiyne      Electrochemical energy storage devices      Li storage      Na storage      Metal-sulphur battery      Supercapacitor     
Received: 06 December 2017      Published: 09 April 2018
MSC2000:  O646  
  O647  
Fund:  the Hundred Talents Program and Frontier Science Research Project of the Chinese Academy of Sciences(QYZDB-SSW-JSC052);the Natural Science Foundation of Shandong Province for Distinguished Young Scholars, China(JQ201610)
Corresponding Authors: Changshui HUANG     E-mail: huangcs@qibebt.ac.cn
Cite this article:

Xiangyan SHEN,Jianjiang HE,Ning WANG,Changshui HUANG. Graphdiyne for Electrochemical Energy Storage Devices. Acta Phys. -Chim. Sin., 2018, 34(9): 1029-1047.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201801122     OR     http://www.whxb.pku.edu.cn/Y2018/V34/I9/1029

Fig 1 The synthesis and scanning electron microscope(SEM) images of GDY 12. (a) The synthesis of GDY. Structures of the (1) hexaethynylbenzenemonomer, (2) 2D structures of a GDY. The SEM images of GDY filmsgrown on the surface of copper foil, (b) large-area graphdiyne film, (c) higher magnification image, (d) cracked film on the brim of copper foil, (e) a turned up film.
Fig 2 Diffusion pathways of Li within one triangular-like pore or across a GDY layer and the correspondingenergy profiles as a function of adsorption sites 31. (a) diffusion pathway of Li within one triangular-like pore and corresponding energy profile as a function of adsorption sites, (b) diffusion pathways of Li and corresponding energy profiles as a function of adsorption sites across a GDY layer.
Fig 3 Mechanism of Li intercalated GDY 36. (a) cycle performance of an assembled GDY-based battery; (b) Li-storage of GDY in a Li-ion cell; (1) Li-intercalated GDY; (2) three different sites for occupation by Li atoms in GDY, absorption of Li atoms on (3, 4) both sides and (5, 6) one side of a GDY plane; (3, 5) angled and (4, 6) top views of Li absorption geometries
Fig 4 Application of GDY in lithium ion batteries 32. (A) a ball-and-stick model of GDY structure, and the inset is the unitcell of GDY. (B) SEM image of GDY. (C) cycle performance andcoulombic efficiency; (D) charge/discharge profiles and (E) rateperformance of GDY electrode; (F) Nyquist plots of GDY-basedelectrode before and after 200 cycles.
Fig 5 Electrochemical performance of GDY nanochain as a lithium ion battery anode 39. (a) schemes of the synthesis of GDY nanochain and its possible Li+-insertion/desertion processes and electron transfer in the GDY nanochain(b) rate performance, (c) charge-discharge curves, (d) long-term capacity retention.
Fig 6 The synthesis of GDY nanosheets and its electrochemical performance as a lithium ion battery anode 42. (a–c) the synthesis of GDY on Cu-nanowire (CuNW) paper. (d) SEM image of the Cu@GDY. (e) HR-TEM image of GDY nanosheets with Cu.Electrochemical performance of Cu@GDY paper: (f) variations in specific capacity and (g) long-term stability of GDY1 and GDY2 at 5 A·g-1.
Fig 7 The growth mechanism of uniform GDY film and its cycle stability 49. (a) the proposed growth mechanism of uniform GDY film, (b) the SEM images of GDY heated at 400 ℃ for 2 h. Scale bar, 20 μm (black), 2 μm (green), 200 nm (red). (c) The cycle performance of heat treated GDY at different temperatures, the current density is 100 mA·g–1. Color online.
Fig 8 The electrochemical performance of nitrogen-dopedGDY (N-GDY) 37. (a) SEM and corresponding elemental mapping images of the N-GDY film.(b) The diffusion of Li+ in GDY and N-GDY. (c) Cycle performance ofN-GDY and GDY electrodes under 500 mA·g–1. (d) Different rateperformance of N-GDY and GDY electrodes at varied current densities.
Fig 9 Charge density of GDY and schematic plots of diffusion paths of Na on GDY monolayers 70. (a) monolayers (in electrons per ?3), electrostatic potential projected on a slice containing both A and B sites and perpendicular to the single GDY(b) monolayers. Schematic plots of diffusion paths (c) and corresponding energy curves as a function of adsorption sites of Na on GDY monolayers, andthe corresponding transition states (TS). Energy curves (d) and (e) for Na diffusion between two adjacent adsorption sites in the GDY plane, (f) Na diffusion out the plane across the large triangle of GDY monolayers. Here, the minimum energies are all set to zero.
Fig 10 Binding energy as a function of the number of Na atoms intercalated in bulk GDY 71. Grey and blue balls represent carbon atoms. The two layers have been colored differently to distinguish between them. Purple balls representsodium atoms. The top and the side view of each structure are shown. The blue diamonds show binding energies for the undistorted structures andthe green diamonds shown binding energies for distorted structures. Color online
Fig 11 The characterization of sodium ion battery(SIB) with GDY as an anode electrode 72. (a) schematic of a sodium ion battery based on GDY, (b) rate performanceat varied current density ranging from 20 to 4000 mA·g-1, (c) cycle performance at 50 mA·g-1 and (d) cycle performance at acurrent density of 100 mA·g-1.
Fig 12 Electrochemical performance of GDYnanochain as a sodium ion battery anode 39. (a) SEM image of the nanochains. (b) Charge-discharge curves, (c) rate performance, (d) long-term capacity retention.
Fig 13 The synthesis of SGDY and its electrochemical performance as compatible cathode for lithium-sulfur batteries 84. (a) schematic illustration of the preparation process of SGDY by using a simple thermal synthesis procedure. (b) SEM image and corresponding elementmapping in the dashed box of SGDY. (c) Rate performance and (d) cycling performance of the SGDY cathode in the Li-S battery.
Fig 14 The electrochemical performance of SGDY as compatible cathode for magnesium-sulfur batteries 84. (a) TEM and (b) HRTEM images of SGDY. (c) Rate performance of SGDY cathode in the Mg-S battery. (d) Capacity comparison between our Mg-S batterieswith previous studies. (e) Cycling performance of the SGDY cathode at a current density of 50 mA·g-1 in the Mg-S battery.
Fig 15 The electrochemical performance of GDY electrodes 98. (a) cyclic voltammetric (CV) curves at different scan rates, (b) discharge profiles measured at different current densities (3.5–5 A·g-1), and (c) thecorresponding specific capacitance, (d) capacitance retention over 1000 cycles measured using CV method and the inset shows the Nyquist plot of GDYelectrodes before and after cyclic tests.
Fig 16 The electrochemical performance of GDY/AC LICs 82. (a) scheme of the GDY Li-ion capacitor. (b) Photo of GDY powder and 3D/2D structure of a GDY; inset: unit cell. (c) TEM image of GDY. (d) CV curves atvarious scan rates; (e) galvanostatic charge-discharge voltage profiles at various current densities; (f) corresponding specific capacitances of the LICsincorporating GDY as the negative electrode at various current densities; (g) Ragone plots of GDY/AC LICs compared with previously reported graphite andgraphene LICs; (h) cycling stability of GDY/AC LIC at a current density of 200 mA·g-1; (i) Nyquist plots of the LIC employing AC as the positive electrodeand pre-lithiated GDY as the negative electrode, measured before and after 1000 cycles of operation.
Fig 17 The synthesis of GDY NW and the electrochemical performance of GDY NW/AC LICs 101. (a) schematic of synthesis of GDY NWs. (b) Top view SEM images of GDY NW on Cu substrate; (c) cross-sectional view of GDY NW as an exfoliatedsample; (d) TEM image of an exfoliated sample. (e) and (f) GCD profiles of GDY NW electrodes at various current densities from 50 mA·g–1 to 10 A·g–1, respectively. (g) The specific capacitances of LIC at different current densities from 50 mA·g–1 to 10 A·g–1 obtained from the GGCD profiles. (h) Capacitanceretentions at of the GDY NW/AC LICs at the current density of 1 A·g–1 during discharge around 10000 cycles.
Fig 18 The electrochemical performance of GDY-NS/AC NICs 102. (a) AFM image of GDY-NS on a Cu substrate; (b) schematic illustration of the structure of GDY-NS on a Cu substrate. (c) Schematic diagrams ofthe NIC full-cell configuration composed of the AC as the cathode and GDY-NS as the anode electrode; (d) lighting a blue LED by the GDY-NS/AC NICcell; (e) galvanostatic charge-discharge voltage profiles of GDY-NS electrodes at various current densities from 50 mA·g-1 to 5 A·g-1, respectively; (f) Ragone plots of NICs with GDY-NS/AC and comparison of other references 103-108; and (g) the cycle performance of the GDY-NS/AC-applied NICs at thecurrent density of 1 A·g-1 (all of the potential is vs Na+/Na).
1 Abbasi T. ; Abbasi S. A. Renew. Sust. Energ. Rev. 2010, 14, 919.
2 Wang J. ; Nie P. ; Ding B. ; Dong S. ; Hao X. ; Dou H. ; Zhang X. J. Mater. Chem. A 2017, 5, 2411.
3 Wang Z. ; Zhang W. ; Li X. ; Gao L. J. Mater. Res. 2016, 31, 1648.
4 Simon P. ; Gogotsi Y. Nat. Mater. 2008, 7, 845.
5 Zhang L. L. ; Zhao X. S. Chem. Soc. Rev. 2009, 38, 2520.
6 Zhang L. L. ; Zhou R. ; Zhao X. S. J. Mater. Chem. 2010, 20, 5983.
7 Zhang K. ; Zhang L. L. ; Zhao X. S. ; Wu J. Chem. Mater. 2010, 22, 1392.
8 Qie L. ; Chen W. M. ; Wang Z. H. ; Shao Q. G. ; Li X. ; Yuan L. X. ; Hu X. L. ; Zhang W. X. ; Huang Y. H. Adv. Mater. 2012, 24, 2047.
9 Hong S. M. ; Etacheri V. ; Hong C. N. ; Choi S. W. ; Lee K. B. ; Pol V. G. ACS Appl. Mat. Interfaces 2017, 9, 18790.
10 Bazaka K. ; Jacob M. V. ; Ostrikov K. K. Chem. Rev. 2016, 116, 163.
11 Yang Z. ; Ren J. ; Zhang Z. ; Chen X. ; Guan G. ; Qiu L. ; Zhang Y. ; Peng H. Chem. Rev. 2015, 115, 5159.
12 Li G. ; Li Y. ; Liu H. ; Guo Y. ; Li Y. ; Zhu D. Chem. Commun. 2010, 46, 3256.
13 Jia Z. ; Li Y. ; Zuo Z. ; Liu H. ; Huang C. ; Li Y. Acc. Chem. Res. 2017, 50, 2470.
14 Chen Y. ; Liu H. ; Li Y. Chin. Sci. Bull. 2016, 61, 2901.
15 Xiao J. ; Shi J. ; Liu H. ; Xu Y. ; Lv S. ; Luo Y. ; Li D. ; Meng Q. ; Li Y. Adv. Energy Mater. 2015, 5
16 Kuang C. ; Tang G. ; Jiu T. ; Yang H. ; Liu H. ; Li B. ; Luo W. ; Li X. ; Zhang W. ; Lu F. ; Fang J. ; Li Y. Nano Lett. 2015, 15, 2756.
17 Li Y. ; Xu L. ; Liu H. ; Li Y. Chem. Soc. Rev. 2014, 43, 2572.
18 Gao J. ; Li J. F. ; Chen Y. H. ; Zuo Z. C. ; Li Y. J. ; L iu ; H. B. Li Y. L. Nano Energy 2018, 43, 192.
19 Huang C. S. ; Li Y. L. Acta Phys. -Chim. Sin. 2016, 32, 1314.
19 黄长水; 李玉良. 物理化学学报, 2016, 32, 1314.
20 Zhou Q. ; Carroll P. J. ; Swager T. M. J. Org. Chem. 1994, 59, 1294.
21 Haley M. M. ; Bell M. L. ; English J. J. ; And C. A. J. ; Weakley T. J. R. J. Am. Chem. Soc 1997, 119, 2956.
22 Wan B. W. ; Haley M. M. J. Org. Chem. 2001, 66, 3893.
23 Marsden J. A. ; Haley M. M. J. Org. Chem. 2005, 70, 10213.
24 Yoo E. ; Kim J. ; Hosono E. ; Zhou H. S. ; Kudo T. ; Honma I. Nano Lett. 2008, 8, 2277.
25 Zhou L. ; Yang L. ; Yuan P. ; Zou J. ; Wu Y. ; Yu C. J. Phys. Chem. C 2010, 114, 21868.
26 Guo P. ; Song H. ; Chen X. Electrochim. Acta 2009, 11, 1320.
27 Shim J. ; Striebel K. A. J. Power Sources 2003, 119, 934.
28 Gu Z. Y. ; Gao S. ; Huang H. ; Jin X. Z. ; Wu A. M. ; Cao G. Z. Acta Phys. -Chim. Sin. 2017, 33, 1197.
28 谷泽宇; 高嵩; 黄昊; 靳晓哲; 吴爱民; 曹国忠. 物理化学学报, 2017, 33, 1197.
29 Kostecki R. ; Mclarnon F. J. Power Sources 2003, 119, 550.
30 Sethuraman V. A. ; Hardwick L. J. ; Srinivasan V. ; Kostecki R. J. Power Sources 2010, 195, 3655.
31 Zhang H. ; Xia Y. ; Bu H. ; Wang X. ; Zhang M. ; Luo Y. ; Zhao M. J. Appl. Phys. 2013, 113, 1.
32 Zhang S. ; Liu H. ; Huang C. ; Cui G. ; Li Y. Chem. Commun. 2015, 51, 1834.
33 Srinivasu K. ; Ghosh S. K. J. Phys. Chem. C 2012, 116, 5951.
34 Sun C. ; Searles D. J. J. Phys. Chem. C 2012, 116, 26222.
35 Jang B. ; Koo J. ; Park M. ; Lee H. ; Nam J. ; Kwon Y. ; Lee H. Appl. Phys. Lett. 2013, 103, 1.
36 Huang C. ; Zhang S. ; Liu H. ; Li Y. ; Cui G. ; Li Y. Nano Energy 2015, 11, 481.
37 Zhang S. ; Du H. ; He J. ; Huang C. ; Liu H. ; Cui G. ; Li Y. ACS Appl. Mat. Interfaces 2016, 8, 8467.
38 Long M. ; Tang L. ; Wang D. ; Li Y. ; Shuai Z. ACS Nano 2011, 5, 2593.
39 Zuo Z. ; Shang H. ; Chen Y. ; Li J. ; Liu H. ; Li Y. ; Li Y. Chem. Commun. 2017, 53, 8074.
40 Fan Z. J. ; Yan J. ; Wei T. ; Ning G. Q. ; Zhi L. J. ; Liu J. C. ; Cao D. X. ; Wang G. L. ; Wei F. ACS Nano 2011, 5, 2787.
41 Han F. D. ; Bai Y. J. ; Liu R. ; Yao B. ; Qi Y. X. ; Lun N. ; Zhang J. X. Adv. Energy Mater. 2011, 1, 798.
42 Shang H. ; Zuo Z. ; Li L. ; Wang F. ; Liu H. ; Li Y. ; Li Y. Angew. Chem. Int. Ed. 2017, 129, 1.
43 Lin J. ; Peng Z. ; Xiang C. ; Ruan G. ; Yan Z. ; Natelson D. ; Tour J. M. ACS Nano 2013, 7, 6001.
44 Wang Z. L. ; Xu D. ; Wang H. G. ; Wu Z. ; Zhang X. B. ACS Nano 2013, 7, 2422.
45 Gong Y. ; Yang S. ; Zhan L. ; Ma L. ; Vajtai R. ; Ajayan P. M. Adv. Funct. Mater. 2014, 24, 125.
46 Wang D. ; Yang J. ; Li X. ; Geng D. ; Li R. ; Cai M. ; Sham T. K. ; Sun X. Energy Environ. Sci. 2013, 6, 2900.
47 Zhou X. ; Wan L. J. ; Guo Y. G. Adv. Mater. 2013, 25, 2152.
48 Shan T. T. ; Xin S. ; You Y. ; Cong H. P. ; Yu S. H. ; Manthiram A. Angew. Chem. Int. Ed. 2016, 55, 12783.
49 He J. ; Bao K. ; Cui W. ; Yu J. ; Huang C. ; Shen X. ; Cui Z. ; Wang N. Chem. Eur. J. 2017, 23, 1.
50 Tarascon J. M. ; Armand M. Nature 2001, 414, 359.
51 Wang H. ; Mitlin D. ; Ding J. ; Li Z. ; Cui K. J. Mater. Chem. A 2016, 4, 5149.
52 Dirican M. ; Zhang X. J. Power Sources 2016, 327, 333.
53 Jo C. ; Park Y. ; Jeong J. ; Lee K. T. ; Lee J. ACS Appl. Mat. Interfaces 2015, 7, 11748.
54 Kang B. ; Ceder G. Nature 2009, 458, 190.
55 Scrosati B. ; Hassoun J. ; Sun Y. K. Energy Environ. Sci. 2011, 4, 3287.
56 David L. ; Bhandavat R. ; Singh G. ACS Nano 2014, 8, 1759.
57 Zhu Y. ; Han X. ; Xu Y. ; Liu Y. ; Zheng S. ; Xu K. ; Hu L. ; Wang C. ACS Nano 2013, 7, 6378.
58 Yuan S. ; Huang X. L. ; Ma D. L. ; Wang H. G. ; Meng F. Z. ; Zhang X. B. Adv. Mater. 2014, 26, 2273.
59 Fang Y. J. ; Chen Z. X. ; Ai X. P. ; Yang H. X. ; Cao Y. L. Acta Phys. -Chim. Sin. 2017, 33, 211d.
59 方永进; 陈重学; 艾新平; 杨汉西; 曹余良. 物理化学学报, 2017, 33, 211.
60 Cao Y. ; Xiao L. ; Sushko M. L. ; Wang W. ; Schwenzer B. ; Xiao J. ; Nie Z. ; Saraf L. V. ; Yang Z. ; Liu J. Nano Lett. 2012, 12, 3783.
61 Ding J. ; Wang H. ; Li Z. ; Kohandehghan A. ; Cui K. ; Xu Z. ; Zahiri B. ; Tan X. ; Lotfabad E. M. ; Olsen B. C. ACS Nano 2013, 7, 11004.
62 Song H. ; Li N. ; Cui H. ; Wang C. Nano Energy 2014, 4, 81.
63 Liu J. ; Yang Z. ; Wang J. ; Gu L. ; Maier J. ; Yu Y. Nano Energy 2015, 16, 389.
64 Pan H. ; Lu X. ; Yu X. ; Hu Y. S. ; Li H. ; Yang X. Q. ; Chen L. Adv. Energy Mater. 2014, 3, 1186.
65 Ding J. ; Li Z. ; Wang H. ; Cui K. ; Kohandehghan A. ; Tan X. ; Karpuzov D. ; Mitlin D. J. Mater. Chem. A 2015, 3, 7100.
66 Jiang Y. ; Hu M. ; Zhang D. ; Yuan T. ; Sun W. ; Xu B. ; Yan M. Nano Energy 2014, 5, 60.
67 Li Z. ; Ding J. ; Wang H. ; Cui K. ; Stephenson T. ; Karpuzov D. ; Mitlin D. Nano Energy 2015, 15, 369.
68 Ahmed B. ; Anjum D. H. ; Hedhili M. N. ; Alshareef H. N. Small 2015, 11, 4341.
69 Lacey S. D. ; Wan J. ; Von W. C. A. ; Russell S. M. ; Dai J. ; Bao W. ; Xu K. ; Hu L. Nano Lett. 2015, 15, 1018.
70 Xu Z. ; Lv X. ; Li J. ; Chen J. ; Liu Q. RSC Advances 2016, 6, 25594.
71 Niaei A. H. F. ; Hussain T. ; Hankel M. ; Searles D. J. J. Power Sources 2017, 343, 354.
72 Zhang S. ; He J. ; Zheng J. ; Huang C. ; Lv Q. ; Wang K. ; Wang N. ; Lan Z. J. Mater. Chem. A 2017, 5, 2045.
73 Kim H. S. ; Arthur T. S. ; Allred G. D. ; Zajicek J. ; Newman J. G. ; Rodnyansky A. E. ; Oliver A. G. ; Boggess W. C. ; Muldoon J. Nat. Commun. 2011, 2, 427.
74 Li W. ; Cheng S. ; Wang J. ; Qiu Y. ; Zheng Z. ; Lin H. ; Nanda S. ; Ma Q. ; Xu Y. ; Ye F. Angew. Chem. Int. Ed. 2016, 55, 6406.
75 Manthiram A. ; Fu Y. ; Su Y. S. Acc. Chem. Res. 2013, 46, 1125.
76 Shaibani M. ; Akbari A. ; Sheath P. ; Easton C. D. ; Banerjee P. C. ; Konstas K. ; Fakhfouri A. ; Barghamadi M. ; Musameh M. M. ; Best A. S. ACS Nano 2016, 10, 7768.
77 Zhang Z. ; Li Z. ; Hao F. ; Wang X. ; Li Q. ; Qi Y. ; Fan R. ; Yin L. Adv. Funct. Mater. 2014, 24, 2500.
78 Chen R. ; Zhao T. ; Wu F. Chem. Commun. 2015, 51, 18.
79 Ji L. ; Rao M. ; Zheng H. ; Zhang L. ; Li Y. ; Duan W. ; Guo J. ; Cairns E. J. ; Zhang Y. J. Am. Chem. Soc. 2011, 133, 18522.
80 Zhou G. ; Pei S. ; Li L. ; Wang D. W. ; Wang S. ; Huang K. ; Yin L. C. ; Li F. ; Cheng H. M. Adv. Mater. 2014, 26, 664.
81 Zhao M. Q. ; Liu X. F. ; Zhang Q. ; Tian G. L. ; Huang J. Q. ; Zhu W. ; Wei F. ACS Nano 2012, 6, 10759.
82 Du H. ; Yang H. ; Huang C. ; He J. ; Liu H. ; Li Y. Nano Energy 2016, 22, 615.
83 Zhang H. ; Zhao M. ; He X. ; Wang Z. ; Zhang X. ; Liu X. J. Phys. Chem. C 2011, 115, 8845.
84 Du H. ; Zhang Z. ; He J. ; Cui Z. ; Chai J. ; Huang C. ; Cui G. Small 2017, 13, 18522.
85 Zhao-Karger Z. ; Zhao X. ; Wang D. ; Diemant T. ; Behm R. J. ; Fichtner M. Adv. Energy Mater. 2015, 5, 1401155.
86 Vinayan B. P. ; Zhaokarger Z. ; Diemant T. ; Chakravadhanula V. S. ; Schwarzburger N. I. ; Cambaz M. A. ; Behm R. J. ; Kübel C. ; Fichtner M. Nanoscale 2015, 8, 3296.
87 Xia X. ; Zhang Y. ; Chao D. ; Xiong Q. ; Fan Z. ; Tong X. ; Tu J. ; Zhang H. ; Fan H. J. Energy Environ. Sci. 2015, 8, 1559.
88 Wang L. ; Li X. ; Guo T. ; Yan X. ; Tay B. K. Int. J. Hydrogen Energy 2014, 39, 7876.
89 Wu Z. ; Zhang X. B. Acta Phys. -Chim. Sin. 2017, 33, 305d.
89 吴中; 张新波. 物理化学学报, 2017, 33, 305.
90 Krishnamoorthy K. ; Veerasubramani G. K. ; Radhakrishnan S. ; Sang J. K. Mater. Res. Bull. 2014, 50, 499.
91 Fan L. Q. ; Liu G. J. ; Zhang C. Y. ; Wu J. H. ; Wei Y. L. Int. J. Hydrogen Energy 2015, 40, 10150.
92 Xin G. ; Wang Y. ; Zhang J. ; Jia S. ; Zang J. ; Wang Y. Int. J. Hydrogen Energy 2015, 40, 10176.
93 Krishnamoorthy K. ; Ananth A. ; Mok Y. S. ; Kim S. J. Sci. Adv. Mater. 2014, 6, 349.
94 Chen C. M. ; Zhang Q. ; Yang M. G. ; Huang C. H. ; Yang Y. G. ; Wang M. Z. Carbon 2012, 50, 3572.
95 Ramachandran R. ; Saranya M. ; Velmurugan V. ; Raghupathy B. P. C. ; Jeong S. K. ; Grace A. N. Appl. Energy 2015, 153, 22.
96 Tahir M. ; Cao C. ; Butt F. K. ; Idrees F. ; Mahmood N. ; Ali Z. ; Aslam I. ; Tanveer M. ; Rizwan M. ; Mahmood T. J. Mater. Chem. A 2013, 1, 13949.
97 Fan L. Q. ; Liu G. J. ; Zhang C. Y. ; Wu J. H. ; Wei Y. L. Int. J. Hydrogen Energy 2015, 40, 10150.
98 Krishnamoorthy K. ; Thangavel S. ; Veetil J. C. ; Raju N. ; Venugopal G. ; Kim S. J. Int. J. Hydrogen Energy 2016, 41, 1672.
99 Ren J. J. ; Su L. W. ; Qin X. ; Yang M. ; Wei J. P. ; Zhou Z. ; Shen P. W. J. Power Sources 2014, 264, 108.
100 Zhou J. ; Gao X. ; Liu R. ; Xie Z. ; Yang J. ; Zhang S. ; Zhang G. ; Liu H. ; Li Y. ; Zhang J. ; Liu Z. J. Am. Chem. Soc. 2015, 137, 7596.
101 Wang K. ; Wang N. ; He J. ; Yang Z. ; Shen X. ; Huang C. Electrochim. Acta 2017, 253, 506.
102 Wang K. ; Wang N. ; He J. ; Yang Z% Shen X. ; Huang C. ACS Appl. Mater. Interfaces 2017, 9, 40604.
103 Yang J. ; Zhou X. ; Wu D. ; Zhao X. ; Zhou Z. Adv. Mater. 2017, 29, 1604108.
104 Hou H. ; Shao L. ; Zhang Y. ; Zou G. ; Chen J. ; Ji X. Adv. Sci. 2017, 4,
105 Xu J. ; Wang M. ; Wickramaratne N. P. ; Jaroniec M. ; Dou S. ; Dai L. Adv. Mater. 2015, 27, 2042.
106 Fan L. ; Lu B. Small 2016, 12, 2783.
107 Sun T. ; Li Z. J. ; Wang H. G. ; Bao D. ; Meng F. L. ; Zhang X. B. Angew. Chem. Int. Ed. 2016, 55, 10662.
108 Wang H. ; Mitlin D. ; Ding J. ; Li Z. ; Cui K. J. Mater. Chem. A 2016, 4, 5149.
[1] Yanhuan CHEN,Jiaofu LI,Huibiao LIU. Preparation of Graphdiyne-Organic Conjugated Molecular Composite Materials for Lithium Ion Batteries[J]. Acta Phys. -Chim. Sin., 2018, 34(9): 1074-1079.
[2] Zhijuan HUANG,Zhinong YU,Yan LI,Jizheng WANG. ZnO Ultraviolet Photodetector Modified with Graphdiyne[J]. Acta Phys. -Chim. Sin., 2018, 34(9): 1088-1094.
[3] Jingyuan ZHOU,Jin ZHANG,Zhongfan LIU. Advanced Progress in the Synthesis of Graphdiyne[J]. Acta Phys. -Chim. Sin., 2018, 34(9): 977-991.
[4] Yongjun LI,Yuliang LI. Chemical Modification and Functionalization of Graphdiyne[J]. Acta Phys. -Chim. Sin., 2018, 34(9): 992-1013.
[5] Xi CHEN,Shengli ZHANG. Modulation of Molecular Sensing Properties of Graphdiyne Based on 3d Impurities[J]. Acta Phys. -Chim. Sin., 2018, 34(9): 1061-1073.
[6] Xiuli LU,Yingying HAN,Tongbu LU. Structure Characterization and Application of Graphdiyne in Photocatalytic and Electrocatalytic Reactions[J]. Acta Phys. -Chim. Sin., 2018, 34(9): 1014-1028.
[7] Yasong ZHAO,Lijuan ZHANG,Jian QI,Quan JIN,Kaifeng LIN,Dan WANG. Graphdiyne with Enhanced Ability for Electron Transfer[J]. Acta Phys. -Chim. Sin., 2018, 34(9): 1048-1060.
[8] Hai-Yan WANG,Gao-Quan SHI. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 22-35.
[9] Wei-Shi DU,Yao-Kang LÜ,Zhi-Wei CAI,Cheng ZHANG. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1828-1837.
[10] Chun-Rong LIAO,Feng XIONG,Xian-Jun LI,Yi-Qiang WU,Yong-Feng LUO. Progress in Conductive Polymers in Fibrous Energy Devices[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 329-343.
[11] Zhong WU,Xin-Bo ZHANG. Design and Preparation of Electrode Materials for Supercapacitors with High Specific Capacitance[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 305-313.
[12] Zhao-Yang JIA,Mei-Nan LIU,Xin-Luo ZHAO,Xian-Shu WANG,Zheng-Hui PAN,Yue-Gang ZHANG. Lithium Ion Hybrid Supercapacitor Based on Three-Dimensional Flower-Like Nb2O5 and Activated Carbon Electrode Materials[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2510-2516.
[13] Dao-Yan LI,Ji-Chen ZHANG,Zhi-Yong WANG,Xian-Bo JIN. Preparation of Activated Carbon from Honeycomb-Like Porous Gelatin for High-Performance Supercapacitors[J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2245-2252.
[14] Cui-Ping YU,Yan WANG,Jie-Wu CUI,Jia-Qin LIU,Yu-Cheng WU. Recent Advances in the Multi-Modification of TiO2 Nanotube Arrays and Their Application in Supercapacitors[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 1944-1959.
[15] Xue-Qin LI,Lin CHANG,Shen-Long ZHAO,Chang-Long HAO,Chen-Guang LU,Yi-Hua ZHU,Zhi-Yong TANG. Research on Carbon-Based Electrode Materials for Supercapacitors[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 130-148.