Please wait a minute...
Acta Phys. -Chim. Sin.  2018, Vol. 34 Issue (10): 1116-1123    DOI: 10.3866/PKU.WHXB201801151
Special Issue: Molecular Simulations in Materials Science
ARTICLE     
A Molecular Dynamics Study of Carbon Dimerization on Cu(111) Surface with Optimized DFTB Parameters
Di YIN,Zongyang QIU,Pai LI,Zhenyu LI*()
Download: HTML     PDF(1262KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Cu has been widely used as a substrate material for graphene growth. To understand the atomistic mechanism of growth, an efficient and accurate method for describing Cu-C interactions is necessary, which is the prerequisite of any possible large-scale molecular simulation studies. The semi-empirical density-functional tight-binding (DFTB) method has a solid basis from the density functional theory (DFT) and is believed to be a good tool for achieving a balance between efficiency and accuracy. However, existing DFTB parameters cannot provide a reasonable description of the Cu surface structure. At the same time, DFTB parameters for Cu-C interactions are not available. Therefore, it is highly desirable to develop a set of DFTB parameters that can describe the Cu-C system, especially for surface reactions. In this study, a parametrization for Cu-C systems within the self-consistent-charge DFTB (SCC-DFTB) framework is performed. One-center parameters, including on-site energy, Hubbard, and spin parameters, are obtained from DFT calculations on free atoms. Two-center parameters can be calculated based on atomic wavefunctions. The remaining repulsive potential is obtained as the best compromise to describe different kinds of systems. Test calculations on Cu surfaces and Cu-or C atom-adsorbed Cu surfaces indicate that the obtained parameters can generate reasonable geometric structures and energetics. Based on this parameter set, carbon dimerization on the Cu(111) surface has been investigated via molecular dynamics simulations. Since they are the feeding species for graphene growth, it is important to understand how carbon dimers are formed on the Cu surface. It is difficult to observe carbon dimerization in brute-force MD simulations even at high temperatures, because of the surface structure distortion. To study the dimerization mechanism, metadynamics simulations are performed. Our simulations suggest that carbon atoms will rotate around the bridging Cu atom after a bridging metal structure is formed, which eventually leads to the dimer formation. The free energy barrier for dimerization at 1300 K is about 0.9 eV. The results presented here provide useful insights for understanding graphene growth.



Key wordsCopper surface      Carbon dimer      DFTB      Molecular simulation     
Received: 18 December 2017      Published: 13 April 2018
MSC2000:  O643  
Fund:  National Natural Science Foundation of China(21573201);the Ministry of Science and Technology of China(2016YFA0200604);the Special Program for Applied Research on Super Computation of the National Nature Science Foundation of China-Guangdong Joint Fund(U1501501)
Corresponding Authors: Zhenyu LI     E-mail: zyli@mail.ustc.edu.cn
Cite this article:

Di YIN,Zongyang QIU,Pai LI,Zhenyu LI. A Molecular Dynamics Study of Carbon Dimerization on Cu(111) Surface with Optimized DFTB Parameters. Acta Phys. -Chim. Sin., 2018, 34(10): 1116-1123.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201801151     OR     http://www.whxb.pku.edu.cn/Y2018/V34/I10/1116

Shell d p s
copper on-site ?5.5039 ?0.7921 ?4.6812
Hubbard 13.0385 3.6726 6.9281
carbon on-site 0 ?5.4221 ?13.6241
Hubbard 0 10.2432 11.0442
 
Shell s p d
copper s ?0.4082 ?0.2095 ?0.0735
p ?0.2830 ?0.2830 ?0.0218
d ?0.0707 ?0.0109 ?0.4572
carbon s ?0.8055 ?0.6476
P ?0.6776 ?0.5796
 
 
 
 
 
Bond length (nm) Adsorption energy (eV)
DFTB DFT DFTB DFT
Fcc hollow site 0.242 0.240 3.25 2.62
Hcp hollow site 0.242 0.240 3.23 2.62
Bridge site 0.232 0.234 3.09 2.58
Top site 0.221 0.222 2.45 2.14
 
Bond length (nm) Adsorption energy (eV)
DFTB DFT DFTB DFT
Hollow site 0.248 0.243 3.85 2.86
Bridge site 0.230 0.234 3.15 2.31
Top site 0.220 0.223 2.48 1.93
 
Bond length (nm) Adsorption energy (eV)
DFTB DFT DFTB DFT
Fcc hollow site 0.199 0.185 4.49 4.88
Hcp hollow site 0.199 0.185 4.41 4.82
Bridge site 0.193 0.182 4.30 4.83
Top site 0.166 0.175 3.31 2.91
 
Bond length (nm) Adsorption energy (eV)
DFTB DFT DFTB DFT
Hollow site 0.211 0.191 5.01 6.05
Bridge site 0.188 0.180 4.43 4.23
Top site 0.166 0.174 3.42 2.92
 
DFTB DFT
C1 4.49 4.88
C2 6.16 6.46
C3 6.08 6.40
C6 6.14 6.44
Graphene 7.63 7.88
 
 
 
 
1 Tetlow H. ; de Boer J. P. ; Ford I. ; Vvedensky D. ; Coraux J. ; Kantorovich L. Phys. Rep. 2014, 542, 195.
2 Wu P. ; Zhang W. ; Li Z. ; Yang J. Small 2014, 10, 2136.
3 Wu P. ; Zhang Y. ; Cui P. ; Li Z. Y. ; Yang J. L. ; Zhang Z. Y. Phys. Rev. Lett. 2015, 114, 216102.
4 Li P. ; Li Z. ; Yang J. J. Phys. Chem. C 2017, 121, 25949.
5 Wu P. ; Zhang W. ; Li Z. ; Yang J. ; Hou J. G. J. Chem. Phys. 2010, 133, 071101.
6 Li X. ; Cai W. ; An J. ; Kim S. ; Nah J. ; Yang D. ; Piner R. ; Velamakanni A. ; Jung I. ; Tutuc E. Science 2009, 324, 1312.
7 Henkelman G. ; Uberuaga B. P. ; Jónsson H. J. Chem. Phys. 2000, 113, 9901.
8 Elstner M. ; Porezag D. ; Jungnickel G. ; Elsner J. ; Haugk M. ; Frauenheim T. ; Suhai S. ; Seifert G. Phys. Rev. B 1998, 58, 7260.
9 Frauenheim T. ; Seifert G. ; Elstner M. ; Hajnal Z. ; Jungnickel G. ; Porezag D. ; Suhai S. ; Scholz R. Phys. Stat. Sol. (b) 2000, 217, 41.
10 Porezag D. ; Frauenheim T. ; Kohler T. ; Seifert G. ; Kaschner R. Phys. Rev. B 1995, 51, 12947.
11 Elstner M. ; Frauenheim T. ; Kaxiras E. ; Seifert G. ; Suhai S. Phys. Stat. Sol. (b) 2000, 217, 357.
12 Elstner M. Theor. Chem. Acc. 2006, 116, 316.
13 Page A. J. ; Ohta Y. ; Irle S. ; Morokuma K. Acc. Chem. Res. 2010, 43, 1375.
14 Wang Y. ; Page A. J. ; Nishimoto Y. ; Qian H. -J. ; Morokuma K. ; Irle S. J. Am. Chem. Soc. 2011, 133, 18837.
15 Li H. -B. ; Page A. J. ; Wang Y. ; Irle S. ; Morokuma K. Chem. Comm. 2012, 48, 7937.
16 Wahiduzzaman M. ; Oliveira A. F. ; Philipsen P. ; Zhechkov L. ; van Lenthe E. ; Witek H. A. ; Heine T. J. Chem. Theory Compt. 2013, 9, 4006.
17 Oliveira A. F. ; Philipsen P. ; Heine T. J. Chem. Theory Compt. 2015, 11, 5209.
18 Slater-Koster files containing atomic parameters used in DFTB calculations. http://www.dftb.org/parameters/ (accessed Dec 1, 2017)
19 Frenzel J. ; Oliveira A. F. ; Duarte H. A. ; Heine T. ; Seifert G. Z. Anorg. Allg. Chem. 2005, 631, 1267.
20 Guimaraes L. ; Enyashin A. N. ; Frenzel J. ; Heine T. ; Duarte H. A. ; Seifert G. ACS Nano 2007, 1, 362.
21 Koskinen P. ; Makinen V. Comput. Mater. Sci. 2009, 47, 237.
22 Slater J. C. ; Koster G. F. Phys. Rev. 1954, 94, 1498.
23 Gaus M. ; Cui Q. A. ; Elstner M. J. Chem. Theory Compt. 2011, 7, 931.
24 Grundk tter-Stock B. ; Bezugly V. ; Kunstmann J. ; Cuniberti G. ; Frauenheim T. ; Niehaus T. A. J. Chem. Theory Compt. 2012, 8, 1153.
25 Gaus M. ; Chou C. -P. ; Witek H. ; Elstner M. J. Phys. Chem. A 2009, 113, 11866.
26 Bodrog Z. ; Aradi B. ; Frauenheim T. J. Chem. Theory Compt. 2011, 7, 2654.
27 José M. S. ; Emilio A. ; Julian D. G. ; Alberto G. ; Javier J. ; Pablo O. ; Daniel S. -P. J. Phys.: Condens. Matter 2002, 14, 2745.
28 Thomas F. ; Gotthard S. ; Marcus E. ; Thomas N. ; Christof K. ; Marc A. ; Michael S. ; Zoltán H. ; Aldo Di, C. ; Di C. ; Sándor S. J. Phys.: Condens. Matter 2002, 14, 3015.
29 Aradi B. ; Hourahine B. ; Frauenheim T. J. Phys. Chem. A 2007, 111, 5678.
30 Kresse G. ; Furthmuller J. Comput. Mater. Sci. 1996, 6, 15.
31 Kresse G. ; Furthmuller J. Phys. Rev. B 1996, 54, 11169.
32 Perdew J. P. ; Burke K. ; Ernzerhof M. Phys. Rev. Lett. 1996, 77, 3865.
33 Knaup J. M. ; Hourahine B. ; Frauenheim T. J. Phys. Chem. A 2007, 111, 5637.
34 Burdick G. A. Phys. Rev. 1963, 129, 138.
35 Shin H. ; Kang S. ; Koo J. ; Lee H. ; Kim J. ; Kwon Y. J. Chem. Phys. 2014, 140, 114702.
36 Van Wesep R. G. ; Chen H. ; Zhu W. ; Zhang Z. J. Chem. Phys. 2011, 134, 171105.
37 Laio A. ; Parrinello M. Proc. Natl. Acad. Sci. USA 2002, 99, 12562.
[1] Ai-Jing LI,Wei XIE,Ming WANG,Si-Chuan XU. Molecular Dynamics of Dopamine to Transmit through Molecular Channels within D3R[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 927-940.
[2] Yi WANG,Nan-Fang JIA,Sheng-Li QI,Guo-Feng TIAN,De-Zhen WU. Synthesis, Characterization and Memory Performance of Naphthalimides Containing Various Electron-Withdrawing Moieties[J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2227-2236.
[3] Xiao-Long LIU,Xiao-Xia LI,Song HAN,Xian-Jie QIAO,Bei-Jing ZHONG,Li GUO. Initial Reaction Mechanism of RP-3 High Temperature Oxidation Simulated with ReaxFF MD[J]. Acta Phys. -Chim. Sin., 2016, 32(6): 1424-1433.
[4] Da-Chao CUI,Wei-Tong REN,Wen-Fei LI,Wei WANG. Metadynamics Simulations of Mg2+ Transfer in the Late Stage of the Adenylate Kinase Catalytic Cycle[J]. Acta Phys. -Chim. Sin., 2016, 32(2): 429-435.
[5] Shi-Wen XU,Dong-Qiang LIN,Shan-Jing YAO. Molecular Simulations on Dynamic Binding of Ibuprofen onto Site II of Human Serum Albumin: One Potential Way Analysis[J]. Acta Phys. -Chim. Sin., 2016, 32(11): 2811-2818.
[6] Xiang LU,Xun CHEN,Ya-Shun WANG,Yuan-Yuan TAN,Zi-Yuan GAOMU. Molecular Dynamics Simulation of Gas Transport in Amorphous Polyisoprene[J]. Acta Phys. -Chim. Sin., 2016, 32(10): 2523-2530.
[7] Meng-Yao. ZHAO,Xue-Ping. YANG,Xiao-Ning. YANG. Molecular Dynamics Simulation of Water Molecules in Confined Slit Pores of Graphene[J]. Acta Phys. -Chim. Sin., 2015, 31(8): 1489-1498.
[8] WU Xuan-Jun, ZHAO Peng, FANG Ji-Min, WANG Jie, LIU Bao-Shun, CAI Wei-Quan. Simulation on the Hydrogen Storage Properties of New Doping Porous Aromatic Frameworks[J]. Acta Phys. -Chim. Sin., 2014, 30(11): 2043-2054.
[9] BIAN Fu-Yong, ZHANG Ji-Wei, WANG Dan, XU Si-Chuan. Molecular Dynamics Simulation of the Permeation of Methyldopa through POPC Phospholipid Bilayer Membrane[J]. Acta Phys. -Chim. Sin., 2014, 30(10): 1947-1956.
[10] HUANG Yong-Qi, KANG Xue, XIA Bing, LIU Zhi-Rong. Mechanism of 3D Domain Swapping for Mpro-C: Clues from Molecular Simulations[J]. Acta Phys. -Chim. Sin., 2012, 28(10): 2411-2417.
[11] MEI Yong-Jun, HAN Yi-Xiu, ZHOU Hong, YAO Lin, JIANG Bo. Synergism between Hydrophobically Modified Polyacrylic Acid and Wormlike Micelles[J]. Acta Phys. -Chim. Sin., 2012, 28(07): 1751-1756.
[12] SUN De-Lin, ZHOU Jian. Dissipative Particle Dynamics Simulations on Mesoscopic Structures of Nafion and PVA/Nafion Blend Membranes[J]. Acta Phys. -Chim. Sin., 2012, 28(04): 909-916.
[13] MIAO Yan-Lin, SUN Huai, WANG Lin, SUN Ying-Xin. Predicting Hydrogen Storage Performances in Porous Aromatic Frameworks Containing Carboxylate Functional Groups with Divalent Metallic Cations[J]. Acta Phys. -Chim. Sin., 2012, 28(03): 547-554.
[14] ZHAN Wei-Shen, PAN Shi, WANG Qiao, LI Hong, ZHANG Yi. Comparison of D-SS and D-ST Dyes as Photo Sensitizers in Dye-Sensitized Solar Cells[J]. Acta Phys. -Chim. Sin., 2012, 28(01): 78-84.
[15] JING Bo, ZHANG Jian, Lü Xin, ZHU Yue-Jun, ZHANG Feng-Jiu, JIANG Wei, TAN Ye-Bang. Dissipative Particle Dynamics Simulation of Interface Tension in the Ternary Triton X-100/Toluene/H2O System[J]. Acta Phys. -Chim. Sin., 2011, 27(01): 65-70.