Acta Phys. -Chim. Sin. ›› 2018, Vol. 34 ›› Issue (9): 1014-1028.doi: 10.3866/PKU.WHXB201801171

Special Issue: 石墨炔

• REVIEW • Previous Articles     Next Articles

Structure Characterization and Application of Graphdiyne in Photocatalytic and Electrocatalytic Reactions

Xiuli LU,Yingying HAN,Tongbu LU*()   

  • Received:2017-12-27 Published:2018-04-09
  • Contact: Tongbu LU E-mail:lutongbu@tjut.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(21790052);the National Natural Science Foundation of China(21331007)

Abstract:

Graphdiyne(GDY) is a new booming carbon material with a highly π-conjugatedstructure that consists of sp-and sp2-hybridizedcarbon atoms. Due to the diverse compositions of the carbon atoms, GDYs can bedivided into several forms based on their structure and periodicity. Until2010, γ-GDY has been successfully synthesized and becomes a new member of thecarbon family. Many researchers have subsequently devoted their attention tothe study of GDY. Compared to the traditional carbon materials, GDY exhibits aunique carbon network and electronic structure, thereby attracting considerableattention in a variety of fields. With the development of its syntheticchemistry, many types of GDY with different structures have been synthesizedand characterized. The characterization of their micromorphology is crucial forstudying the synthesis procedure and understanding the properties of GDYmaterials. At present, the developed method can characterize GDY morphology, crystal structure, and thechemical bonds of the carbon atoms. Specifically, the morphology and thicknessof GDY can be evaluated by scanning electron microscopy, transmission electronmicroscopy, and atomic force microscopy. The crystal structure can beinvestigated using X-ray diffraction and high-resolution transmission electronmicroscopy. The chemical bonding of the carbon atoms can be analyzed by Ramanspectroscopy, X-ray photoelectron spectroscopy, Fourier transforminfrared (FT-IR) spectroscopy, C-13 nuclear magnetic resonance (13C NMR), UV-visible (UV-Vis) absorption spectroscopy, etc. However, methods for therapid and nondestructive characterization of the highly crystalline graphdiyneare still absent, restricting the study of the intrinsic properties of GDY. Dueto the unique electronic and porous structure of GDY, it has been the focus ofextensive investigations in the field of catalysis. As a result of itsfavorable electronic structure and good capability for transferringphotoexcited electrons and holes, GDY can enhance light absorption andfacilitate the separation of photoexcited charge carriers in semiconductors andthereby significantly promote their photocatalytic performance. In addition, GDY can be modified using foreign elements, providing an ideal platform toprepare a highly active catalyst for the hydrogen evolution reaction, oxygenevolution reaction, oxygen reduction reaction, etc. Furthermore, GDY can besynthesized on arbitrary substrates in a three-dimensional nanosheet arraystructure, which can provide a large number of channels for the transfer ofelectrons and a large contact area with the reactant, which is beneficial inelectrocatalytic reactions. This review focused on the recent developments incharacterization methods as well as the photo and electrocatalysis applicationsof GDY, and elaborated the opportunities and challenges for the investigationof GDY in the future.

Key words: Carbon, Graphdiyne, Structure characterization, Photocatalytic reaction, Electrocatalytic reaction

MSC2000: 

  • O643