Please wait a minute...
Acta Phys. -Chim. Sin.  2019, Vol. 35 Issue (2): 193-199    DOI: 10.3866/PKU.WHXB201801241
ARTICLE     
Sodium Ion Storage Performance of NiCo2S4 Hexagonal Nanosheets
Mingyu ZHAO,Lin ZHU,Bowen FU,Suhua JIANG,Yongning ZHOU,Yun SONG*()
Download: HTML     PDF(1542KB) Export: BibTeX | EndNote (RIS)       Supporting Info

Abstract  

As a potential substitute for commercial lithium ion batteries (LIBs), sodium ion batteries (NIBs) have attracted increasing interest during the last decade. However, compared to the LIBs, the sluggish kinetics of sodium ion diffusion in NIBs due to its larger ionic radius results in deteriorated electrochemical performances, which hinders the future development and application of NIBs. Therefore, exploring anode materials that exhibit a novel kinetic mechanism is desired. Recently, extremely rapid kinetics has been realized by introducing the pseudocapacitance effect into battery systems; this effect generally refers to faradaic charge-transfer reactions, including surface or near-surface redox reactions, and fast bulk ion intercalation. To obtain a pseudocapacitance effect in battery systems, the critical step involves the rational design of a two-dimensional structure with a high conductivity. In this regard, the bimetallic sulfide thiospinel NiCo2S4 stands out by virtue of its high conductivity (1.25 × 106 S·m-1) at room temperature, which is at least two orders of magnitude higher than that of the oxide counterpart (NiCo2O4). Herein, NiCo2S4 hexagonal nanosheets with a large lateral dimension of ~2 μm and thickness ~30 nm have been successfully synthesized through coprecipitation followed by a vapor sulfidation method. As the anode material in NIBs, the NiCo2S4 nanosheets deliver a reversible capacity of 387 mAh·g-1 after 60 cycles at a current density of 1000 mA·g-1. Additionally, the NiCo2S4 nanosheets exhibit high reversible capacities of 542, 398, 347, 300, and 217 mAh·g-1 at the current densities 200, 400, 800, 1000, and 2000 mA·g-1, respectively. Ex situ X-ray diffraction analysis has been employed to reveal that the sodium ion storage process is a result of a combined Na+ intercalation and conversion reaction between Na+ and NiCo2S4. Further quantitative analysis of the kinetics has verified the extrinsic pseudocapacitance mechanism of the Na+ storage process, in which the capacitive contribution enlarges as the current density increases. The observed capacitive contribution of NiCo2S4 electrode is as high as 71% at a scan rate of 0.4 mV·s-1. This is closely attributed to the modified thin-sheet structure of NiCo2S4 and hybridization with graphene that account for the superior high-rate performance with long-term cyclability. These intriguing results shed light on a new strategy for the structural design of electrode materials for advanced NIBs. Moreover, this vapor transformation route can be extended to the preparation of other transition metal disulfides with high electrochemical activities, such as FeCo2S4, ZnCo2S4, CuCo2S4, etc.



Key wordsSodium ion battery      NiCo2S4 nanosheets      Anode material      Sodium storage capalibity      Pseudocapacitance     
Received: 11 January 2018      Published: 24 January 2018
MSC2000:  O646  
Fund:  National Natural Science Foundation of China(51601040);National Natural Science Foundation of China(51572948);National Natural Science Foundation of China(51502039)
Corresponding Authors: Yun SONG     E-mail: songyun@fudan.edu.cn
Cite this article:

Mingyu ZHAO,Lin ZHU,Bowen FU,Suhua JIANG,Yongning ZHOU,Yun SONG. Sodium Ion Storage Performance of NiCo2S4 Hexagonal Nanosheets. Acta Phys. -Chim. Sin., 2019, 35(2): 193-199.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201801241     OR     http://www.whxb.pku.edu.cn/Y2019/V35/I2/193

Fig 1 (a) XRD pattern of 2D NiCo2S4 hexagonal nanosheets and high-resolution XPS spectra of (b) Ni 2p, (c) Co 2p, and (d) S 2p of as-obtained NiCo2S4 nanosheets sample.
Fig 2 (a, b) SEM images and (c) AFM image of 2D NiCo2S4 hexagonal nanosheets.
Fig 3 TEM image (a); SADE (b) and HR-TEM image (c) of 2D NiCo2S4 hexagonal nanosheets.
Fig 4 (a) First four CVs of NiCo2S4 hexagonal nanosheets; (b) The off-line XRD pattern of the NiCo2S4 electrode of different charging/discharging states; (c) First five charge/discharge profiles of NiCo2S4 hexagonal nanosheets; (d) Cycling performance of NiCo2S4 and NiCo2S4; (e) Rate performance of NiCo2S4 and NiCo2S4.
Fig 5 (a) CVs of NiCo2S4 hexagonal nanosheets at various scan rates from 0.1 to 0.4 mV•s-1; (b)Corresponding lgi vs lgv plots at each redox peak (peak current: i, scan rate: v); (c) CV curve with the pseudocapacitive contribution shown by the blue region at a scan rate of 0.4 mV•s-1; (d) bar chart exhibiting the contribution ratio of pseudocapacitive contribution (blue) at various scan rates.
1 Le Y. ; Yang J. F. ; Lou X. W. Angew. Chem. Int. Ed. 2016, 55, 13422.
2 Chen Y. M. ; Yu Y. M. ; Li Z. ; Paik U. ; Lou X. W. Sci. Adv. 2016, 2, 1600021.
3 Ye J. ; Chen T. ; Chen Q. ; Chen W. ; Yu Z. ; Xu S. J. Mater. Chem. A 2016, 4, 13194.
4 Zhu Y. J. ; Fan X. L. ; Suo L. M. ; Luo C. ; Gao T. ; Wang C. S. ACS Nano 2016, 10, 1529.
5 Li X. ; Zai J. ; Xiang S. ; Liu Y. ; He X. ; Xu Z. ; Wang K. ; Ma Z. ; Qian X. Adv. Energy Mater. 2016, 6, 1601056.
6 Cabana J. ; Monconduit L. ; Larcher D. ; Palacín M. R. Adv. Mater. 2010, 22, E170.
7 Kim H. ; Kim D. J. ; Seo D. H. ; Yeom M. S. ; Kang K. ; Kim D. K. ; Jung Y. Chem. Mater. 2012, 24, 1205.
8 Zhu Y. J. ; Choi S. H. ; Fan X. L. ; Shin J. ; Ma Z. H. ; Zachariah M. R. ; Jang W. C. ; Wang C. S. Adv. Energy Mater. 2017, 7, 1601578.
9 Lee E. ; Brown D. E. ; Alp E. E. ; Ren Y. ; Lu J. ; Woo J. J. ; Johnson C. S. Chem. Mater. 2015, 27, 6755.
10 Liu H. ; Jia M. Q. ; Zhu Q. Z. ; Cao B. ; Chen R. J. ; Wang Y. ; Wu F. ; Xu B. ACS Appl. Mater. Interfaces 2016, 8, 26878.
11 Jache B. ; Adelhelm P. Angew. Chem. Int. Ed. 2014, 53, 10169.
12 Che H. ; Chen S. ; Xie Y. ; Wang H. ; Amine K. ; Liao X. ; Ma Z. Energy Environ. Sci. 2017, 10, 1075.
13 Li T. ; Xu Y. ; Xing F. ; Cao X. ; Bian J. ; Wang N. ; Wang Z. L. Adv. Energy Mater. 2017, 7, 1700124.
14 Zou R. ; Zhang Z. ; Yuen M. F. ; Sun M. ; Hu J. ; Lee C. S. ; Zhang W. NPG Asia Mater. 2015, 7, 195.
15 Kang W. ; Wang Y. ; Xu J. J. Mater. Chem. A 2017, 5, 7667.
16 Chen S. ; Qiao S. Z. ACS Nano 2013, 7, 10190.
17 Wu X. ; Li S. ; Wang B. ; Liu J. ; Yu M. Phys. Chem. Chem. Phys. 2017, 19, 11554.
18 Yuan D. X. ; Huang G. ; Yin D. M. ; Wang X. X. ; Wang C. L. ; Wang L. M. ACS Appl. Mater. Interfaces 2017, 9, 18178.
19 Xiao Y. ; Lee S. H. ; Sun Y. K. Adv. Energy Mater. 2016, 7, 1601329.
20 Chen S. Q. ; Wu S. ; Shen L. F. ; Zhu C. B. ; Huang Y. Y. ; Xi K. ; Maier J. ; Yu Y. Adv. Mater. 2017, 1700431.
21 Liu, J. H. ; Zhang, H. ; Liu, X. J. ; Liu, J. S. Inorg. Chem. 2015, 32, 2331.
21 刘家辉,张辉,崔艳华,刘效疆,刘劲松.无机化学学报, 2015, 32, 2331 doi: 10.11826/CJIC.2015.306
22 Kyle C. K. ; Stephany G. ; Naween D. ; Jonathan L. S. ; Souza J. P. ; Trevor H. C. ; Mark A. C. ; Adam H. ; Simon M. H. ; Mullins B. C. J. Mater. Chem. A 2014, 2, 14209.
23 Hu T. T. ; Liu Z. G. ; Borkiewicz O. J. ; Cheng J. ; Hua X. ; Dunstan M. T. ; Yu X. Q. ; Wiaderek K.M. ; Du L. S. ; Chapman K. W. ; et al Nat. Mater. 2013, 12, 1130.
24 Li T. ; Long Z. H. ; Zhang D. H. Acta Phys. -Chim. Sin. 2016, 32, 573.
24 李婷; 龙志辉; 张道洪. 物理化学学报, 2016, 32, 573.
25 Slater M. D. ; Kim D. ; Lee E. ; Johnson C. S. Adv. Funct. Mater. 2013, 23, 947.
26 Song Y. ; Chen Z. ; Li Y. ; Qin C.W. ; Fang F. ; Zhou Y. ; Hu L. ; Sun D. J. Mater. Chem. A 2017, 5, 9022.
27 Wu X. ; Li S. ; Wang B. ; Liu J. ; Yu M. Phys. Chem. Chem. Phys. 2016, 18, 4505.
28 Song Y. ; Cao Y. ; Wang J. ; Zhou Y. N. ; Fang F. ; Li Y. ; Gao S. P. ; Gu Q. F. ; Hu L. ; Sun D. ACS Appl. Mater. Interfaces 2016, 3, 21334.
29 Brezensinski T. ; Wang J. ; Tolbert S. H. ; Dunn B. Nat. Mater. 2010, 9, 146.
30 Sun R. M. ; Wei Q. L. ; Sheng J. Z. ; Shi C. W. ; An Q. Y. ; Lin S. J. ; Mai L. Q. Nano Energy 2017, 35, 396.
31 Simon P. ; Gogotsi Y. ; Dunn B. Science 2014, 343, 1210.
32 Chao D. L. ; Zhu C. R. ; Yang P. H. ; Xia X. H. ; Liu J. L. ; Wang J. ; Fan X. F. ; Savilov S. V. ; Lin J. Y. ; Fan H. J. ; et al Nat. Commun. 2016, 7, 12122.
[1] Shuang LIU,Lianyi SHAO,Xuejing ZHANG,Zhanliang TAO,Jun CHEN. Advances in Electrode Materials for Aqueous Rechargeable Sodium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 581-597.
[2] Xiyue ZHANG,Yalan HUANG,Shuwei WU,Yinxiang ZENG,Minghao YU,Faliang CHENG,Xihong LU,Yexiang TONG. Engineering Oxygen-Deficient Na2Ti3O7 Nanobelt Arrays on Carbon Cloth as Advanced Flexible Anodes for Sodium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2018, 34(2): 219-226.
[3] Xu ZHEN,Xue-Jing GUO. Synthesis and Lithium Storage Performance of Three-Dimensional Mesostructured ZnCo2O4 Cubes[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 845-852.
[4] Xiao-Ye NIU,Xiao-Qin DU,Qin-Chao WANG,Xiao-Jing WU,Xin ZHANG,Yong-Ning ZHOU. AlN-Fe Nanocomposite Thin Film:A New Anode Material for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2517-2522.
[5] Bo PENG,Yao-Lin XU,Fokko M. MULDER. Improving the Performance of Si-Based Li-Ion Battery Anodes by Utilizing Phosphorene Encapsulation[J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2127-2132.
[6] Yong-Jin FANG,Zhong-Xue CHEN,Xin-Ping AI,Han-Xi YANG,Yu-Liang CAO. Recent Developments in Cathode Materials for Na Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 211-241.
[7] Yan-Ping TANG,Sha YUAN,Yu-Zhong GUO,Rui-An HUANG,Jian-Hua WANG,Bin YANG,Yong-Nian DAI. Magnesiothermic Reduction Preparation and Electrochemical Properties of a Highly Ordered Mesoporous Si/C Anode Material for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2280-2286.
[8] Jia-Jun HUANG,Zhi-Jun DONG,Xu ZHANG,Guan-Ming YUAN,Ye CONG,Zheng-Wei CUI,Xuan-Ke LI. Effects of Structure on Electrochemical Performances of Ribbon-Shaped Mesophase Pitch-Based Graphite Fibers[J]. Acta Phys. -Chim. Sin., 2016, 32(7): 1699-1707.
[9] Wei HUANG,Chun-Yang WU,Yue-Wu ZENG,Chuan-Hong JIN,Ze ZHANG. Electron Microscopy Study of Surface Reconstruction and Its Evolution in P2-Type Na0.66Mn0.675Ni0.1625Co0.1625O2 for Sodium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2016, 32(6): 1489-1494.
[10] Ting LI,Zhi-Hui LONG,Dao-Hong ZHANG. Synthesis and Electrochemical Properties of Fe2O3/rGO Nanocomposites as Lithium and Sodium Storage Materials[J]. Acta Phys. -Chim. Sin., 2016, 32(2): 573-580.
[11] Shou-Pu ZHU,Tian WU,Hai-Ming SU,Shan-Shan QU,Yong-Juan XIE,Ming CHEN,Guo-Wang DIAO. Hydrothermal Synthesis of Fe3O4/rGO Nanocomposites as Anode Materials for Lithium Ion Batteries[J]. Acta Phys. -Chim. Sin., 2016, 32(11): 2737-2744.
[12] Cheng-Cheng CHEN,Ning ZHANG,Yong-Chang LIU,Yi-Jing WANG,Jun CHEN. In-situ Preparation of Na2Ti3O7 Nanosheets as High-Performance Anodes for Sodium Ion Batteries[J]. Acta Phys. -Chim. Sin., 2016, 32(1): 349-355.
[13] Xue-Mei. SUN,Li-Jun. GAO. Preparation and Electrochemical Properties of Carbon-Coated CoCO3 as an Anode Material for Lithium Ion Batteries[J]. Acta Phys. -Chim. Sin., 2015, 31(8): 1521-1526.
[14] Qian-Wen. WANG,Xian-Feng. DU,Xi-Zi. CHEN,You-Long. XU. TiO2 Nanotubes as an Anode Material for Lithium Ion Batteries[J]. Acta Phys. -Chim. Sin., 2015, 31(8): 1437-1451.
[15] XU Jing, YANG De-Zhi, LIAO Xiao-Zhen, HE Yu-Shi, MA Zi-Feng. Electrochemical Performances of Reduced Graphene Oxide/Titanium Dioxide Composites for Sodium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2015, 31(5): 913-919.