Please wait a minute...
Acta Phys. -Chim. Sin.  2019, Vol. 35 Issue (2): 182-192    DOI: 10.3866/PKU.WHXB201801264
ARTICLE     
Mechanism Construction and Simulation for Combustion of Large Hydrocarbon Fuels Applied in Wide Temperature Range
Junjiang GUO1,*(),Shiyun TANG1,Rui LI2,Ningxin TAN3,*()
1 School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550003, P. R. China
2 School of Astronautics, Northwestern Polytechnical University, Xi'an 710072, P. R. China
3 School of Chemical Engineering, Sichuan University, Chengdu 610005, P. R. China
Download: HTML     PDF(875KB) Export: BibTeX | EndNote (RIS)      

Abstract  

The ignition characteristics of fuels and the release of energy in combustion engines are of crucial importance to engine design and improvement. To improve the fuel combustion efficiency and to reduce the associated pollutant emission, it is necessary to develop reliable high-precision reaction mechanisms for simulating combustion. Consequently, we need to comprehensively understand the combustion mechanisms of hydrocarbon fuels, and to explore their complicated chemical reaction networks. In order to construct combustion mechanisms that can be applied to conditions over a wide temperature range, wide pressure range, and for different equivalent ratios, two detailed mechanisms for the combustion of large hydrocarbons were developed based on ReaxGen, an automatic generation program for combustion and pyrolysis mechanisms developed by LI Xiangyuan et al. Using this program, one mechanism for n-decane combustion was developed, containing 1499 species and 5713 reactions, and another was developed for n-undecane combustion, containing 1843 species and 6993 reactions. All the detailed mechanisms of the alkanes consisted of two parts, a validated core mechanism and a sub-mechanism produced by ReaxGen which worked mainly based on the rules of the reaction class. The major classes of elementary reactions considered in our detailed mechanisms for n-decane and n-undecane combustion included 10 kinds of high-temperature combustion reactions and 19 kinds of low-temperature combustion reactions. To verify the rationality and reliability of the mechanisms, ignition delay times in shock tubes and the concentration profiles of important species in a jet-stirred reactor were obtained using CHEMKIN software. The obtained calculated data were compared with the experimental data and the results of similar mechanisms at home and abroad. It was shown that the numerically predicted results of our new mechanisms were in good agreement with available experimental data in the literature. Our newly developed n-decane and n-undecane combustion mechanisms are useful for completing the combustion model of aviation kerosene. Furthermore, considering the complexity of the detailed mechanisms, the large amount of calculation and the long time required for mechanism analysis, mechanism simplification was carried out. The sampling points required for mechanism reduction were taken from simulation results near the ignition delay time with pressures ranging from 1.0 × 105 Pa to 1.0 × 106 Pa, equivalence ratios ranging from 0.5 to 2.0, and initial temperatures ranging from 600 K to 1400 K. The species n-C10H22, N2, and O2 were selected as the initial important species for the n-decane combustion mechanism and the species n-C11H24, N2, and O2 were selected as the initial important species for the n-undecane combustion mechanism. The predicted results of ignition delay time from the simplified mechanism for n-decane combustion (including 709 species and 2793 reactions) and simplified mechanism for n-undecane combustion (including 820 species and 3115 reactions) generated by the reduction method of Directed Relation Graph with Error Propagation (DRGEP) agreed well with the detailed mechanisms. Finally, sensitivity analysis for the ignition delay time was carried out to identify reactions that affected ignition delay times at specific temperatures, pressures and equivalence ratios. The results indicate that these mechanisms are reliable for describing the auto-ignition characteristics of n-decane and n-undecane. These mechanisms would also be helpful in computational fluid dynamics (CFD) for engine design.



Key wordsReaxGen      n-Decane and n-undecane      Combustion mechanism applied in wide temperature range      Mechanism construction      Mechanism validation     
Received: 27 December 2017      Published: 26 January 2018
MSC2000:  O643  
Fund:  the National Natural Science Foundation of China(91741201);S & T Plan Project Approving in Guizhou(黔科合LH字[2016]7104号);Civil-Military Integration in Guizhou Institute of Technology(KJZX17-016)
Corresponding Authors: Junjiang GUO,Ningxin TAN     E-mail: junj_g@126.com;tanningxin@scu.edu.cn
Cite this article:

Junjiang GUO,Shiyun TANG,Rui LI,Ningxin TAN. Mechanism Construction and Simulation for Combustion of Large Hydrocarbon Fuels Applied in Wide Temperature Range. Acta Phys. -Chim. Sin., 2019, 35(2): 182-192.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201801264     OR     http://www.whxb.pku.edu.cn/Y2019/V35/I2/182

Fig 1 Ignition delay time for n-decane combustion between simulation results and experimental data at different equivalence ratios.
Fig 2 Ignition delay time for n-undecane combustion between simulation results and experimental data at different equivalence ratios.
Fig 3 Ignition delay time for high temperature combustion of n-undecane between simulation results and experimental data at different equivalence ratios.
Fig 4 Comparisons of experimental and calculated results using our n-decane mechanism, mechanism developed by Battin-Leclerc, and mechanism developed by Westbrook for important species concentrations including (a) n-decane, (b) oxygen, (c) carbon monoxide and (d) carbon dioxide in a JSR for 0.1% n-decane diluted in nitrogen at a pressure of 1.0 × 106 Pa, Φ = 1.0 and residence time of 1s. Symbols are experimental data, solid lines are calculated results of our mechanism, dat lines are calculated results of Battin-Leclerc mechanism, and dot lines are calculated results of Westbrook mechanism.
Fig 5 Comparisons of experimental and calculated results using our n-decane mechanism, mechanism developed by Battin-Leclerc, and mechanism developed by Westbrook for important species concentrations(a) n-decane, (b) oxygen, (c) carbon monoxide and (d) carbon dioxide in a JSR for 0.23% n-decane diluted in helium at a pressure of 1.0 × 105 Pa, Φ = 1.0 and residence time of 1.5 s.
Fig 6 Comparisons of experimental and calculated results using our n-undecane mechanism, mechanism developed by Chang, and mechanism developed by Westbrook for important species concentrations(a) n-undecane, (b) oxygen, (c) carbon monoxide and (d) carbon dioxide in a JSR for 0.1% n-undecane diluted in nitrogen at a pressure of 1.0 × 106 Pa, Φ = 0.5 and residence time of 1 s.
Fig 7 Comparisons of experimental and calculated results using our n-undecane mechanism, mechanism developed by Chang, and mechanism developed by Westbrook for important species concentrations (a) n-undecane, (b) oxygen, (c) carbon monoxide and (d) carbon dioxide in a JSR for 0.1% n-undecane diluted in nitrogen at a pressure of 1.0 ×106 Pa, Φ = 1.0 and residence time of 1 s.
Fig 8 Comparisons of experimental and calculated results using our n-undecane mechanism, mechanism developed by Chang, and mechanism developed by Westbrook for important species concentrations (a) n-undecane, (b) oxygen, (c) carbon monoxide and (d) carbon dioxide in a JSR for 0.1% n-undecane diluted in nitrogen at a pressure of 1.0 × 106 Pa, Φ = 2.0 and residence time of 1 s.
Fig 9 Predicted ignition delay time of detailed mechanism and simplified mechanism for n-decane combustion.
Fig 10 Predicted ignition delay time of detailed mechanism and simplified mechanism for n-undecane combustion.
Fig 11 Sensitivity of ignition delay time at different conditions (800 K) during combustion of n-decane.
Fig 12 Sensitivity of ignition delay time at different conditions during combustion of n-undecane.
1 Biet J. ; Hakka M. H. ; Warth V. ; Glaude P. A. ; Battin-Leclerc F. Energ. Fuel. 2008, 22 (4), 2258.
2 Nehse M. ; Warnatz J. ; Chevalier C. Symp. (Int.) Combust. 1996, 26 (1), 773.
3 Muharam Y. ; Warnatz J. Phys. Chem. Chem. Phys. 2007, 9 (31), 4218.
4 Ranzi E. ; Frassoldati A. ; Granata S. ; Faravelli T. Ind. Eng. Chem. Res. 2005, 44 (14), 5170.
5 Li J. ; Shao J. X. ; Liu C. X. ; Rao H. B. ; Li Z. R. ; Li X. Y. J. Chin. Chem. Soc. 2010, 68 (3), 239.
5 李军; 邵菊香; 刘存喜; 饶含兵; 李泽荣; 李象远. 化学学报, 2010, 68 (3), 239.
6 Tan N. X. ; Wang J. B. ; Hua X. X. ; Li Z. R. ; Li X. Y. Chem. J. Chin. Univ. 2011, 32 (8), 1832.
6 谈宁馨; 王静波; 华晓筱; 李泽荣; 李象远. 高等学校化学学报, 2011, 32 (8), 1832.
7 Guo J. J. ; Hua X. X. ; Wang F. ; Tan N. X. ; Li X. Y. Acta Phys. -Chim. Sin. 2014, 30 (6), 1027.
7 郭俊江; 华晓筱; 王繁; 谈宁馨; 李象远. 物理化学学报, 2014, 30 (6), 1027.
8 Guo J. J. ; Wang J. B. ; Hua X. X. ; Li Z. R. ; Tan N. X. ; Li X. Y. Chem. Res. Chin. Univ. 2014, 30 (3), 480.
9 Guo J. J. ; Li S. H. ; Tan N. X. ; Li X. Y. J. Eng. Thermophys. 2014, 35 (11), 2298.
9 郭俊江; 李树豪; 谈宁馨; 李象远. 工程热物理学报, 2014, 35 (11), 2298.
10 Qi F. ; Li Y. Y. ; Zeng M. F. ; Zhang F. J. Univ. Sci. Technol. China 2013, 43, 948.
10 齐飞; 李玉阳; 曾美容; 张凤. 中国科学技术大学学报, 2013, 43, 948.
11 Dagaut P. ; Bakali E. A. ; Ristori A. Fuel 2006, 85 (7-8), 944.
12 Humer S. ; Frassoldati A. ; Granata S. ; Faravelli T. ; Ranzi E. ; Seiser R. ; Seshadri K. Proc. Combust. Inst. 2007, 31 (1), 393.
13 Wang H. ; Warner S. J. ; Oehlschlaeger M. A. ; Bounaceur R. ; Biet J. ; Glaude P. A. ; Battin-Leclerc F. Combust. Flame 2010, 157 (10), 1976.
14 Dagaut P. Phys. Chem. Chem. Phys. 2002, 4 (11), 2079.
15 Natelson R. H. ; Kurman M. S. ; Cernansky N. P. ; Cernansky N. P. ; Miller D. L. Fuel 2008, 87 (10-11), 2339.
16 Dagaut P. ; Cathonnet M. Prog. Energy Combust. Sci. 2006, 32 (1), 48.
17 Ji C. ; Dames E. ; Wang Y. L. ; Wang H. ; Egolfopoulos F. N. Combust. Flame 2010, 157, 277.
18 Glassman, I. ; Yetter, R. A. ; Glumac, N. G. Combustion; Academic Press: San Diego, CA, USA; 2014.
19 Metcalfe W. K. ; Burke S. M. ; Ahmed S. S. ; Curran H. J. Int. J. Chem. Kinet. 2013, 45, 638.
20 Yao Q. ; Peng L. J. ; Li Z. R. ; Li X. Y. Acta Phys. -Chim Sin. 2017, 33 (4), 763.
20 姚倩; 彭丽娟; 李泽荣; 李象远. 物理化学学报, 2017, 33 (4), 763.
21 Sun X. H. ; Yao Q. ; Li Z. R. ; Wang J. B. ; Li X. Y. Theor. Chem. Acc. 2017, 136 (5), 64.
22 Yao Q. ; Sun X. H. ; Li Z. R. ; Chen F. F. ; Li X. Y. J. Phys. Chem. A 2017, 121 (16), 3001.
23 Guo J. ; Tang S. ; Tan N. RSC Adv. 2017, 7 (71), 44809.
24 Curran H. J. ; Gaffuri P. ; Pitz W. ; Westbrook C. K. Combust. Flame 1998, 114 (1-2), 149.
25 Benson, S. W. Thermochemical Kinetics, 2nd ed. ; John Wiley and Sons: New York, NY, USA; 1976.
26 Holley A. T. ; You X. Q. ; Dames E. ; Wang H. ; Egolfopoulos F. N. Proc. Combust. Inst. 2009, 32 (1), 1157.
27 Benson S. W. Prog. Energy Combust. Sci. 1981, 7, 125.
28 Westbrook C. K. ; Pitz W. J. ; Herbinet O. ; Curran H. J. ; Silke E. J. Combust. Flame 2009, 156 (1), 181.
29 CHEMKIN-PRO 15092; Reaction Design: San Diego, CA, USA, 2010.
30 Pfahl U. ; Fieweger K. ; Adomeit G. Symp. (Int.) Combust. 1996, 26 (1), 781.
31 Zhang W. F. ; Xian L. Y. ; Yong K. L. ; He J. N. ; Zhang C. H. ; Li P. ; Li X. Y. Acta Phys. -Chim Sin. 2016, 32 (9), 2216.
31 张巍锋; 鲜雷勇; 雍康乐; 何九宁; 张昌华; 李萍; 李象远. 物理化学学报, 2016, 32 (9), 2216.
32 Chang Y. C. ; Jia M. ; Liu Y. D. ; Li Y. P. ; Xie M. Z. ; Yin H. C. Energy Fuels 2013, 27, 3467.
33 Dagaut P. ; Reuillon M. ; Cathonnet M. Combust. Sci. Technol. 1994, 103 (1-6), 349.
34 Mze?-Ahmed A. ; Hadj-Ali K. ; Dagaut P. ; Dayma G. Energy Fuels 2012, 26 (7), 4253.
35 Pepiot-Desjardins P. ; Pitsch H. Combust. Flame 2008, 154 (1), 67.
36 Li S. H. ; Li R. ; Guo J. J. ; Tan N. X. ; Wang F. ; Li X. Y. Acta Phys. -Chim. Sin. 2016, 32 (7), 1623.
36 李树豪; 李瑞; 郭俊江; 谈宁馨; 王繁; 李象远. 物理化学学报, 2016, 32 (7), 1623.
37 Lu T. F. ; Law C. K. Combust. Flame 2006, 144 (1-2), 24.
38 Jiang Y. ; Qiu R. Acta Phys. -Chim. Sin. 2009, 25, 1019.
38 蒋勇; 邱榕. 物理化学学报, 2009, 25, 1019.
39 Kumar K. ; Mittal G. ; Sung C. J. ; Law C. K. Combust. Flame 2008, 153 (3), 343.
[1] JIAO Yi, LI Jun, WANG Jing-Bo, WANG Jian-Li, ZHU Quan, CHEN Yao-Qiang, LI Xiang-Yuan. Experiment and Kinetics Simulation on the Pyrolysis of n-Decane[J]. Acta Phys. -Chim. Sin., 2011, 27(05): 1061-1067.