Please wait a minute...
Acta Phys. -Chim. Sin.  2018, Vol. 34 Issue (10): 1136-1143    DOI: 10.3866/PKU.WHXB201801301
Special Issue: Molecular Simulations in Materials Science
ARTICLE     
Selective Permeation of Gas Molecules through a Two-Dimensional Graphene Nanopore
Chengzhen SUN,Bofeng BAI*()
Download: HTML     PDF(1143KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Selective molecular permeation through two-dimensional nanopores is of great importance for nanoporous graphene membranes. In this study, we investigate the selective permeation characteristics of gas molecules through a nitrogen-and hydrogen-modified graphene nanopore using molecular dynamics simulations. We reveal the mechanisms of selective molecular permeation from the aspects of molecular size and structure, pore configuration, and interactions between gas molecules and graphene. The results show that the permeances of different molecules are different, and the following order is observed in our study: H2O > H2S > CO2 > N2 > CH4. Molecular permeance is related to the molecular size, mass, and molecular density on the graphene surface. The molecular permeation rate is inversely proportional to the molecular mass based on gas kinetic theory, while the molecular density on the graphene surface exerts a positive effect on molecular permeation. The permeance of H2O molecules is the highest owing to their smallest diameter, while the permeance of CH4 molecules is the lowest owing to their biggest diameter; in these cases, the molecular size is a dominating factor. For H2S and CO2 molecules, the diameters of H2S molecules are larger than those of CO2 molecules, but the interactions between H2S molecules and graphene are stronger, resulting in a stronger permeation ability of H2S molecules. Between CO2 and N2 molecules, CO2 molecules show higher permeation rates owing to smaller diameters and stronger interactions with graphene. The graphene surface also shows nonuniform molecular density distribution owing to molecular permeation through graphene nanopores. Because of the doped nitrogen atoms, the CH4 molecules prefer to permeate from the left and right sides of the graphene nanopore, while the other molecules prefer to permeate from the center of the nanopore owing to their small diameters. For the molecules that show stronger interactions with graphene, the molecular density on the graphene surface is higher; accordingly, the residence time on the graphene surface is longer and the experience time period during permeation is also longer. The mechanisms identified in this study can provide theoretical guidelines for the application of graphene-based membranes. In addition, the permeance of gas molecules in the graphene nanopore adopted in this study is on the order of 10-3 mol·s-1·m-2·Pa-1, and the selectivity of other molecules relative to CH4 molecules is also high, showing that the membranes based on this type of nanopore can be employed in natural gas processing and other separation industries.



Key wordsGraphene nanopore      Selective permeation      Gas molecules      Molecular dynamics     
Received: 18 December 2017      Published: 13 April 2018
MSC2000:  O647  
Fund:  the National Natural Science Foundation of China(51506166);China National Funds for Distinguished Young Scientists(51425603);National Science Foundation for Post-doctoral Scientists of China(2016T90915)
Corresponding Authors: Bofeng BAI     E-mail: bfbai@mail.xjtu.edu.cn
Cite this article:

Chengzhen SUN,Bofeng BAI. Selective Permeation of Gas Molecules through a Two-Dimensional Graphene Nanopore. Acta Phys. -Chim. Sin., 2018, 34(10): 1136-1143.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201801301     OR     http://www.whxb.pku.edu.cn/Y2018/V34/I10/1136

Diameter/nm Relative molecular mass Molecular structure
CH4 0.380 16.04 spherical
CO2 0.330 44.01 linear
H2S 0.360 34.08 triangular
N2 0.364 28.01 linear
H2O 0.290 18.01 triangular
 
 
 
ε/eV σ/nm Charge/e
CO218
C-C 2.424 × 10-3 0.2757 0.6512
C-O 4.101 × 10-3 0.2895
O-O 6.938 × 10-3 0.3033 -0.3256
H2S23
H-H 0.336 × 10-3 0.0980 0.124
H-S 2.691 × 10-3 0.2350
S-S 21.545 × 10-3 0.3720 -0.248
N224
N-N 3.126 × 10-3 0.3297 0
H2O25
H-H 1.999 × 10-3 0.0400 0.417
H-O 3.634 × 10-3 0.1775
O-O 6.611 × 10-3 0.3151 -0.834
 
Er
10-2Kr/(eV·nm-2) r0/nm
N≡N (N2) 24 1.426 0.1112
C=O (CO2) 27 6.158 0.1160
H―S (H2S) 27 2.021 0.1365
H―O (H2O) 25 19.56 0.0957
E
Kθ/(eV·rad-2) θ0/(°)
O=C=O(CO2) 28 6.416 180
H―S―H (H2S) 29 1.110 91.5
H―O―H (H2O) 25 2.390 104.5
 
 
 
 
 
 
 
1 Geim A. K. ; Novoselov K. S. Nat. Mater. 2007, 6, 183.
2 Lee C. ; Wei X. D. ; Kysar J. W. ; Hone J. Science 2008, 321, 385.
3 Lei G. -P. ; Liu C. ; Xie H. Acta Phys. -Chim. Sin. 2015, 31, 660.
3 雷广平; 刘朝; 解辉. 物理化学学报, 2015, 31, 660.
4 Zhao S. -J. ; Zhang W. ; Deng H. -N. ; Liu W. Acta Phys. -Chim. Sin. 2016, 32, 723.
4 赵胜君; 张伟; 邓会宁; 刘伟. 物理化学学报, 2016, 32, 723.
5 Jiang D. E. ; Cooper V. R. ; Dai S. Nano Lett. 2009, 9, 4019.
6 Kim H. W. ; Yoon H. W. ; Yoon S.-M. ; Yoo B. M. ; Ahn B. K. ; Cho Y. H. ; Shin H. J. ; Yang H. ; Paik U. ; Kwon S. ;et al Science 2013, 342, 91.
7 Koenig S. P. ; Wang L. D. ; Pellegrino J. ; Bunch J. S. Nat. Nanotechnol. 2012, 7, 728.
8 Li H. ; Song Z. ; Zhang X. ; Huang Y. ; Li S. ; Mao Y. ; Ploehn H. J. ; Bao Y. ; Yu M. Science 2013, 342, 95.
9 Sun C. ; Wen B. ; Bai B. Sci. Bull. 2015, 60, 1807.
10 Wen B. Y. ; Sun C. Z. ; Bai B. F. Acta Phys. -Chim. Sin. 2015, 31, 261.
10 温伯尧; 孙成珍; 白博峰. 物理化学学报, 2015, 31, 261.
11 Sun C. ; Wen B. ; Bai B. Chem. Eng. Sci. 2015, 138, 616.
12 Du H. L. ; Li J. Y. ; Zhang J. ; Su G. ; Li X. Y. ; Zhao Y. L. J. Phys. Chem. C 2011, 115, 23261.
13 Schrier J. ACS Appl. Mater. Interf. 2012, 4, 3745.
14 Shan M. ; Xue Q. ; Jing N. ; Ling C. ; Zhang T. ; Yan Z. ; Zheng J. Nanoscale 2012, 4, 5477.
15 Drahushuk L. W. ; Strano M. S. Langmuir 2012, 28, 16671.
16 Sun C. ; Boutilier M. S. H. ; Au H. ; Poesio P. ; Bai B. ; Karnik R. ; Hadjiconstantinou N. G. Langmuir 2014, 30, 675.
17 Wen B. ; Sun C. ; Bai B. Phys. Chem. Chem. Phys. 2015, 17, 23619.
18 Liu H. ; Dai S. ; Jiang D. Nanoscale 2013, 5, 9984.
19 Wu T. ; Xue Q. ; Ling C. ; Shan M. ; Liu Z. ; Tao Y. ; Li X. J. Phys. Chem. C 2014, 118, 7369.
20 Hauser A. W. ; Schwerdtfeger P. Phys. Chem. Chem. Phys. 2012, 14, 13292.
21 Celebi K. ; Buchheim J. ; Wyss R. M. ; Droudian A. ; Gasser P. ; Shorubalko I. ; Kye J. -I. ; Lee C. ; Park H. G. Science 2014, 344, 289.
22 Stuart S. J. ; Tutein A. B. ; Harrison J. A. J. Chem. Phys. 2000, 112, 6472.
23 Lei G. ; Liu C. ; Xie H. ; Song F. Chem. Phys. Lett. 2014, 599, 127.
24 Chae K. ; Violi A. J. Chem. Phys. 2011, 134, 044537.
25 Jorgensen W. L. ; Chandrasekhar J. ; Madura J. D. ; Impey R. W. ; Klein M. L. J. Chem. Phys. 1983, 79, 926.
26 Liu H. ; Chen Z. ; Dai S. ; Jiang D.-E. J. Solid State Chem. 2015, 224, 2.
27 http://www.wiredchemist.com/chemistry/data/bond_energies_lengths.html(accessed on May 3, 2017).
28 Harris J. G. ; Yung K. H. J. Phys. Chem. 1995, 99, 12021.
29 Kamath G. ; Lubna N. ; Potoff J. J. J. Chem. Phys. 2005, 123, 124505.
30 Sun C. ; Bai B. Phys. Chem. Chem. Phys. 2017, 19, 3894.
31 Sun C. ; Bai B. Appl. Therm. Eng. 2017, 116, 724.
[1] YANG Huachao, BO Zheng, SHUAI Xiaorui, YAN Jianhua, CEN Kefa. Influence of Wettability on the Charging Dynamics of Electric Double-Layer Capacitors[J]. Acta Phys. -Chim. Sin., 2019, 35(2): 200-207.
[2] Wenqiong CHEN,Yongji GUAN,Xiaoping ZHANG,Youquan DENG. Influence of External Electric Field on Vibrational Spectrum of Imidazolium-Based Ionic Liquids Probed by Molecular Dynamics Simulation[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 912-919.
[3] Noriyuki YOSHII,Mika KOMORI,Shinji KAWADA,Hiroaki TAKABAYASHI,Kazushi FUJIMOTO,Susumu OKAZAKI. Free Energy Change of Micelle Formation for Sodium Dodecyl Sulfate from a Dispersed State in Solution to Complete Micelles along Its Aggregation Pathways Evaluated by Chemical Species Model Combined with Molecular Dynamics Calculations[J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1163-1170.
[4] Liang XIN,Huai SUN. On the Simulation of Complex Reactions Using Replica Exchange Molecular Dynamics (REMD)[J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1179-1188.
[5] Pingying LIU,Chunyan LIU,Qian LIU,Jing MA. Influence of Photoisomerization on Binding Energy and Conformation of Azobenzene-Containing Host-Guest Complex[J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1171-1178.
[6] Fu-Feng LIU,Yu-Bo FAN,Zhen LIU,Shu BAI. Molecular Mechanism Underlying Affinity Interactions between ZAβ3 and the Aβ16-40 Monomer[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1905-1914.
[7] Xiu-Xiu WANG,Jian-Wei ZHAO,Gang YU. Combined Effects of the Hole and Twin Boundary on the Deformation of Ag Nanowires: a Molecular Dynamics Simulation Study[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1773-1780.
[8] Liao-Ran CAO,Chun-Yu ZHANG,Ding-Lin ZHANG,Hui-Ying CHU,Yue-Bin ZHANG,Guo-Hui LI. Recent Developments in Using Molecular Dynamics Simulation Techniques to Study Biomolecules[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1354-1365.
[9] Fang CHEN,Yuan-Yuan LIU,Jian-Long WANG,Ning-Ning Su,Li-Jie LI,Hong-Chun CHEN. Investigation of the Co-Solvent Effect on the Crystal Morphology of β-HMX using Molecular Dynamics Simulations[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1140-1148.
[10] Yi-Jian CHEN,Hong-Tao ZHOU,Ji-Jiang GE,Gui-Ying XU. Aggregation Behavior of Double-Chained Anionic Surfactant 1-Cm-C9-SO3Na at Air/Liquid Interface: Molecular Dynamics Simulation[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1214-1222.
[11] Ting-Ting ZHOU,Hua-Jie SONG,Feng-Lei HUANG. The Slip and Anisotropy of TATB Crystal under Shock Loading via Molecular Dynamics Simulation[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 949-959.
[12] Yuan ZHAO,Ze-Xing CAO. Global Simulations of Enzymatic Catalysis[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 691-708.
[13] Li-Juan PENG,Qian YAO,Jing-Bo WANG,Ze-Rong LI,Quan ZHU,Xiang-Yuan LI. Pyrolysis of RDX and Its Derivatives via Reactive Molecular Dynamics Simulations[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 745-754.
[14] Qing-Kang LIU,Wen-Ping SONG,Qi-Tao HUANG,Guang-Yu ZHANG,Zhen-Xiu HOU. ReaxFF Reactive Molecular Dynamics Simulation of the Oxidation of Silicon-doped Amorphous Carbon Film in Heat-assisted Magnetic Recording[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2472-2479.
[15] Yi-Ran SUN,Fei YU,Jie MA. Research Progress of Nanoconfined Water[J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2173-2183.