Please wait a minute...
Acta Physico-Chimica Sinca
Accepted manuscript     
Electrochemical Features of Carbon Prepared by Molten Salt Electro-reduction of CO2
GU Yuxing, YANG Juan, WANG Dihua
Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan 430072, P. R. China
Download:   PDF(1246KB) Export: BibTeX | EndNote (RIS)      

Abstract  The molten salt CO2 capture and electrochemical transformation (MSCC-ET) process is a potentially efficient method for CO2 utilization, which can convert CO2 into value-added carbon and oxygen with a current density of 100-1000 mA cm-2. The electrolytic carbon (EC) prepared through the MSCC-ET process is highly electrically conductive and forms flexible microstructures. These structures show excellent adsorption ability towards environmental pollutants and high energy storage capacity when used in supercapacitors. Although the morphology, structure, and application of EC prepared under different electrolysis conditions have been previously reported, their intrinsic electrochemical properties have not yet been elucidated. Powder microelectrodes (PMEs) are useful for studying the electrochemical kinetics of various powdery materials. In this study, we systematically investigated the electrochemical properties of ECs obtained using molten Li2CO3-Na2CO3-K2CO3 under different temperature and electrolysis voltage conditions by cyclic voltammetry (CV) with a carbon powder microelectrode in 10 mmol L-1 Na2SO4. The electrochemical behavior of the EC obtained at 450℃ and a cell voltage of 4.5 V (450℃-4.5 V-EC) differs significantly from that of other carbon materials, i.e., multi-walled carbon nanotubes, graphene, graphite, and acetylene black. In addition to a much larger charging-discharging capacity, unusual hysteresis of the charge/discharge current response of ECs in the negative potential region (-0.6 to -0.2 V vs SCE) was observed. This phenomenon was eliminated by annealing the material under Ar at 550℃, demonstrating that the unique electrochemical behavior of ECs is closely related to the oxygen-containing groups on its surface. Furthermore, CVs of EC-PME were compared in solutions with different pH, Na2SO4 concentrations, and other ions. The pH of the solution did not affect the CVs, excluding a redox mechanism involving the surface functional groups. Hysteresis was weakened by a certain degree at slower potential sweep speeds (<10 mV s-1) or in higher concentrations of electrolyte (100 mmol L-1 Na2SO4). The onset potential for discharging was negatively shifted in electrolytes with a larger cation ((NH4)2SO4) and was unaffected by larger anions (Na2S2O8). This indicates that the hysteresis is more likely related to the specific adsorption of cations, caused by the unique surface properties of EC. It should be noted that the specific surface area and oxygen concentration of EC can be adjusted by the electrolysis temperature and cell voltage. Generally, the Brunauer-Emmett-Teller (BET) specific surface area and oxygen content decrease with increasing temperature and the BET-area increases with increasing cell voltage. The CVs of ECs prepared at different cell voltages were similar, but the adsorption capacity decreased for those prepared at higher temperatures (550 and 650℃). Interestingly, the specific capacitance of the ECs is much higher at negative potentials (-0.6 to 0 V vs SCE) than that at positive potentials (0 to 0.6 V vs SCE). Therefore, it is anticipated that a better capacitance performance can be achieved when the ECs are used as a negative electrode material in supercapacitors.

Key wordsElectrolytic-carbon      Molten salts      Powder microelectrode      Electrochemical property      Specific adsorption     
Received: 15 January 2018      Published: 12 February 2018
MSC2000:  O646  
Fund:  The project was supported by the National Natural Science Foundation of China (21673162, 51325102) and the International Science & Technology Cooperation Program of China (2015DFA90750).
Cite this article:

GU Yuxing, YANG Juan, WANG Dihua. Electrochemical Features of Carbon Prepared by Molten Salt Electro-reduction of CO2. Acta Physico-Chimica Sinca, 0, (): 0-0.

URL:     OR

(1) Bai, X. F.; Chen, W.; Wang, B. Y.; Feng, G. H.; Wei, W.; Jiao, Z.; Sun, Y. H. <i>Acta Phys. -Chim. Sin</i>. <b>2017, </b><i>33</i>, 2388. [白晓芳, 陈为, 王白银, 冯光辉, 魏伟, 焦正, 孙予罕. 物理化学学报, <b>2017, </b><i>33</i>, 2388.] doi: <a href="" target="_blank">10.3866/PKU.WHXB201706131</a><br /> (2) Licht, S. <i>Adv. Mater. </i><b>2011, </b><i>23</i>, 5592. doi: <a href="" target="_blank">10.1002/adma.201103198</a><br /> (3) Yin, H. Y.; Mao, X. H.; Tang, D. Y.; Xiao, W.; Xing, L. R.; Zhu, H.; Wang, D. H.; Sadoway, D. R. <i>Energy Environ. Sci. </i><b>2013, </b><i>6</i>, 1538. doi: <a href="" target="_blank">10.1039/c3ee24132g</a><br /> (4) Tang, D. Y.; Yin, H. Y.; Mao, X. H.; Xiao, W.; Wang, D. H. <i>Electrochim. Acta </i><b>2013, </b><i>114</i>, 567. doi: <a href="" target="_blank">10.1016/j.electacta.2013.10.109</a><br /> (5) Kaplan, B.; Groult, H.; Barhoun, A.; Lantelme, F.; Nakajima, T.; Gupta, V.; Komaba, S.; Kumagai, N. <i>J. Electrochem. Soc. </i><b>2002, </b><i>149</i>, D72. doi: <a href="" target="_blank">10.1149/1.1464884</a><br /> (6) Ijije, H. V.; Lawrence, R. C.; Chen, G. Z. <i>RSC Adv. </i><b>2014, </b><i>4</i>, 35808. doi: <a href="" target="_blank">10.1039/c4ra04629c</a><br /> (7) Ge, J. B.; Wang, S.; Hu, L. W.; Zhu, J.; Jiao, S. Q. <i>Carbon </i><b>2016, </b><i>98</i>, 649. doi: <a href="" target="_blank">10.1016/j.carbon.2015.11.065</a><br /> (8) Ijije, H. V.; Sun, C.; Chen, G. Z. <i>Carbon </i><b>2014, </b><i>73</i>, 163. doi: <a href="" target="_blank">10.1016/j.carbon.2014.02.052</a><br /> (9) Tang, J.; Deng, B.; Xu, F.; Xiao, W.; Wang, D. <i>J. Power Sources</i> <b>2017, </b><i>341</i>, 419. doi: <a href="" target="_blank">10.1016/j.jpowsour.2016.12.037</a><br /> (10) Ge, J. B.; Hu, L. W.; Wang, W.; Jiao, H. D.; Jiao, S. Q. <i>ChemElectroChem </i><b>2015, </b><i>2</i>, 224. doi: <a href="" target="_blank">10.1002/celc.201402297</a><br /> (11) Groult, H.; Kaplan, B.; Lantelme, F.; Komaba, S.; Kumagai, N.; Yashiro, H.; Nakajima, T.; Simon, B.; Barhoun, A. <i>Solid State</i> <i>Ionics </i><b>2006, </b><i>177</i>, 869. doi: <a href="" target="_blank">10.1016/j.ssi.2006.01.051</a><br /> (12) Mao, X. H.; Yan, Z. P.; Sheng, T.; Gao, M. X.; Zhu, H.; Xiao, W.; Wang, D. H. <i>Carbon </i><b>2017, </b><i>111</i>, 162. doi: <a href="" target="_blank">10.1016/j.carbon.2016.09.035</a><br /> (13) Novoselova, I. A.; Oliinyk, N. F.; Volkov, S. V.; Konchits, A. A.; Yanchuk, I. B.; Yefanov, V. S.; Kolesnik, S. P.; Karpets, M. V. <i>Phys. E: Low-dimen. Syst. Nanostruct. </i><b>2008, </b><i>40</i>, 2231. doi: <a href="" target="_blank">10.1016/j.physe.2007.10.069</a><br /> (14) Song, Q.; Xu, Q.; Wang, Y.; Shang, X.; Li, Z. <i>Thin Solid Films</i> <b>2012, </b><i>520</i>, 6856. doi: <a href="" target="_blank">10.1016/j.tsf.2012.07.056</a><br /> (15) Ren, J.; Li, F. F.; Lau, J.; Gonzalez-Urbina, L.; Licht, S. <i>Nano Lett.</i> <b>2015, </b><i>15</i>, 6142. doi: <a href="" target="_blank">10.1021/acs.nanolett.5b02427</a><br /> (16) Deng, B. W.; Mao, X. H.; Xiao, W.; Wang, D. H. <i>J. Mater. Chem.</i> <i>A </i><b>2017, </b><i>5</i>, 12822. doi: <a href="" target="_blank">10.1039/c7ta03606j</a><br /> (17) Deng, B. W.; Tang, J. J.; Gao, M. X.; Mao, X. H.; Zhu, H.; Xiao, W.; Wang, D. H. <i>Electrochim. Acta </i><b>2018, </b><i>259</i>, 975. doi: <a href="" target="_blank">10.1016/j.electacta.2017.11.025</a><br /> (18) Cha, C. S.; Li, C. M.; Yang, H. X.; Liu, P. F. <i>J. Electroanal. Chem.</i> <b>1994, </b><i>368</i>, 47. doi: <a href="" target="_blank">10.1016/0022-0728(93)03016-I</a><br /> (19) Zhao, Y. D.; Zhang, W. D.; Chen, H.; Luo, Q. M. <i>Anal. Sci. </i><b>2002, </b><i>18</i>, 939. doi: <a href="" target="_blank">10.2116/analsci.18.939</a><br /> (20) Zhao, Y. D.; Zhang, W. D.; Chen, H.; Luo, Q. M. <i>Sens. Actuators</i> <i>B </i><b>2003, </b><i>92</i>, 279. doi: <a href="" target="_blank">10.1016/s0925-4005(03)00312-5</a><br /> (21) Luo, J. W.; Zhang, M.; Pang, D. W. <i>Sens. Actuators B </i><b>2005, </b><i>106</i>, 358. doi: <a href="" target="_blank">10.1016/j.snb.2004.08.020</a><br /> (22) Zeng, R. H.; Li, W. S.; Lu, D. S.; Huang, Q. M. <i>J. Power Sources</i> <b>2007, </b><i>174</i>, 592. doi: <a href="" target="_blank">10.1016/j.jpowsour.2007.06.120</a><br /> (23) Vivier, V.; Cachet Vivier, C.; Cha, C. S.; Nedelec, J. Y.; Yu, L. T. <i>Electrochem. Commun. </i><b>2000, </b><i>2</i>, 180. doi: <a href="" target="_blank">10.1016/S1388-2481(00)00004-7</a><br /> (24) Serghini Idrissi, M.; Bernard, M. C.; Harrif, F. Z.; Joiret, S.; Rahmouni, K.; Srhiri, A.; Takenouti, H.; Vivier, V.; Ziani, M. <i>Electrochim. Acta </i><b>2005, </b><i>50</i>, 4699. doi: <a href="" target="_blank">10.1016/j.electacta.2005.01.050</a><br /> (25) Rabbow, T. J.; Trampert, M.; Pokorny, P.; Binder, P.; Whitehead, A.H. <i>Electrochim. Acta </i><b>2015, </b><i>173</i>, 24. doi: <a href="" target="_blank">10.1016/j.electacta.2015.05.058</a><br /> (26) Luo, H.; Shi, Z.; Li, N.; Gu, Z.; Zhuang, Q. <i>Anal. Chem. </i><b>2001, </b><i>73</i>, 915. doi: <a href="" target="_blank">10.1021/ac000967l</a><br /> (27) Rabbow, T. J.; Whitehead, A. H. <i>Carbon </i><b>2017, </b><i>111</i>, 782. doi: <a href="" target="_blank">10.1016/j.carbon.2016.10.064</a><br /> (28) Jorgensen, T. C.; Weatherley, L. R. <i>Water Res. </i><b>2003, </b><i>37</i>, 1723. doi: <a href="" target="_blank">10.1016/s0043-1354(02)00571-7</a>
[1] LI Zhao-Hui, LI Shi-Jiao, ZHOU Jin, ZHU Ting-Ting, SHEN Hong-Long, ZHUO Shu-Ping. Preparation and Supercapacitive Performance of N, S Co-Doped Activated Carbon Materials[J]. Acta Physico-Chimica Sinca, 2015, 31(4): 676-684.
[2] WANG Li-Li, XING Rui-Guang, ZHANG Bang-Wen, HOU Yuan. Preparation and Electrochemical Properties of Functionalized Graphene/Polyaniline Composite Electrode Materials[J]. Acta Physico-Chimica Sinca, 2014, 30(9): 1659-1666.
[3] ZHANG Jian-Fang, WANG Yan, SHEN Tian-Kuo, SHU Xia, CUI Jie-Wu, CHEN Zhong, WU Yu-Cheng. Visible Light Photocatalytic Performance of Cu2O/TiO2 Nanotube Heterojunction Composites Prepared by Pulse Deposition[J]. Acta Physico-Chimica Sinca, 2014, 30(8): 1535-1542.
[4] HUA Wei-Bo, ZHENG Zhuo, LI Long-Yan, GUO Xiao-Dong, LIU Heng, SHEN Chong-Heng, WU Zhen-Guo, ZHONG Ben-He, HUANG Ling. Synthesis of Nanostructured LiNi1/3Co1/3Mn1/3O2 by Ammonia-Evaporation-Induced Synthesis and Its Electrochemical Properties as a Cathode Material for a High-Power Li-Ion Battery[J]. Acta Physico-Chimica Sinca, 2014, 30(8): 1481-1486.
[5] HU Yu-Xiang, JIANG Chun-Xiang, FANG Liang, ZHENG Fen-Gang, DONG Wen, SU Xiao-Dong, SHEN Ming-Rong. Effect of HF Treatment on the Photoelectrochemical Properties of a Hematite Thin Film Photoanode for Water Splitting[J]. Acta Physico-Chimica Sinca, 2014, 30(6): 1099-1106.
[6] JIANG Chun-Xiang, HU Yu-Xiang, DONG Wen, ZHENG Fen-Gang, SU Xiao-Dong, FANG Liang, SHEN Ming-Rong. Bias-Determined Cu2O and Cu Growth on TiO2 Surface and Their Photoelectrochemical Properties[J]. Acta Physico-Chimica Sinca, 2014, 30(10): 1867-1875.
[7] SU Chang, HUANG Qi-Fei, XU Li-Huan, ZHANG Cheng. Preparation and Performances of C-LiFePO4/Polytriphenylamine Composite as Cathode Material for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2014, 30(1): 88-94.
[8] ZHU Fu-Liang, ZHAO Jing-Xin, CHENG Yong-Liang, LI Hai-Bao, YAN Xing-Bin. Magnetic and Electrochemical Properties of NiCo2O4 Microbelts Fabricated by Electrospinning[J]. Acta Physico-Chimica Sinca, 2012, 28(12): 2874-2878.
[9] LI Qiang, ZHAO Hui, JIANG Rui, GUO Li-Fan. Synthesis and Electrochemical Properties of La1.6Sr0.4Ni1-xCuxO4 as Cathode Materials for Intermediate Temperature Solid Oxide Fuel Cells[J]. Acta Physico-Chimica Sinca, 2012, 28(09): 2065-2070.
[10] HUANG Ye, LIU Yu-Yang, LI Wen-Zhang, CHEN Qi-Yuan. Effects of Calcination Temperature on Morphologies and Photoelectrochemical Properties of Anodized WO3 Nanoporous Films[J]. Acta Physico-Chimica Sinca, 2012, 28(04): 865-870.
[11] LIU Jia, GUO Li-Qin, ZHANG Xiao-Hong, RUAN Wen-Juan, ZHU Zhi-Ang. Synthesis, Characterization and Properties of Salen-Type Complexes[J]. Acta Physico-Chimica Sinca, 2012, 28(02): 265-272.
[12] ZHANG Xiao-Yan, SUN Ming-Xuan, SUN Yu-Jun, LI Jing, SONG Peng, SUN Tong, CUI Xiao-Li. Photoelectrochemical Properties of Graphene Oxide Thin Film Electrodes[J]. Acta Physico-Chimica Sinca, 2011, 27(12): 2831-2835.
[13] LIU Li, TIAN Fang-Hua, WANG Xian-You, ZHOU Meng. Electrochemical Behavior of LiV3O8 in Aqueous Li2SO4 Solution[J]. Acta Physico-Chimica Sinca, 2011, 27(11): 2600-2604.
[14] WANG Zhi-Ping, LUO Hong, GAO Li-Hua, WANG Ke-Zhi. Electrostatically Self-Assembled Films Prepared Using Bipolar Thiophene Hemicyanine and Prussian Blue[J]. Acta Physico-Chimica Sinca, 2011, 27(03): 754-758.
[15] DENG An-Qiang, FAN Jing-Bo, QIAN Ke-Nong, LUO Yong-Chun. Effect of Heat Treatment on the Structure and Properties of La4MgNi19 Hydrogen Storage Electrode Alloys[J]. Acta Physico-Chimica Sinca, 2011, 27(01): 103-107.