Please wait a minute...
Acta Physico-Chimica Sinca
Accepted manuscript     
Electrochemical Features of Carbon Prepared by Molten Salt Electro-reduction of CO2
GU Yuxing, YANG Juan, WANG Dihua
Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan 430072, P. R. China
Download:   PDF(1246KB) Export: BibTeX | EndNote (RIS)      

Abstract  The molten salt CO2 capture and electrochemical transformation (MSCC-ET) process is a potentially efficient method for CO2 utilization, which can convert CO2 into value-added carbon and oxygen with a current density of 100-1000 mA cm-2. The electrolytic carbon (EC) prepared through the MSCC-ET process is highly electrically conductive and forms flexible microstructures. These structures show excellent adsorption ability towards environmental pollutants and high energy storage capacity when used in supercapacitors. Although the morphology, structure, and application of EC prepared under different electrolysis conditions have been previously reported, their intrinsic electrochemical properties have not yet been elucidated. Powder microelectrodes (PMEs) are useful for studying the electrochemical kinetics of various powdery materials. In this study, we systematically investigated the electrochemical properties of ECs obtained using molten Li2CO3-Na2CO3-K2CO3 under different temperature and electrolysis voltage conditions by cyclic voltammetry (CV) with a carbon powder microelectrode in 10 mmol L-1 Na2SO4. The electrochemical behavior of the EC obtained at 450℃ and a cell voltage of 4.5 V (450℃-4.5 V-EC) differs significantly from that of other carbon materials, i.e., multi-walled carbon nanotubes, graphene, graphite, and acetylene black. In addition to a much larger charging-discharging capacity, unusual hysteresis of the charge/discharge current response of ECs in the negative potential region (-0.6 to -0.2 V vs SCE) was observed. This phenomenon was eliminated by annealing the material under Ar at 550℃, demonstrating that the unique electrochemical behavior of ECs is closely related to the oxygen-containing groups on its surface. Furthermore, CVs of EC-PME were compared in solutions with different pH, Na2SO4 concentrations, and other ions. The pH of the solution did not affect the CVs, excluding a redox mechanism involving the surface functional groups. Hysteresis was weakened by a certain degree at slower potential sweep speeds (<10 mV s-1) or in higher concentrations of electrolyte (100 mmol L-1 Na2SO4). The onset potential for discharging was negatively shifted in electrolytes with a larger cation ((NH4)2SO4) and was unaffected by larger anions (Na2S2O8). This indicates that the hysteresis is more likely related to the specific adsorption of cations, caused by the unique surface properties of EC. It should be noted that the specific surface area and oxygen concentration of EC can be adjusted by the electrolysis temperature and cell voltage. Generally, the Brunauer-Emmett-Teller (BET) specific surface area and oxygen content decrease with increasing temperature and the BET-area increases with increasing cell voltage. The CVs of ECs prepared at different cell voltages were similar, but the adsorption capacity decreased for those prepared at higher temperatures (550 and 650℃). Interestingly, the specific capacitance of the ECs is much higher at negative potentials (-0.6 to 0 V vs SCE) than that at positive potentials (0 to 0.6 V vs SCE). Therefore, it is anticipated that a better capacitance performance can be achieved when the ECs are used as a negative electrode material in supercapacitors.

Key wordsElectrolytic-carbon      Molten salts      Powder microelectrode      Electrochemical property      Specific adsorption     
Received: 15 January 2018      Published: 12 February 2018
MSC2000:  O646  
Fund:  The project was supported by the National Natural Science Foundation of China (21673162, 51325102) and the International Science & Technology Cooperation Program of China (2015DFA90750).
Cite this article:

GU Yuxing, YANG Juan, WANG Dihua. Electrochemical Features of Carbon Prepared by Molten Salt Electro-reduction of CO2. Acta Physico-Chimica Sinca, 0, (): 0-0.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201802121     OR     http://www.whxb.pku.edu.cn/Y0/V/I/0

(1) Bai, X. F.; Chen, W.; Wang, B. Y.; Feng, G. H.; Wei, W.; Jiao, Z.; Sun, Y. H. <i>Acta Phys. -Chim. Sin</i>. <b>2017, </b><i>33</i>, 2388. [白晓芳, 陈为, 王白银, 冯光辉, 魏伟, 焦正, 孙予罕. 物理化学学报, <b>2017, </b><i>33</i>, 2388.] doi: <a href="http://dx.doi.org/10.3866/PKU.WHXB201706131" target="_blank">10.3866/PKU.WHXB201706131</a><br /> (2) Licht, S. <i>Adv. Mater. </i><b>2011, </b><i>23</i>, 5592. doi: <a href="http://dx.doi.org/10.1002/adma.201103198" target="_blank">10.1002/adma.201103198</a><br /> (3) Yin, H. Y.; Mao, X. H.; Tang, D. Y.; Xiao, W.; Xing, L. R.; Zhu, H.; Wang, D. H.; Sadoway, D. R. <i>Energy Environ. Sci. </i><b>2013, </b><i>6</i>, 1538. doi: <a href="http://dx.doi.org/10.1039/c3ee24132g" target="_blank">10.1039/c3ee24132g</a><br /> (4) Tang, D. Y.; Yin, H. Y.; Mao, X. H.; Xiao, W.; Wang, D. H. <i>Electrochim. Acta </i><b>2013, </b><i>114</i>, 567. doi: <a href="http://dx.doi.org/10.1016/j.electacta.2013.10.109" target="_blank">10.1016/j.electacta.2013.10.109</a><br /> (5) Kaplan, B.; Groult, H.; Barhoun, A.; Lantelme, F.; Nakajima, T.; Gupta, V.; Komaba, S.; Kumagai, N. <i>J. Electrochem. Soc. </i><b>2002, </b><i>149</i>, D72. doi: <a href="http://dx.doi.org/10.1149/1.1464884" target="_blank">10.1149/1.1464884</a><br /> (6) Ijije, H. V.; Lawrence, R. C.; Chen, G. Z. <i>RSC Adv. </i><b>2014, </b><i>4</i>, 35808. doi: <a href="http://dx.doi.org/10.1039/c4ra04629c" target="_blank">10.1039/c4ra04629c</a><br /> (7) Ge, J. B.; Wang, S.; Hu, L. W.; Zhu, J.; Jiao, S. Q. <i>Carbon </i><b>2016, </b><i>98</i>, 649. doi: <a href="http://dx.doi.org/10.1016/j.carbon.2015.11.065" target="_blank">10.1016/j.carbon.2015.11.065</a><br /> (8) Ijije, H. V.; Sun, C.; Chen, G. Z. <i>Carbon </i><b>2014, </b><i>73</i>, 163. doi: <a href="http://dx.doi.org/10.1016/j.carbon.2014.02.052" target="_blank">10.1016/j.carbon.2014.02.052</a><br /> (9) Tang, J.; Deng, B.; Xu, F.; Xiao, W.; Wang, D. <i>J. Power Sources</i> <b>2017, </b><i>341</i>, 419. doi: <a href="http://dx.doi.org/10.1016/j.jpowsour.2016.12.037" target="_blank">10.1016/j.jpowsour.2016.12.037</a><br /> (10) Ge, J. B.; Hu, L. W.; Wang, W.; Jiao, H. D.; Jiao, S. Q. <i>ChemElectroChem </i><b>2015, </b><i>2</i>, 224. doi: <a href="http://dx.doi.org/10.1002/celc.201402297" target="_blank">10.1002/celc.201402297</a><br /> (11) Groult, H.; Kaplan, B.; Lantelme, F.; Komaba, S.; Kumagai, N.; Yashiro, H.; Nakajima, T.; Simon, B.; Barhoun, A. <i>Solid State</i> <i>Ionics </i><b>2006, </b><i>177</i>, 869. doi: <a href="http://dx.doi.org/10.1016/j.ssi.2006.01.051" target="_blank">10.1016/j.ssi.2006.01.051</a><br /> (12) Mao, X. H.; Yan, Z. P.; Sheng, T.; Gao, M. X.; Zhu, H.; Xiao, W.; Wang, D. H. <i>Carbon </i><b>2017, </b><i>111</i>, 162. doi: <a href="http://dx.doi.org/10.1016/j.carbon.2016.09.035" target="_blank">10.1016/j.carbon.2016.09.035</a><br /> (13) Novoselova, I. A.; Oliinyk, N. F.; Volkov, S. V.; Konchits, A. A.; Yanchuk, I. B.; Yefanov, V. S.; Kolesnik, S. P.; Karpets, M. V. <i>Phys. E: Low-dimen. Syst. Nanostruct. </i><b>2008, </b><i>40</i>, 2231. doi: <a href="http://dx.doi.org/10.1016/j.physe.2007.10.069" target="_blank">10.1016/j.physe.2007.10.069</a><br /> (14) Song, Q.; Xu, Q.; Wang, Y.; Shang, X.; Li, Z. <i>Thin Solid Films</i> <b>2012, </b><i>520</i>, 6856. doi: <a href="http://dx.doi.org/10.1016/j.tsf.2012.07.056" target="_blank">10.1016/j.tsf.2012.07.056</a><br /> (15) Ren, J.; Li, F. F.; Lau, J.; Gonzalez-Urbina, L.; Licht, S. <i>Nano Lett.</i> <b>2015, </b><i>15</i>, 6142. doi: <a href="http://dx.doi.org/10.1021/acs.nanolett.5b02427" target="_blank">10.1021/acs.nanolett.5b02427</a><br /> (16) Deng, B. W.; Mao, X. H.; Xiao, W.; Wang, D. H. <i>J. Mater. Chem.</i> <i>A </i><b>2017, </b><i>5</i>, 12822. doi: <a href="http://dx.doi.org/10.1039/c7ta03606j" target="_blank">10.1039/c7ta03606j</a><br /> (17) Deng, B. W.; Tang, J. J.; Gao, M. X.; Mao, X. H.; Zhu, H.; Xiao, W.; Wang, D. H. <i>Electrochim. Acta </i><b>2018, </b><i>259</i>, 975. doi: <a href="http://dx.doi.org/10.1016/j.electacta.2017.11.025" target="_blank">10.1016/j.electacta.2017.11.025</a><br /> (18) Cha, C. S.; Li, C. M.; Yang, H. X.; Liu, P. F. <i>J. Electroanal. Chem.</i> <b>1994, </b><i>368</i>, 47. doi: <a href="http://dx.doi.org/10.1016/0022-0728(93)03016-I" target="_blank">10.1016/0022-0728(93)03016-I</a><br /> (19) Zhao, Y. D.; Zhang, W. D.; Chen, H.; Luo, Q. M. <i>Anal. Sci. </i><b>2002, </b><i>18</i>, 939. doi: <a href="http://dx.doi.org/10.2116/analsci.18.939" target="_blank">10.2116/analsci.18.939</a><br /> (20) Zhao, Y. D.; Zhang, W. D.; Chen, H.; Luo, Q. M. <i>Sens. Actuators</i> <i>B </i><b>2003, </b><i>92</i>, 279. doi: <a href="http://dx.doi.org/10.1016/s0925-4005(03)00312-5" target="_blank">10.1016/s0925-4005(03)00312-5</a><br /> (21) Luo, J. W.; Zhang, M.; Pang, D. W. <i>Sens. Actuators B </i><b>2005, </b><i>106</i>, 358. doi: <a href="http://dx.doi.org/10.1016/j.snb.2004.08.020" target="_blank">10.1016/j.snb.2004.08.020</a><br /> (22) Zeng, R. H.; Li, W. S.; Lu, D. S.; Huang, Q. M. <i>J. Power Sources</i> <b>2007, </b><i>174</i>, 592. doi: <a href="http://dx.doi.org/10.1016/j.jpowsour.2007.06.120" target="_blank">10.1016/j.jpowsour.2007.06.120</a><br /> (23) Vivier, V.; Cachet Vivier, C.; Cha, C. S.; Nedelec, J. Y.; Yu, L. T. <i>Electrochem. Commun. </i><b>2000, </b><i>2</i>, 180. doi: <a href="http://dx.doi.org/10.1016/S1388-2481(00)00004-7" target="_blank">10.1016/S1388-2481(00)00004-7</a><br /> (24) Serghini Idrissi, M.; Bernard, M. C.; Harrif, F. Z.; Joiret, S.; Rahmouni, K.; Srhiri, A.; Takenouti, H.; Vivier, V.; Ziani, M. <i>Electrochim. Acta </i><b>2005, </b><i>50</i>, 4699. doi: <a href="http://dx.doi.org/10.1016/j.electacta.2005.01.050" target="_blank">10.1016/j.electacta.2005.01.050</a><br /> (25) Rabbow, T. J.; Trampert, M.; Pokorny, P.; Binder, P.; Whitehead, A.H. <i>Electrochim. Acta </i><b>2015, </b><i>173</i>, 24. doi: <a href="http://dx.doi.org/10.1016/j.electacta.2015.05.058" target="_blank">10.1016/j.electacta.2015.05.058</a><br /> (26) Luo, H.; Shi, Z.; Li, N.; Gu, Z.; Zhuang, Q. <i>Anal. Chem. </i><b>2001, </b><i>73</i>, 915. doi: <a href="http://dx.doi.org/10.1021/ac000967l" target="_blank">10.1021/ac000967l</a><br /> (27) Rabbow, T. J.; Whitehead, A. H. <i>Carbon </i><b>2017, </b><i>111</i>, 782. doi: <a href="http://dx.doi.org/10.1016/j.carbon.2016.10.064" target="_blank">10.1016/j.carbon.2016.10.064</a><br /> (28) Jorgensen, T. C.; Weatherley, L. R. <i>Water Res. </i><b>2003, </b><i>37</i>, 1723. doi: <a href="http://dx.doi.org/10.1016/s0043-1354(02)00571-7" target="_blank">10.1016/s0043-1354(02)00571-7</a>
[1] . Photocatalytic Production of Hydrogen Peroxide Using g-C3N4 Coated MgO-Al2O3-Fe2O3 Heterojunction Catalysts Prepared by a Novel Molten Salt-Assisted Microwave Process[J]. Acta Physico-Chimica Sinca, 2017, 33(12): 2532-2541.
[2] Wei HAN,Nan JI,Mei LI,Shan-Shan WANG,Xiao-Guang YANG,Mi-Lin ZHANG,Yong-De YAN. Electrochemical Formation of Al-Tb Alloys from Tb4O7 Fluorinated by AlF3 in NaCl-KCl Melts[J]. Acta Physico-Chimica Sinca, 2016, 32(10): 2538-2544.
[3] YANG Xiao-Nan, YAN Yong-De, ZHANG Mi-Lin, LI Xing, XUE Yun, HAN Wei. Electrochemical Behavior and Extraction Efficiency Evaluation of Gd in Chloride Molten Salt System[J]. Acta Physico-Chimica Sinca, 2015, 31(5): 920-926.
[4] LI Mei, SUN Ting-Ting, LIU Bin, HAN Wei, SUN Yang, ZHANG Mi-Lin. Electrochemical Behavior of Dy(Ⅲ) and the Selective Formation of Dy-Ni Intermetallic Compounds in LiCl-KCl Eutectic Melts[J]. Acta Physico-Chimica Sinca, 2015, 31(2): 309-314.
[5] XUE Yun, ZHOU Zhi-Ping, YAN Yong-De, ZHANG Mi-Lin, LI Xing, JI De-Bin, HAN Wei, ZHANG Meng. Electrochemical Co-Reduction Extraction of Neodymium in LiCl-KCl-ZnCl2 Molten Salt System[J]. Acta Physico-Chimica Sinca, 2014, 30(9): 1674-1680.
[6] YANG Cheng-Xu, JU Jing, ZHAO Shi-Di, XU Hang-Yu, LIU Meng, LIAO Fu-Hui, LI Guo-Bao, LIN Jian-Hua. Synthesis of β-FeSe by Salt-Flux Method under Air Atmosphere[J]. Acta Physico-Chimica Sinca, 2013, 29(12): 2661-2666.
[7] TANG Hao, YAN Yong-De, ZHANG Mi-Lin, XUE Yun, ZHANG Zhi-Jian, DU Wei-Chao, HE Hui. Electrochemistry of MgCl2 in LiCl-KCl Eutectic Melts[J]. Acta Physico-Chimica Sinca, 2013, 29(08): 1698-1704.
[8] WANG Rui, BAI Yan, LIANG Zhi-Hong, LIU Ying, HUANG Li-Li, ZHENG Wen-Jie. Interaction between Selenomethionine and Copper Ions[J]. Acta Physico-Chimica Sinca, 2010, 26(12): 3225-3229.
[9] FAN You-Jun, ZHEN Chun-Hua, CHEN Sheng-Pei, SUN Shi-Gang. Effect of Specific Adsorption of Anions and Surface Structure of Pt(111) Electrode on Kinetics of Dissociative Adsorption of Ethylene Glycol[J]. Acta Physico-Chimica Sinca, 2009, 25(05): 999-1003.
[10] TU Xiao-Hua; CHU You-Qun; MA Chun-An; MO Yi-Ping; CHEN Zhao-Yang. Electrochemical Behavior of Aluminium Electrode in LiNO3-KNO3 Molten Salt[J]. Acta Physico-Chimica Sinca, 2008, 24(04): 665-669.
[11] CHANG Zhao-Rong; CHEN Zhong-Jun; WU Feng; TANG Hong-Wei; ZHU Zhi-Hong. Synthesis of LiNi1/3Co1/3Mn1/3O2 Cathode Material by Eutectic Molten Salt LiOH-LiNO3[J]. Acta Physico-Chimica Sinca, 2008, 24(03): 513-519.
[12] CHEN Ren-Jie; WU Feng; LI Li; QIU Xin-Ping; CHEN Shi. Binary Molten Salt Electrolytes Based on LiClO4 and 2-oxazolidinone[J]. Acta Physico-Chimica Sinca, 2007, 23(04): 554-558.
[13] XU Bin; WU Feng; CHEN Ren-jie; CHEN Shi; WANG Guo-qing. Capacitance Characteristics of Carbon Nanotubes in Room Temperature Molten Salt Electrolyte[J]. Acta Physico-Chimica Sinca, 2005, 21(10): 1164-1168.
[14] MA Chun-an; HUANG Ye; TONG Shao-ping; ZHANG Wei-min. The Catalytic Behavior of Tungsten Carbide for the Electroreduction of p-nitrophenol[J]. Acta Physico-Chimica Sinca, 2005, 21(07): 721-724.
[15] CHEN Ren-Jie;WU Feng. Spectroscopic Investigation of New Binary Molten Salt Electrolytes Based on LiClO4 with Acetamide[J]. Acta Physico-Chimica Sinca, 2005, 21(02): 177-181.