Please wait a minute...
Acta Phys. -Chim. Sin.  2019, Vol. 35 Issue (2): 208-214    DOI: 10.3866/PKU.WHXB201802121
Electrochemical Features of Carbon Prepared by Molten Salt Electro-Reduction of CO2
Yuxing GU,Juan YANG,Dihua WANG*()
Download: HTML     PDF(4957KB) Export: BibTeX | EndNote (RIS)      


The molten salt CO2 capture and electrochemical transformation (MSCC-ET) process is a potentially efficient method for CO2 utilization, which can convert CO2 into value-added carbon and oxygen with a current density of 100–1000 mA cm-2. The electrolytic carbon (EC) prepared through the MSCC-ET process is highly electrically conductive and forms flexible microstructures. These structures show excellent adsorption ability towards environmental pollutants and high energy storage capacity when used in supercapacitors. Although the morphology, structure, and application of EC prepared under different electrolysis conditions have been previously reported, their intrinsic electrochemical properties have not yet been elucidated. Powder microelectrodes (PMEs) are useful for studying the electrochemical kinetics of various powdery materials. In this study, we systematically investigated the electrochemical properties of ECs obtained using molten Li2CO3-Na2CO3-K2CO3 under different temperature and electrolysis voltage conditions by cyclic voltammetry (CV) with a carbon powder microelectrode in 10 mmol L-1 Na2SO4. The electrochemical behavior of the EC obtained at 450 ℃ and a cell voltage of 4.5 V (450 ℃-4.5 V-EC) differs significantly from that of other carbon materials, i.e., multi-walled carbon nanotubes, graphene, graphite, and acetylene black. In addition to a much larger charging-discharging capacity, unusual hysteresis of the charge/discharge current response of ECs in the negative potential region (-0.6 to -0.2 V vs SCE) was observed. This phenomenon was eliminated by annealing the material under Ar at 550 ℃, demonstrating that the unique electrochemical behavior of ECs is closely related to the oxygen-containing groups on its surface. Furthermore, CVs of EC-PME were compared in solutions with different pH, Na2SO4 concentrations, and other ions. The pH of the solution did not affect the CVs, excluding a redox mechanism involving the surface functional groups. Hysteresis was weakened by a certain degree at slower potential sweep speeds (< 10 mV s-1) or in higher concentrations of electrolyte (100 mmol L-1 Na2SO4). The onset potential for discharging was negatively shifted in electrolytes with a larger cation ((NH4)2SO4) and was unaffected by larger anions (Na2S2O8). This indicates that the hysteresis is more likely related to the specific adsorption of cations, caused by the unique surface properties of EC. It should be noted that the specific surface area and oxygen concentration of EC can be adjusted by the electrolysis temperature and cell voltage. Generally, the Brunauer–Emmett–Teller (BET) specific surface area and oxygen content decrease with increasing temperature and the BET-area increases with increasing cell voltage. The CVs of ECs prepared at different cell voltages were similar, but the adsorption capacity decreased for those prepared at higher temperatures (550 and 650 ℃). Interestingly, the specific capacitance of the ECs is much higher at negative potentials (-0.6 to 0 V vs. SCE) than that at positive potentials (0 to 0.6 V vs. SCE). Therefore, it is anticipated that a better capacitance performance can be achieved when the ECs are used as a negative electrode material in supercapacitors.

Key wordsElectrolytic-carbon      Molten salts      Powder microelectrode      Electrochemical property      Specific adsorption     
Received: 15 January 2018      Published: 12 February 2018
MSC2000:  O646  
Fund:  the National Natural Science Foundation of China(21673162);the National Natural Science Foundation of China(51325102);the International Science & Technology Cooperation Program of China(2015DFA90750)
Corresponding Authors: Dihua WANG     E-mail:
Cite this article:

Yuxing GU,Juan YANG,Dihua WANG. Electrochemical Features of Carbon Prepared by Molten Salt Electro-Reduction of CO2. Acta Phys. -Chim. Sin., 2019, 35(2): 208-214.

URL:     OR

EC Specific surface area/(m2·g?1) Oxygen mass fraction/%
450 ℃-3.5 V 558.1 17.5
450 ℃-4.5 V 613.7 16.3
450 ℃-5.5 V 868.3 14.0
550 ℃-4.5 V 212.4 10.0
650 ℃-4.5 V 101.9 14.2
Table 1 Specific surface area and oxygen content of different EC.
Fig 1 Metallographic micrograph of powder microelectrode before (a) and after (b) filled with carbon, and the measurement of the microcavity depth (c), (d).
Fig 2 The schematic diagram of the powder microelectrode and the experimental setup.
Fig 3 Cyclic voltammogram of different carbon materials. Condition: in 10 mmol·L?1 Na2SO4 aqueous solution at 50 mV·s?1.
Fig 4 Cyclic voltammogram of 450 ℃-4.5 V-EC after annealing at 550 ℃ under argon atmosphere. Condition: in 10 mmol·L-1 Na2SO4 solution at 50 mV·s-1.
Fig 5 Cyclic voltammograms of 450 ℃-4.5 V-EC in different pH of 10 mmol·L-1 Na2SO4 aqueous solution at 50 mV·s-1 (a) and in 10 mmol·L-1 Bu4NClO4 at 100 mV·s-1 (b).
Fig 6 Cyclic voltammograms of 450 ℃-4.5 V-EC at different scan rate in 10 mmol·L-1 Na2SO4 aqueous solution (a) and at the scan rate of 50 mV·s-1 in 100 mmol·L-1 Na2SO4 aqueous solution (b).
Fig 7 The schematic diagram of different ion distribution state on EC surface. No polarization (OCP), the adsorption of cations (?0.5 V vs. SCE), ion exchange (?0.1 V vs. SCE) and desorption of large amount of cations (0.1 V vs. SCE), respectively.
Fig 8 Cyclic voltammogram of 450 ℃-4.5 V-EC in 10 mmol·L-1 (NH4)2SO4 (a) and 10 mmol·L-1 Na2S2O8 aqueous solution (b). The scan rate is 50 mV·s?1.
Fig 9 Cyclic voltammograms of EC synthesized at different electrolysis temperature (a) and different cell voltages (b). The scan rate is 50 mV·s?1 in 10 mmol·L?1 Na2SO4 aqueous solution.
1 Bai X. F. ; Chen W. ; Wang B. Y. ; Feng G. H. ; Wei W. ; Jiao Z. ; Sun Y. H. Acta Phys. -Chim. Sin. 2017, 33, 2388.
1 白晓芳; 陈为; 王白银; 冯光辉; 魏伟; 焦正; 孙予罕. 物理化学学报,, 2017, 33, 2388.
2 Licht S. Adv. Mater. 2011, 23, 5592.
3 Yin H. Y. ; Mao X. H. ; Tang D. Y. ; Xiao W. ; Xing L. R. ; Zhu H. ; Wang D. H. ; Sadoway D. R. Energy Environ. Sci. 2013, 6, 1538.
4 Tang D. Y. ; Yin H. Y. ; Mao X. H. ; Xiao W. ; Wang D. H. Electrochim. Acta 2013, 114, 567.
5 Kaplan B. ; Groult H. ; Barhoun A. ; Lantelme F. ; Nakajima T. ; Gupta V. ; Komaba S. ; Kumagai N. J. Electrochem. Soc. 2002, 149, D72.
6 Ijije H. V. ; Lawrence R. C. ; Chen G. Z. RSC Adv. 2014, 4, 35808.
7 Ge J. B. ; Wang S. ; Hu L. W. ; Zhu J. ; Jiao S. Q. Carbon 2016, 98, 649.
8 Ijije H. V. ; Sun C. ; Chen G. Z. Carbon 2014, 73, 163.
9 Tang J. ; Deng B. ; Xu F. ; Xiao W. ; Wang D. J. Power Sources 2017, 341, 419.
10 Ge J. B. ; Hu L. W. ; Wang W. ; Jiao H. D. ; Jiao S. Q. ChemElectroChem 2015, 2, 224.
11 Groult H. ; Kaplan B. ; Lantelme F. ; Komaba S. ; Kumagai N. ; Yashiro H. ; Nakajima T. ; Simon B. ; Barhoun A. Solid State Ionics 2006, 177, 869.
12 Mao X. H. ; Yan Z. P. ; Sheng T. ; Gao M. X. ; Zhu H. ; Xiao W. ; Wang D. H. Carbon 2017, 111, 162.
13 Novoselova I. A. ; Oliinyk N. F. ; Volkov S. V. ; Konchits A. A. ; Yanchuk I. B. ; Yefanov V. S. ; Kolesnik S. P. ; Karpets M. V. Phys. E: Low-Dimen. Syst. Nanostruct. 2008, 40, 2231.
14 Song Q. ; Xu Q. ; Wang Y. ; Shang X. ; Li Z. Thin Solid Films 2012, 520, 6856.
15 Ren J. ; Li F. F. ; Lau J. ; Gonzalez-Urbina L. ; Licht S. Nano Lett. 2015, 15, 6142.
16 Deng B. W. ; Mao X. H. ; Xiao W. ; Wang D. H. J. Mater. Chem. A 2017, 5, 12822.
17 Deng B. W. ; Tang J. J. ; Gao M. X. ; Mao X. H. ; Zhu H. ; Xiao W. ; Wang D. H. Electrochim. Acta 2018, 259, 975.
18 Cha C. S. ; Li C. M. ; Yang H. X. ; Liu P. F. J. Electroanal. Chem. 1994, 368, 47.
19 Zhao Y. D. ; Zhang W. D. ; Chen H. ; Luo Q. M. Anal. Sci. 2002, 18, 939.
20 Zhao Y. D. ; Zhang W. D. ; Chen H. ; Luo Q. M. Sens. Actuators B 2003, 92, 279.
21 Luo J. W. ; Zhang M. ; Pang D. W. Sens. Actuators B 2005, 106, 358.
22 Zeng R. H. ; Li W. S. ; Lu D. S. ; Huang Q. M. J. Power Sources 2007, 174, 592.
23 Vivier V. ; Cachet Vivier C. ; Cha C. S. ; Nedelec J. Y. ; Yu L. T. Electrochem. Commun. 2000, 2, 180.
24 Serghini Idrissi M. ; Bernard M. C. ; Harrif F. Z. ; Joiret S. ; Rahmouni K. ; Srhiri A. ; Takenouti H. ; Vivier V. ; Ziani M. Electrochim. Acta 2005, 50, 4699.
25 Rabbow T. J. ; Trampert M. ; Pokorny P. ; Binder P. ; Whitehead A. H. Electrochim. Acta 2015, 173, 24.
26 Luo H. ; Shi Z. ; Li N. ; Gu Z. ; Zhuang Q. Anal. Chem. 2001, 73, 915.
27 Rabbow T. J. ; Whitehead A. H. Carbon 2017, 111, 782.
28 Jorgensen T. C. ; Weatherley L. R. Water Res. 2003, 37, 1723.
[1] LI Zhao-Hui, LI Shi-Jiao, ZHOU Jin, ZHU Ting-Ting, SHEN Hong-Long, ZHUO Shu-Ping. Preparation and Supercapacitive Performance of N, S Co-Doped Activated Carbon Materials[J]. Acta Phys. -Chim. Sin., 2015, 31(4): 676-684.
[2] WANG Li-Li, XING Rui-Guang, ZHANG Bang-Wen, HOU Yuan. Preparation and Electrochemical Properties of Functionalized Graphene/Polyaniline Composite Electrode Materials[J]. Acta Phys. -Chim. Sin., 2014, 30(9): 1659-1666.
[3] HUA Wei-Bo, ZHENG Zhuo, LI Long-Yan, GUO Xiao-Dong, LIU Heng, SHEN Chong-Heng, WU Zhen-Guo, ZHONG Ben-He, HUANG Ling. Synthesis of Nanostructured LiNi1/3Co1/3Mn1/3O2 by Ammonia-Evaporation-Induced Synthesis and Its Electrochemical Properties as a Cathode Material for a High-Power Li-Ion Battery[J]. Acta Phys. -Chim. Sin., 2014, 30(8): 1481-1486.
[4] ZHANG Jian-Fang, WANG Yan, SHEN Tian-Kuo, SHU Xia, CUI Jie-Wu, CHEN Zhong, WU Yu-Cheng. Visible Light Photocatalytic Performance of Cu2O/TiO2 Nanotube Heterojunction Composites Prepared by Pulse Deposition[J]. Acta Phys. -Chim. Sin., 2014, 30(8): 1535-1542.
[5] HU Yu-Xiang, JIANG Chun-Xiang, FANG Liang, ZHENG Fen-Gang, DONG Wen, SU Xiao-Dong, SHEN Ming-Rong. Effect of HF Treatment on the Photoelectrochemical Properties of a Hematite Thin Film Photoanode for Water Splitting[J]. Acta Phys. -Chim. Sin., 2014, 30(6): 1099-1106.
[6] JIANG Chun-Xiang, HU Yu-Xiang, DONG Wen, ZHENG Fen-Gang, SU Xiao-Dong, FANG Liang, SHEN Ming-Rong. Bias-Determined Cu2O and Cu Growth on TiO2 Surface and Their Photoelectrochemical Properties[J]. Acta Phys. -Chim. Sin., 2014, 30(10): 1867-1875.
[7] SU Chang, HUANG Qi-Fei, XU Li-Huan, ZHANG Cheng. Preparation and Performances of C-LiFePO4/Polytriphenylamine Composite as Cathode Material for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2014, 30(1): 88-94.
[8] ZHU Fu-Liang, ZHAO Jing-Xin, CHENG Yong-Liang, LI Hai-Bao, YAN Xing-Bin. Magnetic and Electrochemical Properties of NiCo2O4 Microbelts Fabricated by Electrospinning[J]. Acta Phys. -Chim. Sin., 2012, 28(12): 2874-2878.
[9] LI Qiang, ZHAO Hui, JIANG Rui, GUO Li-Fan. Synthesis and Electrochemical Properties of La1.6Sr0.4Ni1-xCuxO4 as Cathode Materials for Intermediate Temperature Solid Oxide Fuel Cells[J]. Acta Phys. -Chim. Sin., 2012, 28(09): 2065-2070.
[10] HUANG Ye, LIU Yu-Yang, LI Wen-Zhang, CHEN Qi-Yuan. Effects of Calcination Temperature on Morphologies and Photoelectrochemical Properties of Anodized WO3 Nanoporous Films[J]. Acta Phys. -Chim. Sin., 2012, 28(04): 865-870.
[11] LIU Jia, GUO Li-Qin, ZHANG Xiao-Hong, RUAN Wen-Juan, ZHU Zhi-Ang. Synthesis, Characterization and Properties of Salen-Type Complexes[J]. Acta Phys. -Chim. Sin., 2012, 28(02): 265-272.
[12] ZHANG Xiao-Yan, SUN Ming-Xuan, SUN Yu-Jun, LI Jing, SONG Peng, SUN Tong, CUI Xiao-Li. Photoelectrochemical Properties of Graphene Oxide Thin Film Electrodes[J]. Acta Phys. -Chim. Sin., 2011, 27(12): 2831-2835.
[13] LIU Li, TIAN Fang-Hua, WANG Xian-You, ZHOU Meng. Electrochemical Behavior of LiV3O8 in Aqueous Li2SO4 Solution[J]. Acta Phys. -Chim. Sin., 2011, 27(11): 2600-2604.
[14] WANG Zhi-Ping, LUO Hong, GAO Li-Hua, WANG Ke-Zhi. Electrostatically Self-Assembled Films Prepared Using Bipolar Thiophene Hemicyanine and Prussian Blue[J]. Acta Phys. -Chim. Sin., 2011, 27(03): 754-758.
[15] LUO Ying, CUI Xiao-Li, XIE Jing-Ying. Preparation and Visible Light Photoelectrochemical Response of TiO2-MoO3 Composite Nanotube Thin Films[J]. Acta Phys. -Chim. Sin., 2011, 27(01): 135-142.