Please wait a minute...
Acta Phys. -Chim. Sin.  2018, Vol. 34 Issue (10): 1144-1150    DOI: 10.3866/PKU.WHXB201802122
Special Issue: Molecular Simulations in Materials Science
ARTICLE     
Deformation of Polymer-Grafted Janus Nanosheet: A Dissipative Particle Dynamic Simulations Study
Teng LU1,Yongxiang ZHOU1,2,Hongxia GUO1,2,*()
1 Beijing National Laboratory for Molecular Sciences, Joint Laboratory of Polymer Sciences and Materials, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
2 University of Chinese Academy of Sciences, Beijing 100049, P. R. China
Download: HTML     PDF(2356KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Because of broad potential applications in sensing, drug delivery, and molecular motors, two-dimensional (2D), flexible, responsive Janus materials have attracted considerable interest recently in many fields. Unfortunately, the molecular-level responsive deformation of these 2D Janus nanomaterials is still not clearly understood. Hence, investigating the influence factor and responsiveness of the deformation of the 2D flexible responsive Janus nanomaterials should be helpful to deepen our understanding of the deformation mechanism and may provide valuable information in the design and synthesis of novel functional 2D Janus nanomaterials. Therefore, a mesoscopic simulation method, dissipative particle dynamics simulation, based on coarse-grained models, is employed in this work to systematically investigate the effect of the chain length difference between grafted polymers within two compartments of each individual Janus nanosheet and the effect of solvent selectivity difference of these two compartments on the deformation of the polymer-grafted Janus nanosheet. Although the coarse-grained model within this simulation is relatively crude, it is still valid to provide a qualitative image of the deformation of the polymer-grafted Janus nanosheet. Furthermore, we find two basic principles: (1) with increasing length difference between grafted polymers on the two opposite surfaces, the nanosheet will bear an entropy-driven deformation with increasing curvature; (2) the solvent will preferentially wet the polymer layer with better compatibility, and such a swelling effect may also provide a driving force for the deformation process. Owing to the interplay of conformational entropy and mixing enthalpy, the equilibrium structures of the polymer-grafted Janus nanosheet result in several interesting structures, such as a tube-like structure with a hydrophobic outer surface, an envelope-like structure, and a bowl-like structure, with tuning of the chain length and solvent compatibility of grafted polymers. Additionally, an unusually tube-like structure with a hydrophobic outer surface has been observed for a relatively weak solvent selectivity, which may provide us a novel method to transfer materials into the incompatible environment and therefore has potential applications in many areas, such as controllable drug delivery and release, and industrial and medical detection. Our theoretical results first provide a fundamental insight into the controllable deformation of the flexible Janus nanosheet, which can then help in the design and synthesis of novel Janus nanodevices for potential applications in pharmaceuticals and biomedicine. Bearing the limited of the computational capabilities, our model Janus nanosheets are relatively small, which are not direct mappings from real system. We hope that a systematic simulation study on this topic would be possible soon with the rapid developments in computer technology and simulation methods, and this would provide an exhaustive and universal methodology to guide experimental studies and applications.



Key wordsJanus nanomaterial      Polymer      Amphiphilic composites      Morphology control      Dissipative particle dynamics simulation     
Received: 03 January 2018      Published: 13 April 2018
MSC2000:  O647  
Fund:  the National Nature Science Foundation of China(21174154);the National Nature Science Foundation of China(21204094);the National Nature Science Foundation of China(50930002);the National Nature Science Foundation of China(20874110);the National Nature Science Foundation of China(20674093);National Basic Research Program of China (973)(2014CB643601)
Corresponding Authors: Hongxia GUO     E-mail: hxguo@iccas.ac.cn
Cite this article:

Teng LU,Yongxiang ZHOU,Hongxia GUO. Deformation of Polymer-Grafted Janus Nanosheet: A Dissipative Particle Dynamic Simulations Study. Acta Phys. -Chim. Sin., 2018, 34(10): 1144-1150.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201802122     OR     http://www.whxb.pku.edu.cn/Y2018/V34/I10/1144

 
w n p1 p2
w 25 75 75 2.5–47.5
n 75 25 75 75
p1 75 75 25 75
p2 47.5–2.5 75 75 25
 
 
 
 
 
1 de Gennes P. G. Rev. Mod. Phys. 1992, 64, 645.
2 Hong L. ; Cacciuto A. ; Luijten E. ; Granick S. Nano Lett. 2006, 6, 2510.
3 Takei H. ; Shimizu N. Langmuir 1997, 13, 1865.
4 Glotzer S. C. Science 2004, 306, 419.
5 Roh K. H. ; Martin D. C. ; Lahann J. Nat. Mater. 2005, 4, 759.
6 Dendukuri D. ; Pregibon D. C. ; Collins J. ; Hatton T. A. ; Doyle P. S. Nat. Mater. 2006, 5, 365.
7 Xu G. ; Huang Z. ; Chen P. ; Cui T. ; Zhang X. ; Miao B. ; Yan L.-T. Small 2017, 13, 1603155.
8 Ruhland T. M. ; Groschel A. H. ; Walther A. ; Muller A. H. E. Langmuir 2011, 27, 9807.
9 Huang M. ; Li Z. ; Guo H. Soft Matter 2012, 8, 6834.
10 Binks B. P. ; Fletcher P. D. I. Langmuir 2001, 17, 4708.
11 Glaser N. ; Adams D. J. ; Boker A. ; Krausch G Langmuir 2006, 22, 5227.
12 Yan L. -T. ; Popp N. ; Ghosh S. -K. ; B?ker A. ACS Nano 2010, 4, 913.
13 Chen P. ; Yang Y. ; Dong B. ; Huang Z. ; Zhu G. ; Cao Y. ; Yan L.-T. Macromolecules 2017, 50, 2078.
14 Liang F. ; Shen K. ; Qu X. ; Zhang C. ; Wang Q. ; Li J. ; Liu J. ; Yang Z. Angew. Chem. Int. Ed. 2011, 50, 2379.
15 Chen Y. Macromolecules 2012, 45, 2619.
16 Xu X. ; Liu Y. ; Gao Y. ; Li H. Colloid Surface A 2017, 529, 613.
17 Nonomura Y. ; Komura S. ; Tsujii K. Langmuir 2004, 20, 11821.
18 Nonomura Y. ; Komura S. ; Tsujii K. J. Phys. Chem. B 2006, 110, 13124.
19 Huang M. ; Guo H. Soft Matter 2013, 9, 7356.
20 Ji Q. ; Yuan B. ; Lu X. ; Yang K. ; Ma Y. Small 2016, 12, 1140.
21 Deng R. ; Liang F. ; Zhu J. ; Yang Z. Mater. Chem. Front. 2017, 1, 431.
22 Xiang W. ; Zhao S. ; Song X. ; Fang S. ; Wang F. ; Zhong C. ; Luo Z. Phys. Chem. Chem. Phys. 2017, 19, 7576.
23 Walther A. ; Andre X. ; Drechsler M. ; Abetz V. ; Muller A. H. E. J. Am. Chem. Soc. 2007, 129, 6187.
24 Walther A. ; Hoffmannc M. ; Muller A. H. E. Angew. Chem. 2007, 119, 737.
25 Walther A. ; Matussek K. ; Muller A. H. E. ACS Nano 2008, 2, 1167.
26 Walther A. ; Drechsler M. ; Muller A. H. E. Soft Matter 2009, 5, 385.
27 Liang F. X. ; Shen K. ; Qu X. Z. ; Zhang C. L. ; Wang Q. ; Li J. L. ; Liu J. G. ; Yang Z. Z. Angew. Chem. Int. Ed. 2011, 50, 2379.
28 Yang H. L. ; Liang F. X. ; Wang X. ; Chen Y. ; Zhang C. L. ; Wang Q. ; Qu X. Z. ; Li J. L. ; Wu D. C. ; Yang Z. Z. Macromolecules 2013, 46, 2754.
29 Han D. ; Xiao P. ; Gu J. ; Chen J. ; Cai Z. ; Zhang J. ; Wang W. ; Chen T. RSC Adv. 2014, 4, 22759.
30 Zhao Z. G. ; Liang F. X. ; Zhang G. L. ; Ji X. Y. ; Wang Q. ; Qu X. Z. ; Song X. M. ; Yang Z. Z. Macromolecules 2015, 48, 3598.
31 Liu Y. ; Liang F. ; Wang Q. ; Qu X. ; Yang Z. Chem. Commun. 2015, 51, 3562.
32 Qi H. ; Zhou T. ; Mei S. ; Chen X. ; Li C. Y. ACS Macro Lett. 2016, 5, 651.
33 Liu Y. ; Xu X. ; Liang F. ; Yang Z. Macromolecules 2017, 50, 9042.
34 Yan L. -T. ; Maresov E. ; Buxton G. A. ; Balazs A. C. Soft Matter 2011, 7, 595.
35 Chen P. ; Huang Z. ; Liang J. ; Cui T. ; Zhang X. ; Miao B. ; Yan L.-T. ACS Nano 2016, 10, 11541.
36 He L. ; Pan Z. ; Zhang L. ; Liang H. Soft Matter 2011, 7, 1147.
37 Zhou, Y. ; Huang, M. ; Lu, T. ; Guo, H. Macromolecules submitted.
38 Hoogerbrugge P. J. ; Koelman J. M. V. A. Europhys. Lett. 1992, 19, 155.
39 Espanol P. ; Warren P. Europhys. Lett. 1995, 30, 191.
40 Espanol P. Europhys. Lett. 1997, 40, 631.
41 Groot R. D. ; Warren P. B. J. Chem. Phys. 1997, 107, 4423.
42 Jin Y. ; Xue Q. ; Lei Z. ; Li X. ; Pan X. ; Zhang J. ; Xing W. ; Wu T. Sci. Rep. 2016, 6, 26914.
[1] Zhimin XUE,Chuanyu YAN,Xinhui ZHAO,Dongkun YU,Tiancheng MU. How Hofmeister Ions Change the Local Environment around Thermoresponsive Polymers in Aqueous Solutions: an NMR Study[J]. Acta Phys. -Chim. Sin., 2019, 35(1): 49-57.
[2] Zhe WANG,Kangle JIA,Tongqing LIU,Junwen HU,Xuefeng LI,Jinfeng DONG. pH and Light Reconfigured Complex Emulsions by Stimuli-Responsive Surfactants[J]. Acta Phys. -Chim. Sin., 2019, 35(1): 84-91.
[3] Jingyuan ZHOU,Jin ZHANG,Zhongfan LIU. Advanced Progress in the Synthesis of Graphdiyne[J]. Acta Phys. -Chim. Sin., 2018, 34(9): 977-991.
[4] Xiaomeng CHENG,Dongxia JIAO,Zhihao LIANG,Jinjin WEI,Hongping LI,Junjiao YANG. Self-Assembly Behavior of Amphiphilic Diblock Copolymer PS-b-P4VP in CO2-Expanded Liquids[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 945-951.
[5] Xue HAN,Jin YANG,Yingying LIU,Jianfang MA. Syntheses and Luminescent Properties of Coordination Polymers Based on 1, 2, 4-Triazole-Substituted Resorcin[4]arene[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 476-482.
[6] Jie HAN,Qiuju LIANG,Yi QU,Jiangang LIU,Yanchun HAN. Morphology Control of Non-fullerene Blend Systems Based on Perylene[J]. Acta Phys. -Chim. Sin., 2018, 34(4): 391-406.
[7] Qiang MA,Yongsheng HU,Hong LI,Liquan CHEN,Xuejie HUANG,Zhibin ZHOU. An Sodium Bis (trifluoromethanesulfonyl) imide-based Polymer Electrolyte for Solid-State Sodium Batteries[J]. Acta Phys. -Chim. Sin., 2018, 34(2): 213-218.
[8] Jun YUAN,Ye LIU,Can ZHU,Ping SHEN,Meixiu WAN,Liuliu FENG,Yingping ZOU. Asymmetric Quinoxaline-Based Polymer for High Efficiency Non-Fullerene Solar Cells[J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1272-1278.
[9] Jianyong OUYANG. Recent Advances of Intrinsically Conductive Polymers[J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1211-1220.
[10] Xia GUO,Qunping FAN,Chaohua CUI,Zhiguo ZHANG,Maojie ZHANG. Wide Bandgap Random Terpolymers for High Efficiency Halogen-Free Solvent Processed Polymer Solar Cells[J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1279-1285.
[11] Wei-Shi DU,Yao-Kang LÜ,Zhi-Wei CAI,Cheng ZHANG. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1828-1837.
[12] Chan YAO,Guo-Yan LI,Yan-Hong XU. Carboxyl-Enriched Conjugated Microporous Polymers: Impact of Building Blocks on Porosity and Gas Adsorption[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1898-1904.
[13] Jiang-Bo ZHENG,Zhi-Ming CHEN,Zhi-Cheng HU,Jie ZHANG,Fei HUANG. Design, Synthesis and Photovoltaic Performance of Novel Conjugated Polymers Based on Difluorobenzothiadiazole and 2, 3-Bis[thiophen-2-yl]acrylonitrile[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1635-1643.
[14] You-Hao LIAO,Wei-Shan LI. Research Progresses on Gel Polymer Separators for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1533-1547.
[15] Ruo-Lin CHENG,Xi-Xiong JIN,Xiang-Qian FAN,Min WANG,Jian-Jian TIAN,Ling-Xia ZHANG,Jian-Lin SHI. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1436-1445.