Please wait a minute...
Acta Physico-Chimica Sinca  2018, Vol. 34 Issue (10): 1144-1150    DOI: 10.3866/PKU.WHXB201802122
Special Issue: Molecular Simulations in Materials Science
ARTICLE     
Deformation of Polymer-Grafted Janus Nanosheet: A Dissipative Particle Dynamic Simulations Study
Teng LU1,Yongxiang ZHOU1,2,Hongxia GUO1,2,*()
1 Beijing National Laboratory for Molecular Sciences, Joint Laboratory of Polymer Sciences and Materials, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
2 University of Chinese Academy of Sciences, Beijing 100049, P. R. China
Download: HTML     PDF(2356KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Because of broad potential applications in sensing, drug delivery, and molecular motors, two-dimensional (2D), flexible, responsive Janus materials have attracted considerable interest recently in many fields. Unfortunately, the molecular-level responsive deformation of these 2D Janus nanomaterials is still not clearly understood. Hence, investigating the influence factor and responsiveness of the deformation of the 2D flexible responsive Janus nanomaterials should be helpful to deepen our understanding of the deformation mechanism and may provide valuable information in the design and synthesis of novel functional 2D Janus nanomaterials. Therefore, a mesoscopic simulation method, dissipative particle dynamics simulation, based on coarse-grained models, is employed in this work to systematically investigate the effect of the chain length difference between grafted polymers within two compartments of each individual Janus nanosheet and the effect of solvent selectivity difference of these two compartments on the deformation of the polymer-grafted Janus nanosheet. Although the coarse-grained model within this simulation is relatively crude, it is still valid to provide a qualitative image of the deformation of the polymer-grafted Janus nanosheet. Furthermore, we find two basic principles: (1) with increasing length difference between grafted polymers on the two opposite surfaces, the nanosheet will bear an entropy-driven deformation with increasing curvature; (2) the solvent will preferentially wet the polymer layer with better compatibility, and such a swelling effect may also provide a driving force for the deformation process. Owing to the interplay of conformational entropy and mixing enthalpy, the equilibrium structures of the polymer-grafted Janus nanosheet result in several interesting structures, such as a tube-like structure with a hydrophobic outer surface, an envelope-like structure, and a bowl-like structure, with tuning of the chain length and solvent compatibility of grafted polymers. Additionally, an unusually tube-like structure with a hydrophobic outer surface has been observed for a relatively weak solvent selectivity, which may provide us a novel method to transfer materials into the incompatible environment and therefore has potential applications in many areas, such as controllable drug delivery and release, and industrial and medical detection. Our theoretical results first provide a fundamental insight into the controllable deformation of the flexible Janus nanosheet, which can then help in the design and synthesis of novel Janus nanodevices for potential applications in pharmaceuticals and biomedicine. Bearing the limited of the computational capabilities, our model Janus nanosheets are relatively small, which are not direct mappings from real system. We hope that a systematic simulation study on this topic would be possible soon with the rapid developments in computer technology and simulation methods, and this would provide an exhaustive and universal methodology to guide experimental studies and applications.



Key wordsJanus nanomaterial      Polymer      Amphiphilic composites      Morphology control      Dissipative particle dynamics simulation     
Received: 03 January 2018      Published: 12 February 2018
MSC2000:  O647  
Fund:  the National Nature Science Foundation of China(21174154);the National Nature Science Foundation of China(21204094);the National Nature Science Foundation of China(50930002);the National Nature Science Foundation of China(20874110);the National Nature Science Foundation of China(20674093);National Basic Research Program of China (973)(2014CB643601)
Corresponding Authors: Hongxia GUO     E-mail: hxguo@iccas.ac.cn
Cite this article:

Teng LU,Yongxiang ZHOU,Hongxia GUO. Deformation of Polymer-Grafted Janus Nanosheet: A Dissipative Particle Dynamic Simulations Study. Acta Physico-Chimica Sinca, 2018, 34(10): 1144-1150.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201802122     OR     http://www.whxb.pku.edu.cn/Y2018/V34/I10/1144

 
w n p1 p2
w 25 75 75 2.5–47.5
n 75 25 75 75
p1 75 75 25 75
p2 47.5–2.5 75 75 25
 
 
 
 
 
1 de Gennes P. G. Rev. Mod. Phys. 1992, 64, 645.
2 Hong L. ; Cacciuto A. ; Luijten E. ; Granick S. Nano Lett. 2006, 6, 2510.
3 Takei H. ; Shimizu N. Langmuir 1997, 13, 1865.
4 Glotzer S. C. Science 2004, 306, 419.
5 Roh K. H. ; Martin D. C. ; Lahann J. Nat. Mater. 2005, 4, 759.
6 Dendukuri D. ; Pregibon D. C. ; Collins J. ; Hatton T. A. ; Doyle P. S. Nat. Mater. 2006, 5, 365.
7 Xu G. ; Huang Z. ; Chen P. ; Cui T. ; Zhang X. ; Miao B. ; Yan L.-T. Small 2017, 13, 1603155.
8 Ruhland T. M. ; Groschel A. H. ; Walther A. ; Muller A. H. E. Langmuir 2011, 27, 9807.
9 Huang M. ; Li Z. ; Guo H. Soft Matter 2012, 8, 6834.
10 Binks B. P. ; Fletcher P. D. I. Langmuir 2001, 17, 4708.
11 Glaser N. ; Adams D. J. ; Boker A. ; Krausch G Langmuir 2006, 22, 5227.
12 Yan L. -T. ; Popp N. ; Ghosh S. -K. ; B?ker A. ACS Nano 2010, 4, 913.
13 Chen P. ; Yang Y. ; Dong B. ; Huang Z. ; Zhu G. ; Cao Y. ; Yan L.-T. Macromolecules 2017, 50, 2078.
14 Liang F. ; Shen K. ; Qu X. ; Zhang C. ; Wang Q. ; Li J. ; Liu J. ; Yang Z. Angew. Chem. Int. Ed. 2011, 50, 2379.
15 Chen Y. Macromolecules 2012, 45, 2619.
16 Xu X. ; Liu Y. ; Gao Y. ; Li H. Colloid Surface A 2017, 529, 613.
17 Nonomura Y. ; Komura S. ; Tsujii K. Langmuir 2004, 20, 11821.
18 Nonomura Y. ; Komura S. ; Tsujii K. J. Phys. Chem. B 2006, 110, 13124.
19 Huang M. ; Guo H. Soft Matter 2013, 9, 7356.
20 Ji Q. ; Yuan B. ; Lu X. ; Yang K. ; Ma Y. Small 2016, 12, 1140.
21 Deng R. ; Liang F. ; Zhu J. ; Yang Z. Mater. Chem. Front. 2017, 1, 431.
22 Xiang W. ; Zhao S. ; Song X. ; Fang S. ; Wang F. ; Zhong C. ; Luo Z. Phys. Chem. Chem. Phys. 2017, 19, 7576.
23 Walther A. ; Andre X. ; Drechsler M. ; Abetz V. ; Muller A. H. E. J. Am. Chem. Soc. 2007, 129, 6187.
24 Walther A. ; Hoffmannc M. ; Muller A. H. E. Angew. Chem. 2007, 119, 737.
25 Walther A. ; Matussek K. ; Muller A. H. E. ACS Nano 2008, 2, 1167.
26 Walther A. ; Drechsler M. ; Muller A. H. E. Soft Matter 2009, 5, 385.
27 Liang F. X. ; Shen K. ; Qu X. Z. ; Zhang C. L. ; Wang Q. ; Li J. L. ; Liu J. G. ; Yang Z. Z. Angew. Chem. Int. Ed. 2011, 50, 2379.
28 Yang H. L. ; Liang F. X. ; Wang X. ; Chen Y. ; Zhang C. L. ; Wang Q. ; Qu X. Z. ; Li J. L. ; Wu D. C. ; Yang Z. Z. Macromolecules 2013, 46, 2754.
29 Han D. ; Xiao P. ; Gu J. ; Chen J. ; Cai Z. ; Zhang J. ; Wang W. ; Chen T. RSC Adv. 2014, 4, 22759.
30 Zhao Z. G. ; Liang F. X. ; Zhang G. L. ; Ji X. Y. ; Wang Q. ; Qu X. Z. ; Song X. M. ; Yang Z. Z. Macromolecules 2015, 48, 3598.
31 Liu Y. ; Liang F. ; Wang Q. ; Qu X. ; Yang Z. Chem. Commun. 2015, 51, 3562.
32 Qi H. ; Zhou T. ; Mei S. ; Chen X. ; Li C. Y. ACS Macro Lett. 2016, 5, 651.
33 Liu Y. ; Xu X. ; Liang F. ; Yang Z. Macromolecules 2017, 50, 9042.
34 Yan L. -T. ; Maresov E. ; Buxton G. A. ; Balazs A. C. Soft Matter 2011, 7, 595.
35 Chen P. ; Huang Z. ; Liang J. ; Cui T. ; Zhang X. ; Miao B. ; Yan L.-T. ACS Nano 2016, 10, 11541.
36 He L. ; Pan Z. ; Zhang L. ; Liang H. Soft Matter 2011, 7, 1147.
37 Zhou, Y. ; Huang, M. ; Lu, T. ; Guo, H. Macromolecules submitted.
38 Hoogerbrugge P. J. ; Koelman J. M. V. A. Europhys. Lett. 1992, 19, 155.
39 Espanol P. ; Warren P. Europhys. Lett. 1995, 30, 191.
40 Espanol P. Europhys. Lett. 1997, 40, 631.
41 Groot R. D. ; Warren P. B. J. Chem. Phys. 1997, 107, 4423.
42 Jin Y. ; Xue Q. ; Lei Z. ; Li X. ; Pan X. ; Zhang J. ; Xing W. ; Wu T. Sci. Rep. 2016, 6, 26914.
[1] Jingyuan ZHOU,Jin ZHANG,Zhongfan LIU. Advanced Progress in the Synthesis of Graphdiyne[J]. Acta Physico-Chimica Sinca, 2018, 34(9): 977-991.
[2] Xiaomeng CHENG,Dongxia JIAO,Zhihao LIANG,Jinjin WEI,Hongping LI,Junjiao YANG. Self-Assembly Behavior of Amphiphilic Diblock Copolymer PS-b-P4VP in CO2-Expanded Liquids[J]. Acta Physico-Chimica Sinca, 2018, 34(8): 945-951.
[3] Xue HAN,Jin YANG,Yingying LIU,Jianfang MA. Syntheses and Luminescent Properties of Coordination Polymers Based on 1, 2, 4-Triazole-Substituted Resorcin[4]arene[J]. Acta Physico-Chimica Sinca, 2018, 34(5): 476-482.
[4] Jie HAN,Qiuju LIANG,Yi QU,Jiangang LIU,Yanchun HAN. Morphology Control of Non-fullerene Blend Systems Based on Perylene[J]. Acta Physico-Chimica Sinca, 2018, 34(4): 391-406.
[5] Qiang MA,Yongsheng HU,Hong LI,Liquan CHEN,Xuejie HUANG,Zhibin ZHOU. An Sodium Bis (trifluoromethanesulfonyl) imide-based Polymer Electrolyte for Solid-State Sodium Batteries[J]. Acta Physico-Chimica Sinca, 2018, 34(2): 213-218.
[6] YUAN Jun, LIU Ye, ZHU Can, SHEN Ping, WAN Meixiu, FENG Liuliu, ZOU Yingping. Asymmetric Quinoxaline-Based Polymer for High Efficiency Non-Fullerene Solar Cells[J]. Acta Physico-Chimica Sinca, 2018, 34(11): 1272-1278.
[7] OUYANG Jianyong. Recent Advances of Intrinsically Conductive Polymers[J]. Acta Physico-Chimica Sinca, 2018, 34(11): 1211-1220.
[8] GUO Xia, FAN Qunping, CUI Chaohua, ZHANG Zhiguo, ZHANG Maojie. Wide Bandgap Random Terpolymers for High Efficiency Halogen-Free Solvent Processed Polymer Solar Cells[J]. Acta Physico-Chimica Sinca, 2018, 34(11): 1279-1285.
[9] Wei-Shi DU,Yao-Kang LÜ,Zhi-Wei CAI,Cheng ZHANG. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1828-1837.
[10] Chan YAO,Guo-Yan LI,Yan-Hong XU. Carboxyl-Enriched Conjugated Microporous Polymers: Impact of Building Blocks on Porosity and Gas Adsorption[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1898-1904.
[11] Jiang-Bo ZHENG,Zhi-Ming CHEN,Zhi-Cheng HU,Jie ZHANG,Fei HUANG. Design, Synthesis and Photovoltaic Performance of Novel Conjugated Polymers Based on Difluorobenzothiadiazole and 2, 3-Bis[thiophen-2-yl]acrylonitrile[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1635-1643.
[12] You-Hao LIAO,Wei-Shan LI. Research Progresses on Gel Polymer Separators for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1533-1547.
[13] Ruo-Lin CHENG,Xi-Xiong JIN,Xiang-Qian FAN,Min WANG,Jian-Jian TIAN,Ling-Xia ZHANG,Jian-Lin SHI. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1436-1445.
[14] Qi-Tang FAN,Jun-Fa ZHU. Controlling the Topology of Low-Dimensional Organic Nanostructures with Surface Templates[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1288-1296.
[15] Rui XIA,Shi-Mao WANG,Wei-Wei DONG,Xiao-Dong FANG. Research Progress of Counter Electrodes for Quantum Dot-Sensitized Solar Cells[J]. Acta Physico-Chimica Sinca, 2017, 33(4): 670-690.