Please wait a minute...
Acta Physico-Chimica Sinca
Accepted manuscript     
Deformation of Polymer-Grafted Janus Nanosheet: A Dissipative Particle Dynamic Simulations Study
LU Teng1, ZHOU Yongxiang1,2, GUO Hongxia1,2
1 Beijing National Laboratory for Molecular Sciences, Joint Laboratory of Polymer Sciences and Materials, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China;
2 University of Chinese Academy of Sciences, Beijing 100049, P. R. China
Download:   PDF(663KB) Export: BibTeX | EndNote (RIS)      

Abstract  Because of broad potential applications in sensing, drug delivery, and molecular motors, two-dimensional (2D), flexible, responsive Janus materials have attracted considerable interest recently in many fields. Unfortunately, the molecular-level responsive deformation of these 2D Janus nanomaterials is still not clearly understood. Hence, investigating the influence factor and responsiveness of the deformation of the 2D flexible responsive Janus nanomaterials should be helpful to deepen our understanding of the deformation mechanism and may provide valuable information in the design and synthesis of novel functional 2D Janus nanomaterials. Therefore, a mesoscopic simulation method, dissipative particle dynamics simulation, based on coarse-grained models, is employed in this work to systematically investigate the effect of the chain length difference between grafted polymers within two compartments of each individual Janus nanosheet and the effect of solvent selectivity difference of these two compartments on the deformation of the polymer-grafted Janus nanosheet. Although the coarse-grained model within this simulation is relatively crude, it is still valid to provide a qualitative image of the deformation of the polymer-grafted Janus nanosheet. Furthermore, we find two basic principles:(1) with increasing length difference between grafted polymers on the two opposite surfaces, the nanosheet will bear an entropy-driven deformation with increasing curvature; (2) the solvent will preferentially wet the polymer layer with better compatibility, and such a swelling effect may also provide a driving force for the deformation process. Owing to the interplay of conformational entropy and mixing enthalpy, the equilibrium structures of the polymer-grafted Janus nanosheet result in several interesting structures, such as a tube-like structure with a hydrophobic outer surface, an envelope-like structure, and a bowl-like structure, with tuning of the chain length and solvent compatibility of grafted polymers. Additionally, an unusually tube-like structure with a hydrophobic outer surface has been observed for a relatively weak solvent selectivity, which may provide us a novel method to transfer materials into the incompatible environment and therefore has potential applications in many areas, such as controllable drug delivery and release, and industrial and medical detection. Our theoretical results first provide a fundamental insight into the controllable deformation of the flexible Janus nanosheet, which can then help in the design and synthesis of novel Janus nanodevices for potential applications in pharmaceuticals and biomedicine. Bearing the limited of the computational capabilities, our model Janus nanosheets are relatively small, which are not direct mappings from real system. We hope that a systematic simulation study on this topic would be possible soon with the rapid developments in computer technology and simulation methods, and this would provide an exhaustive and universal methodology to guide experimental studies and applications.

Key wordsJanus nanomaterial      Polymer      Amphiphilic composites      Morphology control      Dissipative particle dynamics simulation     
Received: 03 January 2018      Published: 12 February 2018
MSC2000:  O648  
Fund:  The project was supported by the National Nature Science Foundation of China (21174154, 21204094, 50930002, 20874110, 20674093) and National Basic Research Program of China (973) (2014CB643601).
Cite this article:

LU Teng, ZHOU Yongxiang, GUO Hongxia. Deformation of Polymer-Grafted Janus Nanosheet: A Dissipative Particle Dynamic Simulations Study. Acta Physico-Chimica Sinca, 0, (): 0-0.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201802122     OR     http://www.whxb.pku.edu.cn/Y0/V/I/0

(1) de Gennes, P. G. <i>Rev. Mod. Phys. </i><b>1992, </b><i>64</i>, 645. doi: <a href="http://dx.doi.org/10.1103/RevModPhys.64.645" target="_blank">10.1103/RevModPhys.64.645</a><br /> (2) Hong, L.; Cacciuto, A.; Luijten, E.; Granick, S. <i>Nano Lett. </i><b>2006, </b><i>6</i>, 2510. doi: <a href="http://dx.doi.org/10.1021/nl061857i" target="_blank">10.1021/nl061857i</a><br /> (3) Takei, H.; Shimizu, N. <i>Langmuir </i><b>1997, </b><i>13</i>, 1865. doi: <a href="http://dx.doi.org/10.1021/la9621067" target="_blank">10.1021/la9621067</a><br /> (4) Glotzer, S. C. <i>Science </i><b>2004, </b><i>306</i>, 419. doi: <a href="http://dx.doi.org/10.1126/science.1099988" target="_blank">10.1126/science.1099988</a><br /> (5) Roh, K. H.; Martin, D. C.; Lahann, J. <i>Nat. Mater. </i><b>2005, </b><i>4</i>, 759. doi: <a href="http://dx.doi.org/10.1038/nmat1486" target="_blank">10.1038/nmat1486</a><br /> (6) Dendukuri, D.; Pregibon, D. C.; Collins, J.; Hatton, T. A.; Doyle, P.S. <i>Nat. Mater. </i><b>2006, </b><i>5</i>, 365. doi: <a href="http://dx.doi.org/10.1038/nmat1617" target="_blank">10.1038/nmat1617</a><br /> (7) Xu, G.; Huang, Z.; Chen, P.; Cui, T.; Zhang, X.; Miao, B.; Yan, L.-T. <i>Small </i><b>2017, </b><i>13</i>, 1603155. doi: <a href="http://dx.doi.org/10.1002/smll.201603155" target="_blank">10.1002/smll.201603155</a><br /> (8) Ruhland, T. M.; Groschel, A. H.; Walther, A.; Muller, A. H. E. <i>Langmuir </i><b>2011, </b><i>27</i>, 9807. doi: <a href="http://dx.doi.org/10.1021/la201863x" target="_blank">10.1021/la201863x</a><br /> (9) Huang, M.; Li, Z.; Guo, H. <i>Soft Matter </i><b>2012, </b><i>8</i>, 6834. doi: <a href="http://dx.doi.org/10.1039/C2SM25086A" target="_blank">10.1039/C2SM25086A</a><br /> (10) Binks, B. P.; Fletcher, P. D. I. <i>Langmuir </i><b>2001, </b><i>17</i>, 4708. doi: <a href="http://dx.doi.org/10.1021/la0103315" target="_blank">10.1021/la0103315</a><br /> (11) Glaser, N.; Adams, D. J.; Boker, A.; Krausch G. <i>Langmuir </i><b>2006, </b><i>22</i>, 5227. doi: <a href="http://dx.doi.org/10.1021/la060693i" target="_blank">10.1021/la060693i</a><br /> (12) Yan, L. -T.; Popp, N.; Ghosh, S. -K.; Böker, A. <i>ACS Nano </i><b>2010, </b><i>4</i>, 913. doi: <a href="http://dx.doi.org/10.1021/nn901739v" target="_blank">10.1021/nn901739v</a><br /> (13) Chen, P.; Yang, Y.; Dong, B.; Huang, Z.; Zhu, G.; Cao, Y.; Yan, L.-T. <i>Macromolecules </i><b>2017, </b><i>50</i>, 2078. doi: <a href="http://dx.doi.org/10.1021/acs.macromol.7b00012" target="_blank">10.1021/acs.macromol.7b00012</a><br /> (14) Liang, F.; Shen, K.; Qu, X.; Zhang, C.; Wang, Q.; Li, J.; Liu, J.; Yang, Z. <i>Angew. Chem. Int. Ed. </i><b>2011, </b><i>50</i>, 2379. doi: <a href="http://dx.doi.org/10.1002/anie.201007519" target="_blank">10.1002/anie.201007519</a><br /> (15) Chen, Y. <i>Macromolecules </i><b>2012, </b><i>45</i>, 2619. doi: <a href="http://dx.doi.org/10.1021/ma201495m" target="_blank">10.1021/ma201495m</a><br /> (16) Xu, X.; Liu, Y.; Gao, Y.; Li, H. <i>Colloid Surface A </i><b>2017, </b><i>529</i>, 613. doi: <a href="http://dx.doi.org/10.1016/j.colsurfa.2017.06.048" target="_blank">10.1016/j.colsurfa.2017.06.048</a><br /> (17) Nonomura, Y.; Komura, S.; Tsujii, K. <i>Langmuir </i><b>2004, </b><i>20</i>, 11821. doi: <a href="http://dx.doi.org/10.1021/la0480540." target="_blank">10.1021/la0480540.</a><br /> (18) Nonomura, Y.; Komura, S.; Tsujii, K. <i>J. Phys. Chem. B </i><b>2006, </b><i>110</i>, 13124. doi: <a href="http://dx.doi.org/10.1021/jp0617017" target="_blank">10.1021/jp0617017</a><br /> (19) Huang, M.; Guo, H. <i>Soft Matter </i><b>2013, </b><i>9</i>, 7356. doi: <a href="http://dx.doi.org/10.1039/C3SM50957E" target="_blank">10.1039/C3SM50957E</a><br /> (20) Ji, Q.; Yuan, B.; Lu, X.; Yang, K.; Ma, Y. <i>Small </i><b>2016, </b><i>12</i>, 1140. doi: <a href="http://dx.doi.org/10.1002/smll.201501885" target="_blank">10.1002/smll.201501885</a><br /> (21) Deng, R.; Liang, F.; Zhu, J.; Yang, Z. <i>Mater. Chem. Front. </i><b>2017, </b><i>1</i>, 431. doi: <a href="http://dx.doi.org/10.1039/C6QM00116E" target="_blank">10.1039/C6QM00116E</a><br /> (22) Xiang, W.; Zhao, S.; Song, X.; Fang, S.; Wang, F.; Zhong, C.; Luo, Z. <i>Phys. Chem. Chem. Phys. </i><b>2017, </b><i>19</i>, 7576. doi: <a href="http://dx.doi.org/10.1039/C6CP08654C" target="_blank">10.1039/C6CP08654C</a><br /> (23) Walther, A.; Andre, X.; Drechsler, M.; Abetz, V.; Muller, A. H. E. <i>J. Am. Chem. Soc. </i><b>2007, </b><i>129</i>, 6187. doi: <a href="http://dx.doi.org/10.1021/ja068153v" target="_blank">10.1021/ja068153v</a><br /> (24) Walther, A.; Hoffmannc, M.; Muller, A. H. E. <i>Angew. Chem. </i><b>2007, </b><i>119</i>, 737.<br /> (25) Walther, A.; Matussek, K.; Muller, A. H. E. <i>ACS Nano </i><b>2008, </b><i>2</i>, 1167. doi: <a href="http://dx.doi.org/10.1021/nn800108y" target="_blank">10.1021/nn800108y</a><br /> (26) Walther, A.; Drechsler, M.; Muller, A. H. E. <i>Soft Matter </i><b>2009, </b><i>5</i>, 385. doi: <a href="http://dx.doi.org/10.1039/B812321G" target="_blank">10.1039/B812321G</a><br /> (27) Liang, F. X.; Shen, K.; Qu, X. Z.; Zhang, C. L.; Wang, Q.; Li, J. L.; Liu, J. G.; Yang, Z. Z. <i>Angew. Chem. Int. Ed. </i><b>2011, </b><i>50</i>, 2379. doi: <a href="http://dx.doi.org/10.1002/anie.201007519" target="_blank">10.1002/anie.201007519</a><br /> (28) Yang, H. L.; Liang, F. X.; Wang, X.; Chen, Y.; Zhang, C. L.; Wang, Q.; Qu, X. Z.; Li, J. L.; Wu, D. C.; Yang, Z. Z. <i>Macromolecules</i> <b>2013, </b><i>46</i>, 2754. doi: <a href="http://dx.doi.org/10.1021/ma400261y" target="_blank">10.1021/ma400261y</a><br /> (29) Han, D.; Xiao, P.; Gu, J.; Chen, J.; Cai, Z.; Zhang, J., Wang, W.; Chen, T. <i>RSC Adv. </i><b>2014, </b><i>4</i>, 22759. doi: <a href="http://dx.doi.org/10.1039/C4RA02826K" target="_blank">10.1039/C4RA02826K</a><br /> (30) Zhao, Z. G.; Liang, F. X.; Zhang, G. L.; Ji, X. Y.; Wang, Q.; Qu, X.Z.; Song, X. M.; Yang, Z. Z. <i>Macromolecules </i><b>2015, </b><i>48</i>, 3598. doi: <a href="http://dx.doi.org/10.1021/acs.macromol.5b00365" target="_blank">10.1021/acs.macromol.5b00365</a><br /> (31) Liu, Y.; Liang, F.; Wang, Q.; Qu, X.; Yang, Z. <i>Chem. Commun.</i> <b>2015, </b><i>51</i>, 3562. doi: <a href="http://dx.doi.org/10.1039/C4CC08420A" target="_blank">10.1039/C4CC08420A</a><br /> (32) Qi, H.; Zhou, T.; Mei, S.; Chen, X.; Li, C. Y. <i>ACS Macro Lett. </i><b>2016, </b><i>5</i>, 651. doi: <a href="http://dx.doi.org/10.1021/acsmacrolett.6b00251" target="_blank">10.1021/acsmacrolett.6b00251</a><br /> (33) Liu, Y.; Xu, X.; Liang, F.; Yang, Z. <i>Macromolecules </i><b>2017</b>, <i>50</i>, 9042. doi: <a href="http://dx.doi.org/10.1021/acs.macromol.7b01558" target="_blank">10.1021/acs.macromol.7b01558</a><br /> (34) Yan, L. -T.; Maresov, E.; Buxton, G. A.; Balazs, A. C. <i>Soft Matter</i> <b>2011, </b><i>7</i>, 595. doi: <a href="http://dx.doi.org/10.1039/C0SM00803F" target="_blank">10.1039/C0SM00803F</a><br /> (35) Chen, P.; Huang, Z.; Liang, J.; Cui, T.; Zhang, X.; Miao, B.; Yan, L.-T. <i>ACS Nano </i><b>2016, </b><i>10</i>, 11541. doi: <a href="http://dx.doi.org/10.1021/acsnano.6b07563" target="_blank">10.1021/acsnano.6b07563</a><br /> (36) He, L.; Pan, Z.; Zhang, L.; Liang, H. <i>Soft Matter </i><b>2011, </b><i>7</i>, 1147. doi: <a href="http://dx.doi.org/10.1039/C0SM00703J" target="_blank">10.1039/C0SM00703J</a><br /> (37) Zhou, Y.; Huang, M.; Lu, T.; Guo, H. <i>Macromolecules </i>submitted.<br /> (38) Hoogerbrugge, P. J.; Koelman, J. M. V. A. <i>Europhys. Lett. </i><b>1992, </b><i>19</i>, 155. doi: <a href="http://dx.doi.org/10.1209/0295-5075/19/3/001" target="_blank">10.1209/0295-5075/19/3/001</a><br /> (39) Espanol, P.; Warren, P. <i>Europhys. Lett. </i><b>1995, </b><i>30</i>, 191. doi: <a href="http://dx.doi.org/10.1209/0295-5075/30/4/001" target="_blank">10.1209/0295-5075/30/4/001</a><br /> (40) Espanol, P. <i>Europhys. Lett. </i><b>1997, </b><i>40</i>, 631. doi: <a href="http://dx.doi.org/10.1209/epl/i1997-00515-8" target="_blank">10.1209/epl/i1997-00515-8</a><br /> (41) Groot, R. D.; Warren, P. B. <i>J. Chem. Phys. </i><b>1997, </b><i>107</i>, 4423. doi: <a href="http://dx.doi.org/10.1063/1.474784" target="_blank">10.1063/1.474784</a><br /> (42) Jin, Y.; Xue, Q.; Lei, Z.; Li, X.; Pan, X.; Zhang, J.; Xing, W.; Wu, T. <i>Sci. Rep. </i><b>2016, </b><i>6</i>, 26914. doi: <a href="http://dx.doi.org/10.1038/srep26914" target="_blank">10.1038/srep26914</a>
[1] Xue HAN,Jin YANG,Yingying LIU,Jianfang MA. Syntheses and Luminescent Properties of Coordination Polymers Based on 1, 2, 4-Triazole-Substituted Resorcin[4]arene[J]. Acta Physico-Chimica Sinca, 2018, 34(5): 476-482.
[2] Jie HAN,Qiuju LIANG,Yi QU,Jiangang LIU,Yanchun HAN. Morphology Control of Non-fullerene Blend Systems Based on Perylene[J]. Acta Physico-Chimica Sinca, 2018, 34(4): 391-406.
[3] MA Qiang, HU Yongsheng, LI Hong, CHEN Liquan, HUANG Xuejie, ZHOU Zhibin. An Sodium Bis (trifluoromethanesulfonyl) imide-based Polymer Electrolyte for Solid-State Sodium Batteries[J]. Acta Physico-Chimica Sinca, 2018, 34(2): 213-218.
[4] DU Wei-Shi, Lü Yao-Kang, CAI Zhi-Wei, ZHANG Cheng. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1828-1837.
[5] YAO Chan, LI Guo-Yan, XU Yan-Hong. Carboxyl-Enriched Conjugated Microporous Polymers: Impact of Building Blocks on Porosity and Gas Adsorption[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1898-1904.
[6] ZHENG Jiang-Bo, CHEN Zhi-Ming, HU Zhi-Cheng, ZHANG Jie, HUANG Fei. Design, Synthesis and Photovoltaic Performance of Novel Conjugated Polymers Based on Difluorobenzothiadiazole and 2, 3-Bis[thiophen-2-yl]acrylonitrile[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1635-1643.
[7] LIAO You-Hao, LI Wei-Shan. Research Progresses on Gel Polymer Separators for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1533-1547.
[8] CHENG Ruo-Lin, JIN Xi-Xiong, FAN Xiang-Qian, WANG Min, TIAN Jian-Jian, ZHANG Ling-Xia, SHI Jian-Lin. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1436-1445.
[9] FAN Qi-Tang, ZHU Jun-Fa. Controlling the Topology of Low-Dimensional Organic Nanostructures with Surface Templates[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1288-1296.
[10] XIA Rui, WANG Shi-Mao, DONG Wei-Wei, FANG Xiao-Dong. Research Progress of Counter Electrodes for Quantum Dot-Sensitized Solar Cells[J]. Acta Physico-Chimica Sinca, 2017, 33(4): 670-690.
[11] YUAN Kang, ZHOU Xue, DU Jian-Zhong. Synthesis and Characterization of Thermo-Responsive Polypeptide-Based Vesicles with Photo-Cross-Linked Membranes[J]. Acta Physico-Chimica Sinca, 2017, 33(4): 656-660.
[12] LIAO Chun-Rong, XIONG Feng, LI Xian-Jun, WU Yi-Qiang, LUO Yong-Feng. Progress in Conductive Polymers in Fibrous Energy Devices[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 329-343.
[13] YI Qing-Hua, ZHAO Jie, LOU Yan-Hui, ZOU Gui-Fu, LIU Zhong-Fan. Design and Growth of High-Quality Multifunctional Thin Films by Polymer-Assisted Deposition[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 314-328.
[14] PEI Tong, PENG Kai, CAI Xin-Yi, YUAN Liang-Jie, XIA Jiang-Bin. Synthesis of Poly(bis-3,4-ethylenedioxythiophene methine)s with Side-Chain Comprising Electro-Optical Moieties and Alkyl Chain Effect in Solid State Polymerization[J]. Acta Physico-Chimica Sinca, 2017, 33(12): 2550-2558.
[15] ZHANG Shao-Qing, HOU Jian-Hui. Rational Design Strategies for Polymer Donors for Applications in Non-Fullerene Organic Photovoltaic Cells[J]. Acta Physico-Chimica Sinca, 2017, 33(12): 2327-2338.