Please wait a minute...
Acta Phys. -Chim. Sin.  2019, Vol. 35 Issue (2): 223-229    DOI: 10.3866/PKU.WHXB201802263
ARTICLE     
One-Pot Surfactant-Free Synthesis of Transition Metal/ZnO Nanocomposites for Catalytic Hydrogenation of CO2 to Methanol
Yanfang LIU,Bing HU,Yazhi YIN,Guoliang LIU*(),Xinlin HONG*()
Download: HTML     PDF(1572KB) Export: BibTeX | EndNote (RIS)       Supporting Info

Abstract  

Catalytic hydrogenation of CO2 to methanol is an important chemical process owing to its contribution in alleviating the impacts of the greenhouse effect and in realizing the requirement for renewable energy sources. Owing to their excellent synergic functionalities and unique optoelectronic as well as catalytic properties, transition metal/ZnO (M/ZnO) nanocomposites have been widely used as catalysts for this reaction in recent years. Development of size-controlled synthesis of metal/oxide complexes is highly desirable. Further, because it is extremely difficult to achieve the strong-metal-support-interaction (SMSI) effect when the M/ZnO nanocomposites are prepared via physical methods, the use of chemical methods is more favorable for the fabrication of multi-component catalysts. However, because of the requirement for an extra H2 reduction step to obtain the active metallic phase (M) and surfactants to control the size of nanoparticles, most M/ZnO nanocomposites undergo two- or multi-step synthesis, which is disadvantageous for the stable catalytic performance of the M/ZnO nanocomposites. In this work, we demonstrate facile one-pot synthesis of M/ZnO (M = Pd, Au, Ag, and Cu) nanocomposites in refluxed ethylene glycol as a solvent, without using any surfactants. During the synthesis process, Pd and ZnO species can stabilize each other from further aggregation by reducing their individual surface energies, thereby achieving size control of particles. Besides, NaHCO3 serves as a size-control tool for Pd nanoparticles by adjusting the alkaline conditions. Ethylene glycol serves as a mild reducing agent and solvent owing to its capacity to reduce Pd ions to generate Pd crystals. The nucleation and growth of Pd particles are achieved by thermal reduction, while the ZnO nanocrystals are formed by thermal decomposition of Zn(OAc)2. X-ray diffraction patterns of the M/ZnO and ZnO were analyzed to study the phase of the nanocomposites, and the results show that no impurity phase was detected. Transmission electron microscopy (TEM) was used to study the morphology and structural properties. In addition, X-ray photoelectron spectroscopy analysis was performed to further confirm the formation of M/ZnO hybrid materials, and the results confirm SMSI between Pd and ZnO. Inductively coupled plasma mass spectrometry was used to check the actual elemental compositions, and the results show that the detected atomic ratios of Pd/Zn were consistent with the values in the theoretical recipe. To investigate the effects of the Pd/Zn molar ratios and the added amount of NaHCO3 on Pd size, the average sizes of Pd particles were calculated, and the results were confirmed by TEM observation. The Cu/ZnO/Al2O3 composite is a widely known catalyst for hydrogenation of CO2 to methanol, and other M/ZnO composites are also catalytic for this reaction. Therefore, different M/ZnO hybrids were further studied as catalysts for hydrogenation of CO2 to methanol, among which Pd/ZnO (1 : 9) demonstrated the best performance (30% CO2 conversion, 69% methanol selectivity, and 421.9 gmethanol·(kg catalyst·h)-1 at 240 ℃ and 5 MPa. The outstanding catalytic performance may be explained by the following two factors: first, Pd is a good catalyst for the dissociation of H2 to give active H atoms, and second, SMSI between Pd and ZnO favors the formation of surface oxygen vacancies on ZnO. Moreover, most M/ZnO composites exhibit excellent performance in methanol selectivity, especially the Au/ZnO catalyst, which has the highest methanol selectivity (82%) despite having the lowest CO2 conversion. Hopefully, this work would provide a simple route for synthesis of M/ZnO nanocomposites with clean surfaces for catalysis.



Key wordsMetal/ZnO      Hydrogenation      CO2      Methanol      Nanocomposites     
Received: 29 December 2017      Published: 26 February 2018
MSC2000:  O643  
Fund:  the National Natural Science Foundation of China(21373153)
Corresponding Authors: Guoliang LIU,Xinlin HONG     E-mail: liugl@whu.edu.cn;hongxl@whu.edu.cn
Cite this article:

Yanfang LIU,Bing HU,Yazhi YIN,Guoliang LIU,Xinlin HONG. One-Pot Surfactant-Free Synthesis of Transition Metal/ZnO Nanocomposites for Catalytic Hydrogenation of CO2 to Methanol. Acta Phys. -Chim. Sin., 2019, 35(2): 223-229.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201802263     OR     http://www.whxb.pku.edu.cn/Y2019/V35/I2/223

 
 
 
 
 
Catalyst T/℃ CO2 Conv. (%) Methanol Select. (%) CO Select. (%) Methanol Yield (%) Methanol STY gmethanol/(kg catalyst·h)
Ag/ZnO (1 : 6)a 260 21.9 26 74 5.7 114.5
Cu/ZnO (1 : 6) 260 14.0 23 77 3.2 64.3
Au/ZnO (1 : 6) 260 6.6 82 18 5.4 108.5
Pd/ZnO (1 : 6) 260 20.7 71 29 14.7 295.3
Pd/ZnO (1 : 6) 240 19.0 77 23 14.6 293.3
Pd/ZnO (1 : 6) 220 9.8 84 16 8.2 164.7
Pd/ZnO (1 : 9) 240 30.5 69 31 21.0 421.9
Pd/ZnO (1 : 12) 240 21.6 83 17 17.9 359.6
Pd/ZnO (1 : 24) 240 19.2 59 41 11.3 227.0
 
1 Lewis S. A. ; Wilburn J. P. ; Wellons M. S. ; Cliffel D. E. ; Lukehart C. M. Phys. Status Solidi A 2015, 212, 2903.
2 Chen Y. ; Yang X. Y. ; Zhang P. ; Liu D. S. ; Gui J. Z. ; Peng H. L. ; Liu D. Acta Phys. -Chim. Sin. 2017, 33, 2082.
2 陈阳; 杨晓燕; 张鹏; 刘道胜; 桂建舟; 彭海龙; 刘丹. 物理化学学报, 2017, 33, 2082.
3 Xu B. Q. ; Wei J. M. ; Yu Y. T. ; Li Y. ; Li J. L. ; Zhu Q. M. J. Phys. Chem. B 2003, 107, 5203.
4 Wang Y. Acta Phys. -Chim. Sin. 2017, 33, 857.
4 王野. 物理化学学报, 2017, 33, 857.
5 Rathi A. K. ; Gawande M. B. ; Ranc V. ; Pechousek J. ; Petr M. ; Cepe K. ; Varmab R. S. ; Zboril R. Catal. Sci. Technol. 2016, 6, 152.
6 Nadagouda M. N. ; Varma R. S. Biomacromolecules 2007, 8, 2762.
7 Zhang J. ; Yu J. G. ; Jaroniec M. ; Gong J. R. Nano Lett. 2012, 12, 4584.
8 Liu T. X. ; Li B. X. ; Hao Y. G. ; Han F. ; Zhang L. L. ; Hu L. Y. Appl. Catal. B-Environ. 2015, 165, 378.
9 Wang D. H. ; Kou R. ; Choi D. ; Yang Z. G. ; Nie Z. M. ; Li J. ; Saraf L. V. ; Hu D. H. ; Zhang J. G. ; Graff G. L. ; et al ACS Nano 2010, 4, 1587.
10 Polarz S. ; Neues F. ; van den Berg M. W. E. ; Grunert W. ; Khodeir L. J. Am. Chem. Soc. 2005, 127, 12028.
11 Behrens M. ; Studt F. ; Kasatkin I. ; Kühl S. ; Hä vecker M. ; Abild-Pedersen F. ; Zander S. ; Girgsdies F. ; Kurr P. ; Kniep B. ; et al Science 2012, 336, 893.
12 Ma J. ; Sun N. ; Zhang X. ; Zhao N. ; Xiao F. ; Wei W. ; Sun Y. Catal. Today 2009, 148, 221.
13 Wang G. Y. ; Zhang W. X. ; Lian H. L. ; Jiang D. Z. ; Wu T. H. Appl. Catal. A 2003, 239, 1.
14 Da Costa-Serra J. F. ; Guil-López R. ; Chica A. Int. J. Hydrogen Energy 2010, 35, 6709.
15 Huang L. ; Kramer G. J. ; Wieldraaijer W. ; Brands D. S. ; Poels E. K. ; Castricum H. L. ; Bakker H. Catal. Lett. 1997, 48, 55.
16 Murray C. B. ; Norris D. J. ; Bawendi M. G. J. Am. Chem. Soc. 1993, 115, 8706.
17 Sun S. H. ; Murray C. B. ; Weller D. ; Folks L. ; Moser A. Science 2000, 287, 1989.
18 Chen S. F. ; Li J. P. ; Qian K. ; Xu W. P. ; Lu Y. ; Huang W. X. ; Yu S. H. Nano Res. 2010, 3, 244.
19 Zhang H. Y. ; Xie Y. ; Sun Z. Y. ; Tao R. T. ; Huang C. L. ; Zhao Y. F. ; Liu Z. M. Langmuir 2011, 27, 1152.
20 Xie Y. ; Ding K. L. ; Liu Z. M. ; Tao R. T. ; Sun Z. Y. ; Zhang H. Y. ; An G. M. J. Am. Chem. Soc. 2009, 131, 6648.
21 Wang Y. ; Ren J. W. ; Deng K. ; Gui L. L. ; Tang Y. Q. Chem. Mater. 2000, 12, 1622.
22 Fu X. Y. ; Wang Y. ; Wu N. Z. ; Gui L. L. ; Tang Y. Q. J. Mater. Chem. 2003, 13, 1192.
23 Zhang J. L. ; Ji H. ; Wei Y. G. ; Wang Y. ; Wu N. Z. J. Phys. Chem. C 2008, 112, 10688.
24 Chen X. M. ; Wu G. H. ; Chen J. M. ; Chen X. ; Xie Z. X. ; Wang X. R. J. Am. Chem. Soc. 2011, 133, 3693.
25 Sun Y. G. ; Gates B. ; Mayers B. ; Xia Y. N. Nano Lett. 2002, 2, 165.
26 Ranjbar M. ; Taher M.A. ; Sam A. J. Clust. Sci. 2014, 25, 1657.
27 Zhang J. ; Mo Y. ; Vukmirovic M. B. ; Klie R. ; Sasaki K. ; Adzic R. R. J. Phys. Chem. B 2004, 108, 10955.
28 Jing L. Q. ; Xu Z. L. ; Sun X. J. ; Shang J. ; Cai W. M. Appl. Surf. Sci. 2001, 180, 308.
29 Batista J. ; Pintar A. ; Mandrino D. ; Jenko M. ; Martin V. Appl. Catal. A-Gen. 2001, 206, 113.
30 Matthey D. ; Wang J. G. ; Wendt S. ; Matthiesen J. ; Schaub R. ; Laegsgaard E. ; Hammer B. ; Besenbacher F. Science 2007, 315, 1692.
31 Qiao B. T. ; Wang A.Q. ; Yang X. F. ; Allard L. F. ; Jiang Z. ; Cui Y. T. ; Liu J. Y. ; Li J. ; Zhang T. Nat. Chem. 2011, 3, 634.
32 Bock C. ; Paquet C. ; Couillard M. ; Botton G. A. ; MacDougall B. R. J. Am. Chem. Soc. 2004, 126, 8028.
33 Chinchen G. C. ; Denny P. J. ; Jennings J. R. ; Spencer M. S. ; Waugh K. C. Appl. Catal. 1988, 36, 1.
34 Liang X. L. ; Dong X. ; Lin G. D. ; Zhang H. B. Appl. Catal. B- Environ. 2009, 88, 315.
35 Prüsse U. ; Vorlop K. D. J. Mol. Catal. A-Chem. 2001, 173, 313.
36 Liao F. L. ; Huang Y. Q. ; Ge J. W. ; Zheng W. R. ; Tedsree K. ; Collier P. ; Hong X. L. ; Tsang S. C. Angew. Chem. Int. Ed. 2011, 50, 2162.
[1] Mingyu ZHAO,Lin ZHU,Bowen FU,Suhua JIANG,Yongning ZHOU,Yun SONG. Sodium Ion Storage Performance of NiCo2S4 Hexagonal Nanosheets[J]. Acta Phys. -Chim. Sin., 2019, 35(2): 193-199.
[2] Yunnan GAO,Shizhen LIU,Zhenqing ZHAO,Hengcong TAO,Zhenyu SUN. Heterogeneous Catalysis of CO2 Hydrogenation to C2+ Products[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 858-872.
[3] Xiaomeng CHENG,Dongxia JIAO,Zhihao LIANG,Jinjin WEI,Hongping LI,Junjiao YANG. Self-Assembly Behavior of Amphiphilic Diblock Copolymer PS-b-P4VP in CO2-Expanded Liquids[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 945-951.
[4] Hui NING,Wenhang WANG,Qinhu MAO,Shirui ZHENG,Zhongxue YANG,Qingshan ZHAO,Mingbo WU. Catalytic Electroreduction of CO2 to C2H4 Using Cu2O Supported on 1-Octyl-3-methylimidazole Functionalized Graphite Sheets[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 938-944.
[5] Yanhui YI,Xunxun WANG,Li WANG,Jinhui YAN,Jialiang ZHANG,Hongchen GUO. Plasma-Triggered CH3OH/NH3 Coupling Reaction for Synthesis of Nitrile Compounds[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 247-255.
[6] Tian LIU,Jun LI,Weijia LIU,Yudan ZHU,Xiaohua LU. Simple Ligand Modifications to Modulate the Activity of Ruthenium Catalysts for CO2 Hydrogenation: Trans Influence of Boryl Ligands and Nature of Ru―H Bond[J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1097-1105.
[7] Hui-Hui QIAN,Xiao HAN,Yan ZHAO,Yu-Qin SU. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1822-1827.
[8] Hong-Yan NING,Qi-Lei YANG,Xiao YANG,Ying-Xia LI,Zhao-Yu SONG,Yi-Ren LU,Li-Hong ZHANG,Yuan LIU. Carbon Fiber-supported Rh-Mn in Close Contact with Each Other and Its Catalytic Performance for Ethanol Synthesis from Syngas[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1865-1874.
[9] Yun-Peng GUO,Jie FENG,Wen-Ying LI. Effect of Ni Doping on Electron Transfer in Ni/MgO Catalysts[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1796-1802.
[10] Liang ZHOU,Xue-Hua ZHANG,Lin LIN,Pan LI,Kun-Juan SHAO,Chun-Zhong LI,Tao HE. Visible-Light Photocatalytic Reduction of CO2 by CoTe Prepared via a Template-Free Hydrothermal Method[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1884-1890.
[11] Yi YANG,Lai-Ming LUO,Di CHEN,Hong-Ming LIU,Rong-Hua ZHANG,Zhong-Xu DAI,Xin-Wen ZHOU. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1628-1634.
[12] Jian-Ping QIU,Yi-Wen TONG,De-Ming ZHAO,Zhi-Qiao HE,Jian-Meng CHEN,Shuang SONG. Electrochemical Reduction of CO2 to Methanol at TiO2 Nanotube Electrodes[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1411-1420.
[13] Bo HAN,Han-Song CHENG. Nickel Family Metal Clusters for Catalytic Hydrogenation Processes[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1310-1323.
[14] Chao LIAN,Kai ZHANG,Yuan WANG. Catalytic Properties of Platinum Nanoclusters Supported on Iron Oxides for the Solvent-Free Hydrogenation of Halonitrobenzene[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 984-992.
[15] Xu ZHEN,Xue-Jing GUO. Synthesis and Lithium Storage Performance of Three-Dimensional Mesostructured ZnCo2O4 Cubes[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 845-852.