Please wait a minute...
Acta Phys. -Chim. Sin.  2018, Vol. 34 Issue (10): 1171-1178    DOI: 10.3866/PKU.WHXB201803024
Special Issue: Molecular Simulations in Materials Science
ARTICLE     
Influence of Photoisomerization on Binding Energy and Conformation of Azobenzene-Containing Host-Guest Complex
Pingying LIU1,2,Chunyan LIU2,Qian LIU2,Jing MA2,*()
1 School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333403, Jiangxi Province, P. R. China
2 School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of MOE, Nanjing University, Nanjing 210023, P. R. China
Download: HTML     PDF(1634KB) Export: BibTeX | EndNote (RIS)       Supporting Info

Abstract  

The construction of a photo-controllable artificial molecular machine capable of realizing the light-driven motion on a molecular scale and of performing a specific function is a fascinating topic in supramolecular chemistry. The bistable switchable molecule, azobenzene (AZO), has been introduced into the supramolecular architecture as a key building block, owing to its efficient and reversible trans (E)-cis (Z) photoisomerization. The binding strength of the dibenzo[24]crown-8 (DB24C8) host and dialkylammonium-based rod-like guest consisting of an AZO moiety and the Z$\to $E photoisomerization process in an interlocked host-guest complex have been investigated by the density functional theory (DFT) calculations and the reactive molecular dynamics (RMD) simulations by considering both torsion and inversion paths. The strong host-guest binding strength provides a necessary premise to stabilize the complex during the E-Z photoisomerization of the AZO unit, which is a terminal stopper to control the directional motion of the guest. A stronger binding strength for the Z isomer can be induced by the stronger hydrogen-bonding interaction. The steric effect is introduced into the Z isomer to force the ring slipping exclusively over the cyclopentyl terminal (pseudostopper). The host-guest complexation has a slight effect on the conformation of the AZO functional subunit for the two isomers. The faster Z$\to $E photoisomerization process within the picosecond timescale is kinetically more favored than the dethreading of the ring through the pseudostopper subunit of the rod. After isomerization, a structure relaxation is observed for the crown ether ring within 500 ps. The flexible backbone of the crown ether ring is helpful in realizing steady and stable host-guest recognition during photoisomerization. Moreover, the orthogonality of the site-specific binding interaction is revealed by the similar binding energies obtained at similar hydrogen bonding recognition sites for various interlocked host-guest supramolecular systems although the constituents of the guests are different from each other. The introduction of two stereoisomers of the AZO subunit has little influence on the other conformations of guest subunits. These results are useful for the rational design of more sophisticated stimuli-controlled artificial molecular machines.



Key wordsPhotoisomerization      Reactive molecular dynamics model      Azobenzene      Nanomotors      Pseudorotaxane      Supramolecular chemistry     
Received: 25 December 2017      Published: 13 April 2018
MSC2000:  O641  
Fund:  the National Natural Science Foundation of China(21673111);the National Natural Science Foundation of China(21661017);Natural Science Foundation of Jiangxi Province, China(20161BAB203081)
Corresponding Authors: Jing MA     E-mail: majing@nju.edu.cn
Cite this article:

Pingying LIU,Chunyan LIU,Qian LIU,Jing MA. Influence of Photoisomerization on Binding Energy and Conformation of Azobenzene-Containing Host-Guest Complex. Acta Phys. -Chim. Sin., 2018, 34(10): 1171-1178.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201803024     OR     http://www.whxb.pku.edu.cn/Y2018/V34/I10/1171

 
 
 
 
 
1 Ma X. ; Zhao Y. Chem. Rev. 2015, 115, 7794.
2 Szymański W. ; Beierle J. ; Kistemaker H. ; Velema W. ; Feringa B. Chem. Rev. 2013, 113, 6114.
3 Balzani V. ; Credi A. ; Silvi S. ; Venturi M. Chem. Soc. Rev. 2006, 35, 1135.
4 Balzani V. ; Credi A. ; Venturi M. Chem. Soc. Rev. 2009, 38, 1542.
5 Crowley J. ; Goldup S. ; Lee A. ; Leigh D. ; McBurney R. Chem. Soc. Rev. 2009, 38, 1530.
6 Erbas-Cakmak S. ; Leigh D. ; McTernan C. ; Nussbaumer A. Chem. Rev. 2015, 115, 10081.
7 Klajn R. ; Stoddart J. ; Grzybowski B. Chem. Soc. Rev. 2010, 39, 2203.
8 Saha S. ; Stoddart J. Chem. Soc. Rev. 2007, 36, 77.
9 Tian H. ; Wang Q. Chem. Soc. Rev. 2006, 35, 361.
10 van Dongen S. ; Cantekin S. ; Elemans J. ; Rowan A. ; Nolte R. Chem. Soc. Rev. 2014, 43, 99.
11 Zhang T. ; Mu L. ; She G. ; Shi W. Chem. Commun. 2012, 48, 452.
12 Burkhart C. ; Haberhauer G. Eur. J. Org. Chem. 2017, 2017, 1308.
13 Dey K. ; Sen A. J. Am. Chem. Soc. 2017, 139, 7666.
14 Kathan M. ; Hecht S. Chem. Soc. Rev. 2017, 46, 5536.
15 Oruganti B. ; Wang J. ; Durbeej B. Int. J. Quantum Chem. 2017, e25405.
16 Qu D. ; Wang Q. ; Zhang Q. ; Ma X. ; Tian H. Chem. Rev. 2015, 115, 7543.
17 Baroncini M. ; Bergamini G. Chem. Rec. 2017, 17, 700.
18 Ueno A. ; Yoshimura H. ; Saka R. ; Osa T. J. Am. Chem. Soc. 1979, 101, 2779.
19 Yao X. ; Li T. ; Wang J. ; Ma X. ; Tian H. Adv. Opt. Mater. 2016, 4, 1322.
20 Baroncini M. ; Silvi S. ; Venturi M. ; Credi A. Angew. Chem. Int. Ed. 2012, 51, 4223.
21 Ragazzon G. ; Baroncini M. ; Silvi S. ; Venturi M. ; Credi A. Nat. Nanotechnol. 2015, 10, 70.
22 Liu Z. ; Ma J. J. Phys. Chem. A 2011, 115, 10136.
23 Tian Z. ; Wen J. ; Ma J. J. Chem. Phys. 2013, 139, 014706.
24 Wen J. ; Tian Z. ; Ma J. J. Phys. Chem. C 2013, 117, 19934.
25 Tian Z. ; Wen J. ; Ma J. Mol. Simul. 2014, 41, 28.
26 Liu C. ; Zheng D. ; Hu W. ; Tian Z. ; Zhao J. ; Zhu Y. ; Ma J. Nanoscale 2017, 9, 16700.
27 Zhao J. ; Liu C. ; Ma J. Nanoscale 2017, 9, 19017.
28 Pang J. ; Tian Z. ; Ma J. Sci. Sin. Chim. 2015, 45, 412.
29 Zheng D. ; Yuan X. ; Ma J. Acta Phys. -Chim. Sin. 2016, 32, 290.
29 郑东; 袁相爱; 马晶. 物理化学学报, 2016, 32, 290.
30 Tabacchi G. ; Silvi S. ; Venturi M. ; Credi A. ; Fois E. ChemPhysChem 2016, 17, 1913.
31 Bandara H. ; Burdette S. Chem. Soc. Rev. 2012, 41, 1809.
32 Ciminelli C. ; Granucci G. ; Persico M. Chemistry 2004, 10, 2327.
33 Floss G. ; Saalfrank P. J. Phys. Chem. A 2015, 119, 5026.
34 Gao A. ; Li B. ; Zhang P. ; Han K. J. Chem. Phys. 2012, 137, 204305.
35 Ishikawa T. ; Noro T. ; Shoda T. J. Chem. Phys. 2001, 115, 7503.
36 Li Y. ; Hartke B. J. Chem. Phys. 2013, 139, 224303.
37 Pederzoli M. ; Pittner J. ; Barbatti M. ; Lischka H. J. Phys. Chem. A 2011, 115, 11136.
38 Tiberio G. ; Muccioli L. ; Berardi R. ; Zannoni C. ChemPhysChem 2010, 11, 1018.
39 Yin T. ; Zhao Z. ; Zhang H. RSC Adv. 2016, 6, 79879.
40 Bockmann M. ; Braun S. ; Doltsinis N. ; Marx D. J. Chem. Phys. 2013, 139, 084108.
41 Liu P. ; Chen Q. ; Ma J. J. Comput. Chem. 2016, 37, 2228.
42 Liu P. ; Chen Q. ; Ma J. Sci. Sin. Chim. 2016, 46, 69.
43 Liu P. ; Li W. ; Liu L. ; Wang L. ; Ma J. J. Phys. Chem. A 2014, 118, 9032.
44 Ashton P. ; Ballardini R. ; Balzani V. ; Baxter I. ; Credi A. ; Fyfe M. ; Gandolfi M. ; Gomez-Lopez M. ; Martinez-Diaz M. ; Piersanti A. ; et al J. Am. Chem. Soc. 1998, 120, 11932.
45 Frisch, M. ; Trucks, G. ; Schlegel, H. ; Scuseria, G. ; Robb, M. ; Cheeseman, J. ; Scalmani, G. ; Barone, V. ; Mennucci, B. ; Petersson, G. et al. Gaussian 09, Revision B. 01; Gaussian Inc. : Wallingford, CT, USA, 2010.
46 Li S. ; Li W. ; Fang T. J. Am. Chem. Soc. 2005, 127, 7215.
47 Li W. ; Li S. ; Jiang Y. J. Phys. Chem. A 2007, 111, 2193.
48 Li S. ; Li W. ; Ma J. Acc. Chem. Res. 2014, 47, 2712.
49 Boys S. ; Bernardi F. Mol. Phys. 1970, 19, 553.
50 Simon S. ; Duran M. ; Dannenberg J. J. Chem. Phys. 1996, 105, 11024.
51 van Duin A. ; Dasgupta S. ; Lorant F. ; Goddard W. J. Phys. Chem. A 2001, 105, 9396.
52 Mueller J. ; van Duin A. ; Goddard W. J. Phys. Chem. C 2010, 114, 4939.
53 Brenner D. ; Shenderova O. ; Harrison J. ; Stuart S. ; Ni B. ; Sinnott S. J. Phys.: Condens. Matter 2002, 14, 783.
54 Yu J. ; Sinnott S. ; Phillpot S. Phys. Rev. B 2007, 75, 085311.
55 Shan T. ; Devine B. ; Hawkins J. ; Asthagiri A. ; Phillpot S. ; Sinnott S. Phys. Rev. B 2010, 82, 235302.
56 Materials Studio, Version 4. 0; Accelrys, Inc. : San Diego, CA, USA, 2006.
57 Liu P. ; Li W. ; Kan Z. ; Sun H. ; Ma J. J. Phys. Chem. A 2016, 120, 490.
[1] Hong-Lai LIU,Wan-Luo WANG,Shou-Hong XU,Hong-Lai LIU. Photo-Responsivity of Azobenzene-Containing Glycolipid within Liquid-Gas Interface[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 836-844.
[2] Jin SUN,Zong-Ling DING,Yuan-Qin YU,Guang LI. Absorption Spectra of Azobenzene Molecules on Au Nanoparticle Surface[J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2199-2206.
[3] YUAN Shu-Wei, LÜ Rong, YU An-Chi. Photoisomerization Kinetics of IR125 and HDITCP in Ionic Liquids with Different Cation Alkyl Chain Lengths[J]. Acta Phys. -Chim. Sin., 2014, 30(5): 987-993.
[4] YU Hai-Ling, ZHANG Meng-Ying, HONG Bo, CHENG Zhi Qiang, WANG Jiao, TIAN Dong-Mei, QIU Yong-Qing. Nonlinear Optical Properties of Green Fluorescent Protein Chromophore Coupled Diradicals[J]. Acta Phys. -Chim. Sin., 2013, 29(12): 2543-2550.
[5] LUO Wen-Li, SU Ya-Qiong, TIAN Xiang-Dong, ZHAO Liu-Bin, WU De-Yin, TIAN Zhong-Qun. Reaction of p-Chloronitrobenzene Adsorbed on Silver Nanoparticles[J]. Acta Phys. -Chim. Sin., 2012, 28(12): 2767-2773.
[6] SHEN Qian, GAN Lin, LIU Song, CAO Yang, WANG Zhen-Xing, HUI Jing-Shu, GUO Xue-Feng. Reversible Photomodulation of Organic Transistor Performance by Conformation-Induced Capacitive Coupling[J]. Acta Phys. -Chim. Sin., 2010, 26(07): 1941-1946.
[7] WANG Luo-Xin, YI Chang-Hai, ZOU Han-Tao, XU Jie, XU Wei-Lin. cis-trans Isomerization of Azobenzene Confined inside an Armchair (8,8) Single-Walled Carbon Nanotube[J]. Acta Phys. -Chim. Sin., 2010, 26(01): 149-154.
[8] ZHU Yue, PU Min, HE Jing, EVANS David G.. Photoisomerization Mechanism of the Trans-cis Azobenzene Sulphonate Derivatives[J]. Acta Phys. -Chim. Sin., 2009, 25(11): 2296-2304.
[9] SONG Bing-Lei, ZHAO Jian-Xi. Adsorption of Photosensitive Quaternary Ammonium Gemini Surfactant a4-6-m at the Air/Water Interface[J]. Acta Phys. -Chim. Sin., 2009, 25(10): 2020-2025.
[10] XI Hai-Tao; GAO Ya-Jun; SUN Xiao-Qiang; YIN Kai-Liang; CHEN Cheng-Lung. Binding Energy of the Electron Acceptor Cyclobis (Paraquat-Phenylene) Tetracationic Cyclophane and Electron Donating Phenyl Ether Derivatives[J]. Acta Phys. -Chim. Sin., 2009, 25(02): 377-381.
[11] LUO Shi-Xia; ZHANG Xiao-Yi; ZHANG Si-Ting; ZHU Huai-Wu; HU Ji-Wei; WEI Gang. Influence of Substituents on Electron Transport through the Single-Molecule Mercapto-Azobenzene[J]. Acta Phys. -Chim. Sin., 2008, 24(08): 1471-1476.
[12] ZHAO Yan;YANG Zi-Ming;ZHU Hong-You;GU Juan;WANG Yu-Fei. Molecular Recognition of a Novel Bridged Bis(β-cyclodextrin) Tethered with Aromatic Diamine for Dyes[J]. Acta Phys. -Chim. Sin., 2007, 23(03): 394-398.
[13] ZHANG Shu-Qiang;WANG Ya-Qiong;ZHENG Xu-Ming. Density Functional Theory Investigation of the Photoisomerization Reaction of Nitroalkanes and Nirroaromatic Compounds[J]. Acta Phys. -Chim. Sin., 2006, 22(12): 1489-1494.
[14] Zhang Yan-Ling, Gao Xing-Ming, Tong Lin-Hui, Ma Xue-Yi. Circular Dichroism and Molecular Conformation of Cyclodextrins Bearing Benzoyl Moiety[J]. Acta Phys. -Chim. Sin., 1999, 15(09): 856-859.
[15] Wu Guo-Hua, Sheng Liu-Si, Gao Hui, Zhang Yun-Wu. Studies on p-aminoazobenzene(C12H11N3)Using Photoionization Mass Spectrum with Synchrotron Radiation(SR)[J]. Acta Phys. -Chim. Sin., 1999, 15(09): 860-864.