Please wait a minute...
Acta Phys. -Chim. Sin.  2019, Vol. 35 Issue (2): 215-222    DOI: 10.3866/PKU.WHXB201803061
    
Influence of Surface Defects and Palladium Deposition on the Activity of CdS Nanocrystals for Photocatalytic Hydrogen Production
Zhiming LIU,Guoliang LIU*(),Xinlin HONG*()
Download: HTML     PDF(3206KB) Export: BibTeX | EndNote (RIS)      

Abstract  

The development of the photocatalytic production of hydrogen from water splitting has attracted immense attention in recent years. CdS is a potential photocatalyst with a visible light response, though it still suffers from a limited activity for hydrogen production due to the fast recombination of photo-induced electron/hole pairs and the low reaction rate of hydrogen evolution on the surface. Studies on the effect of CdS surface structure and properties on hydrogen production are still very limited. In this work, we prepared three CdS nanocrystals with different morphologies: long rod, short rod, and triangular plate. The prepared samples were well characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) specific surface area analysis, X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) spectroscopy, and UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS). From the results of TEM, XRD and XPS, we find that the three CdS nanocrystals with different morphologies were successfully synthesized. From the PL spectra, we conclude that the area of exposed nonpolar surface and degree of surface defects increase with an increase in aspect ratio. We also performed the photocatalytic hydrogen production reaction using the three CdS crystals. Long rod-like CdS (lr-CdS) exhibits the highest photocatalytic activity, with a hydrogen production rate of 482 μmol·h-1·g-1, which is 2.6 times that of short rod-like CdS (sr-CdS) (183 μmol·h-1·g-1) and 8.8 times that of triangular plate-like CdS (tp-CdS, 55 μmol h-1·g-1). It is found that lr-CdS shows a higher hydrogen production rate than sr-CdS and tp-CdS. We find that the hydrogen production rate is related to the degree of surface defects. Surface defects can trap the photo-induced electrons/holes, thus decreasing their probability of recombination. In addition, these defects can be used to anchor Pd particles to form a heterojunction structure that facilitates the separation of photo-induced charges. Therefore, we also compared three CdS/Pd nanocrystals synthesized with the three abovementioned morphologies with respect to hydrogen production. With 1% (w, mass fraction) Pd, the hydrogen production rate was greatly enhanced compared to all the CdS catalysts. Compared to the unpromoted CdS, the reaction rate is enhanced 43.1, 10.7 and 6.0 times over those of sr-CdS, lr-CdS and tp-CdS, respectively. Notably, the hydrogen production rate with short rod-like CdS/Pd reaches 7884 μmol·h-1·g-1, which can be favorably compared with the ever-increasing values reported in the literature. Hopefully, this work provides knowledge on the effect of crystal surface structure and properties on photocatalysis.



Key wordsCdS nanocrystal      Photocatalytic hydrogen production      Surface defects      Heterojunction structure      Pd promotion     
Received: 24 January 2018      Published: 06 March 2018
MSC2000:  O643  
Fund:  the National Natural Science Foundation of China(21373153)
Corresponding Authors: Guoliang LIU,Xinlin HONG     E-mail: liugl@whu.edu.cn;hongxl@whu.edu.cn
Cite this article:

Zhiming LIU, Guoliang LIU, Xinlin HONG. Influence of Surface Defects and Palladium Deposition on the Activity of CdS Nanocrystals for Photocatalytic Hydrogen Production. Acta Phys. -Chim. Sin., 2019, 35(2): 215-222.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201803061     OR     http://www.whxb.pku.edu.cn/Y2019/V35/I2/215

 
 
 
 
 
Sample SBET/(m2 g-1) HPR/(μmol h-1 g-1) Normalized HPR/(μmol h-1 m-2) HPR after Pd deposition/(μmol h-1 g-1)
tp-CdS 19.8 55 2.78 589
sr-CdS 35.9 183 5.10 7884
lr-CdS 78.1 482 6.17 2873
 
 
 
 
1 Chen J. ; Shen S. H. ; Guo P. H. ; Wang M. ; Wu P. ; Wang X. X. ; Guo L. J. Appl. Catal. B-Environ. 2014, 152-153, 335.
2 Acar C. ; Dincer L. ; Naterer G. F. Int. J. Energy Res. 2016, 40, 1449.
3 Xu Y. ; Xu R. Appl. Surf. Sci. 2015, 351, 779.
4 Wang F. M. ; Shifa T. A. ; Zhan X. Y. ; Huang Y. ; Liu K. L. ; Cheng Z. Z. ; Jiang C. ; He J. Nanoscale 2015, 7, 19764.
5 Osterloh F. E. Chem. Soc. Rev. 2013, 42, 2294.
6 Ni M. ; Leung M. K. H. ; Leung D. Y. C. ; Sumathy K. Renew. Sust. Energ. Rev. 2007, 11, 401.
7 Hisatomi T. ; Kubota J. ; Domen K. Chem. Soc. Rev. 2014, 43, 7520.
8 Chen X. B. ; Shen S. H. ; Guo L. J. ; Mao S. S. Chem. Rev. 2010, 110, 6503.
9 Tong H. ; Ouyang S. X. ; Bi Y. P. ; Umezawa N. ; Oshikiri M. ; Ye J. H. Adv. Mater. 2012, 24, 229.
10 Liao C. H. ; Huang C. W. ; Wu J. C. S. Catalysts 2012, 2, 490.
11 Kudo A. ; Miseki Y. Chem. Soc. Rev. 2009, 38, 253.
12 Banerjee S. ; Pillai S. C. ; Falaras P. ; O'Shea K. E. ; Byrne J. A. ; Dionysiou D. D. J. Phys. Chem. Lett. 2014, 5, 2543.
13 Asahi R. ; Morikawa T. ; Irie H. ; Ohwaki T. Chem. Rev. 2014, 114, 9824.
14 Irie H. ; Miura S. ; Kamiya K. ; Hashimoto K. Chem. Phys. Lett. 2008, 457, 202.
15 Ouyang S. X. ; Ye J. H. J. Am. Chem. Soc. 2011, 133, 7757.
16 Shenawi-Khalil S. ; Uvarov V. ; Kritsman Y. ; Menes E. ; Popov I. ; Sasson Y. Catal. Commun. 2011, 12, 1136.
17 Hu C. C. ; Lee Y. L. ; Teng H. J. Phys. Chem. C 2011, 115, 2805.
18 Yun H. J. ; Lee H. ; Kim N. D. ; Lee D. M. ; Yu S. ; Yi J. ACS Nano 2011, 5, 4084.
19 Li C. X. ; Han L. J. ; Liu R. J. ; Li H. H. ; Zhang S. J. ; Zhang G. J. J. Mater. Chem. 2012, 22, 23815.
20 Bao N. Z. ; Shen L. M. ; Takata T. ; Domen K. Chem. Mater. 2008, 20, 110.
21 Silva L. A. ; Ryu S. Y. ; Choi J. ; Choi Y. ; Hoffmann M. R. J. Phys. Chem. C 2008, 112, 12069.
22 Yu J. G. ; Yu Y. F. ; Cheng B. RSC Adv. 2012, 2, 11829.
23 Jin J. ; Yu J. G. ; Liu G. ; Wong P. K. J. Mater. Chem. A 2013, 1, 10927.
24 Zhang K. ; Guo L. J. Catal. Sci. Technol. 2013, 3, 1672.
25 Yang J. H. ; Wang D. ; Han H. X. ; Li C. Acc. Chem. Res. 2013, 46, 1900.
26 Shi H. Y. ; Yan R. S. ; Bertolazzi S. ; Brivio J. ; Gao B. ; Kis A. ; Jena D. ; Xing H. G. ; Huang L. B. ACS Nano 2013, 7, 1072.
27 Tongay S. ; Suh J. ; Ataca C. ; Fan W. ; Luce1 A. ; Kang J. S. ; Liu J. ; Ko C. ; Raghunathanan R. ; Zhou J. ; et al Sci. Rep. 2013, 3, 2657.
28 Chen W. ; Chen K. B. ; Peng Q. ; Li Y. D. Small 2009, 5, 681.
29 Wang X. L. ; Feng Z. C. ; Fan D. Y. ; Fan F. T. ; Li C. Cryst. Growth Des. 2010, 10, 5312.
30 Yan H. J. ; Yang J. H. ; Ma G. J. ; Wu G. P. ; Zong X. ; Lei Z. B. ; Shi J. Y. ; Li C. J. Catal. 2009, 266, 165.
31 Yang J. H. ; Yan H. J. ; Wang X. L. ; Wen F. Y. ; Wang Z. J. ; Fan D. Y. ; Shi J. Y. ; Li C. J. Catal. 2012, 290, 151.
32 Tauc J. ; Grigorovici R. ; Vancu A. Phys. Stat. Sol. 1966, 15, 627.
33 Zhang H. ; Cai J. M. ; Wang Y. T. ; Wu M. Q. ; Meng M. ; Tian Y. ; Li X. G. ; Zhang J. ; Zheng L. R. ; Jiang Z. ; et al Appl. Catal. B- Environ. 2018, 220, 126.
34 Cai J. M. ; Wu M. Q. ; Wang Y. T. ; Zhang H. ; Meng M. ; Tian Y. ; Li X. G. ; Zhang J. ; Zheng L. R. ; Gong J. L. Chem 2017, 2, 877.
35 Wang Y. T. ; Cai J. M. ; Wu M. Q. ; Zhang H. ; Meng M. ; Tian Y. ; Ding T. ; Gong J. L. ; Jiang Z. ; Li X. G. ACS Appl. Mater. Interfaces 2016, 8, 23006.
36 Cai J. M. ; Wang Y. T. ; Zhu Y. M. ; Wu M. Q. ; Zhang H. ; Li X. G. ; Jiang Z. ; Meng M. ACS Appl. Mater. Interfaces 2015, 7, 24987.
37 Peng T. Y. ; Li K. ; Zeng P. ; Zhang Q. G. ; Zhang X. G. J. Phys. Chem. C 2012, 116, 22720.
38 Cheng F. Y. ; Yin H. ; Xiang Q. J. Appl. Surf. Sci. 2017, 391, 432.
39 Jia T. T. ; Kolpin A. ; Ma C. S. ; Chan R. C. T. ; Kwok W. M. ; Tsang S. C. E. Chem. Commun. 2014, 50, 1185.
40 Xiang Q. J. ; Cheng F. Y. ; Lang D. ChemSusChem 2016, 9, 996.
41 Zeng P. ; Zhang Q. G. ; Peng T. Y. ; Zhang X. H. Phys. Chem. Chem. Phys. 2011, 13, 21496.
42 Du X. H. ; Li Y. ; Yin H. ; Xiang Q. J. Acta Phys. -Chim. Sin. 2018, 34, 414.
42 杜新华; 李阳; 殷辉; 向全军. 物理化学学报, 2018, 34, 414.
43 Zhang C. ; Wu Z. J. ; Liu J. J. ; Piao L. Y. Acta Phys. -Chim. Sin. 2017, 33, 1492.
43 张驰; 吴志娇; 刘建军; 朴玲钰. 物理化学学报, 2017, 33, 1492.
[1] Chi ZHANG,Zhi-Jiao WU,Jian-Jun LIU,Ling-Yu PIAO. Preparation of MoS2/TiO2 Composite Catalyst and Its Photocatalytic Hydrogen Production Activity under UV Irradiation[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1492-1498.
[2] LIU Xing, LI Yue-Xiang, PENG Shao-Qin, LAI Hua. Progress in Visible-Light Photocatalytic Hydrogen Production by Dye Sensitization[J]. Acta Phys. -Chim. Sin., 2015, 31(4): 612-626.
[3] Yu Gang,Wang Kai-Xuan,Huang Jian-Bin,Zhao Bi-Ying. Low Frequency Raman Scattering of CdS Nanocrystallites Embedded in Silicate Glasses[J]. Acta Phys. -Chim. Sin., 1997, 13(03): 230-235.