Please wait a minute...
Acta Phys. -Chim. Sin.  2018, Vol. 34 Issue (12): 1358-1365    DOI: 10.3866/PKU.WHXB201803071
Special Issue: Surface Physical Chemistry
ARTICLE     
Adsorption and Activation of O2 and CO on the Ni(111) Surface
Yuan DUAN,Mingshu CHEN*(),Huilin WAN
Download: HTML     PDF(1312KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Ni-based catalysts have been widely used in many important industrial heterogeneous processes such as hydrogenation and steam reforming owing to their sufficiently high activity yet significantly lower cost than that of alternative precious-metal-based catalysts. However, nickel catalysts are susceptible to deactivation. Understanding the adsorption and activation behavior of small molecules on the model catalyst surface is important to optimize the catalytic performance. Although many studies have been carried out in recent years, the initial oxidation process of nickel surface is still not fully understood, and the influence of the adsorption sequence of CO and O2 and their co-adsorption is controversial. In this study, the surface oxygen species on Ni(111) and the co-adsorption of CO and O2 were explored using high-resolution electron energy loss spectroscopy (HREELS), Auger electron spectroscopy (AES), and low energy electron diffraction (LEED). HREELS can provide useful information about the surface structure, surface-adsorbed species, adsorption sites, and interactions between surface oxygen species and CO on the surface. The results showed that there were two kinds of oxygen species after the oxidation of Ni(111), and the energy loss peaks at 54–58 meV were ascribed to surface chemisorbed oxygen species, and the peak at 69 meV to surface nickel oxide. The chemisorbed oxygen at low coverage displayed a LEED pattern of (2×2), revealing the formation of an ordered surface structure. As the amount of oxygen increased, the energy loss peak at 54 meV shifted to 58 meV. At an O2 partial pressure of 1×10-8 Torr (1 Torr = 133.32 Pa), the AES ratio of O/Ni remained almost unchanged after dosing 48 L, which indicated that the surface nickel oxide was relatively stable. The surface chemisorbed oxygen species was less stable, which could change to surface nickel oxide after annealing in vacuum. CO adsorbed on Ni(111) at room temperature with tri-hollow and a-top sites. Upon annealing in vacuum, a-top CO weakened first and then disappeared completely at 520 K, whereas tri-hollow CO was much more stable. The pre-adsorption of CO could suppress O2 adsorption and oxidation of the Ni(111) surface. The presence of oxygen could then gradually remove and replace CO with O2. The surface oxygen species preferred the tri-hollow sites, resulting in more a-top adsorbed CO during the co-adsorption of CO and oxygen. The surface chemisorbed oxygen species were more active and could react with CO at room temperature; however, the surface nickel oxide was less active, and could only be reduced at a higher temperature and higher partial pressure of CO.



Key wordsNi(111)      High-resolution electron energy loss spectroscopy      Activation of O2 and CO      Surface oxygen species      CO adsorption      Co-adsorption of CO and O2     
Received: 04 February 2018      Published: 07 March 2018
MSC2000:  O647  
  O643  
Fund:  the National Natural Science Foundation of China(21273178);the National Natural Science Foundation of China(21573180);the National Natural Science Foundation of China(91545204)
Corresponding Authors: Mingshu CHEN     E-mail: chenms@xmu.edu.cn
Cite this article:

Yuan DUAN,Mingshu CHEN,Huilin WAN. Adsorption and Activation of O2 and CO on the Ni(111) Surface. Acta Phys. -Chim. Sin., 2018, 34(12): 1358-1365.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201803071     OR     http://www.whxb.pku.edu.cn/Y2018/V34/I12/1358

Fig 1 (a) HREELS spectra of Ni(111) after exposing to oxygen with various pressure at room temperature (RT); (b) HREELS spectra of Ni(111) after exposing to different amount of O2 with pO2 = 1×10-8 Torr at RT; (c) O/Ni AES ratio as a function of the oxygen pressure (Inset: LEED pattern of Ni(111) after exposing to 1×10-8 Torr O2 for 5 min at RT); (d) O/Ni AES ratio as a function of the oxygen exposing amount with pO2 = 1×10-8 Torr.
Fig 2 (a) HREELS spectra Ni(111) oxidized at room temperature then annealed at various temperatures in vacuum; (b) Auger ratio of O/Ni as a function of the annealing temperature (Inset: LEED pattern of the Ni(111) surface after exposing to 1×10-6 Torr O2 for 5 min at RT and following by annealing at 750 K in vacuum).
Fig 3 HREELS spectra for (a) CO absorption on Ni(111) at RT and (b) flashed to different temperatures. (b) a: surface saturated with CO.
Fig 4 (a), (b) HREELS spectra of O2 adsorbed on the Ni(111) surface with saturated CO; (c) AES ratio of O/Ni as a function of the O2 exposing amount.
Fig 5 HREELS spectra of (a) various amount of CO on Ni(111) surface after pre-adsorption of 1.2 L O2; (b) 6 L CO on the Ni(111) surface pre-adsorbed different amount of O2; (c) Plots of the ratio of the hollow CO/a-top CO and Auger ratio of C/O. (c): (a–e) are exposed to CO at room temperature with 0.6, 3, 15, 30 and 300 L, respectively; (f–g) are exposed to CO at 428, 520 K (pCO = 1×10-6 Torr, 10 min); (h–j) are exposed to CO at 520, 673, 793 K (pCO = 1×10-5 Torr, 10 min).
Fig 6 HREELS spectra of co-adsorption of CO and O2 on Ni(111). Inset: Plots of the ratio of the hollow CO/a-top CO and Auger ratio of C/O in this condition. (a) 6 L CO after 3 L O2; (b) +3 L O2; (c) +3 L O2; (d) +6 L O2; (e) +6 L CO.
Fig 7 HREELS spectra of the reaction of CO with surface nickel oxide in different experimental conditions. (a) 300 K 30 L O2; (b)–(e) exposed to CO at 300, 450, 550, 650 K (pCO = 1×10-7 Torr); (f) exposed to CO at 650 K (pCO = 1×10-6 Torr); (g) exposed to CO at 650 K (pCO = 1×10-5 Torr)
1 Ertl G. Angew. Chem. Int. Ed. 2008, 47 (19), 3524.
2 Ertl, G. ; Knoezinger, H. ; Schueth, F. ; Weitkamp, J. Handbook of Heterogeneous Catalysis, 2nd ed. ; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2008; Vol. 8, pp. 1309–1310.
3 Chen M. S. Acta Phys. -Chim. Sin. 2017, 33 (12), 2424.
3 陈明树. 物理化学学报, 2017, 33 (12), 2424.
4 Beniya A. ; Ikuta Y. ; Isomura N. ; Hirata H. ; Watanabe Y. ACS Catal. 2017, 7 (2), 1369.
5 Netzer, F. P., Fortunelli, A. Oxide Materials at the Two-Dimensional Limit; Springer: Heidelberg, 2016; 234, pp. 119–142.
6 Schaub R. ; Thostrup P. ; Lopez N. ; Laegsgaard E. ; Stensgaard I. ; Norskov J. K. ; Besenbacher F. Phys. Rev. Lett. 2001, 87 (26), 266104/1.
7 Kuhlenbeck H. ; Odoerfer G. ; Jaeger R. ; Xu C. ; Mull T. ; Baumeister B. ; Illing G. ; Menges M. ; Freund H. J. ; Weide D. ; Andresen G. ; Watson G. ; Plummer E. W. Vacuum 1990, 41 (1–3), 34.
8 Shao S. M. ; Xi G. K. ; Wang J. R. ; Li S. L. ; Yang X. Z. ; Wang J. H. ; Zhou Z. Q. ; He T. X. ; Yu B. X. Acta Phys. -Chim. Sin. 1992, 8 (6), 767.
8 邵淑敏; 席光康; 王君容; 李胜林; 杨学柱; 王金合; 周志强; 贺添喜; 于宝霞. 物理化学学报, 1992, 8 (6), 767.
9 Mills G. A. ; Steffgen F. W. Catal. Rev. 1973, 8 (2), 159.
10 Gao J. J. ; Wang Y. L. ; Ping Y. ; Hu D. C. ; Xu G. W. ; Gu F. N. ; Su F. B. RSC Adv. 2012, 2 (6), 2358.
11 Hu D. C. ; Gao J. J. ; Ping Y. ; Jia L. H. ; Gunawan P. ; Zhong Z. Y. ; Xu G. W. ; Gu F. N. ; Su F. B. Ind. Eng. Chem. Res. 2012, 51 (13), 4875.
12 Li S. R. ; Gong J. L. Chem. Soc. Rev. 2014, 43 (21), 7245.
13 Wang Y. ; Yao L. ; Wang S. H. ; Mao D. H. ; Hu C. W. Fuel Process. Technol. 2018, 169, 199.
14 Abdullah B. ; Ghani N. A. A. ; Vo D. V. N. J. Cleaner Prod. 2017, 162, 170.
15 Li C. L. ; Fu Y. L. ; Bian G. Z. Acta Phys. -Chim. Sin. 2003, 19 (10), 902.
15 李春林; 伏义路; 卞国柱. 物理化学学报, 2003, 19 (10), 902.
16 Liu C. J. ; Ye J. Y. ; Jiang J. J. ; Pan Y. X. ChemCatChem 2011, 3 (3), 529.
17 Trimm D. L. Catal. Today 1997, 37 (3), 233.
18 Chen C. S. ; Lin J. H. ; You J. H. ; Yang K. H. J. Phys. Chem. A 2010, 114 (11), 3773.
19 Yuan K. D. ; Zhong J. Q. ; Zhou X. ; Xu L. L. ; Bergman S. L. ; Wu K. ; Xu G. Q. ; Bernasek S. L. ; Li H. X. ; Chen W. ACS Catal. 2016, 6 (7), 4330.
20 Zhao Y. F. ; Zhao B. ; Liu J. J. ; Chen G. B. ; Gao R. ; Yao S. Y. ; Li M. Z. ; Zhang Q. H. ; Gu L. ; Xie J. L. ; Wen X. D. ; Wu L. Z. ; Tung C. H. ; Ma D. ; Zhang T. R. Angew. Chem. Int. Ed. 2016, 55 (13), 4215.
21 Oku M. ; Brundle C. R. J. Vac. Sci. Technol. 1982, 20 (3), 532.
22 Park R. L. ; Farnsworth H. E. J. Chem. Phys. 1964, 40 (8), 2354.
23 Saiki R. ; Kaduwela A. ; Osterwalder J. ; Sagurton M. ; Fadley C. S. ; Brundle C. R. J. Vac. Sci. Technol. A 1987, 5 (4, Pt. 1), 932.
24 Beckerle J. D. ; Yang Q. Y. ; Johnson A. D. ; Ceyer S. T. Surf. Sci. 1988, 195 (1), 77.
25 Munoz-Marquez M. A. ; Tanner R. E. ; Woodruff D. P. Surf. Sci. 2004, 565 (1), 1.
26 Mu R. T. ; Fu Q. ; Xu H. ; Zhang H. ; Huang Y. Y. ; Jiang Z. ; Zhang S. ; Tan D. L. ; Bao X. H. J. Am. Chem. Soc. 2011, 133 (6), 1978.
27 Chiarello G. ; Formoso V. ; Infusino E. ; Marino A. ; Agostino R. G. ; Colavita E. Surf. Sci. 2007, 601 (1), 104.
28 Politano A. ; Chiarello G. J. Phys. Chem. C 2011, 115 (28), 13541.
29 Politano A. ; Chiarello G. Vib. Spectrosc. 2011, 55 (2), 295.
30 Zhao B. R. ; Yan X. L. ; Zhou Y. ; Liu C. J. Ind. Eng. Chem. Res. 2013, 52 (24), 8182.
31 Pan Y. X. ; Liu C. J. ; Shi P. J. Power Sources 2008, 176 (1), 46.
32 Chen J. G. ; Weisel M. D. ; Hall R. B. Surf. Sci. 1991, 250 (1–3), 159.
33 Tyuliev G. T. ; Kostov K. L. Phys. Rev. B 1999, 60 (4), 2900.
34 Langell M. A. ; Nassir M. H. J. Phys. Chem. 1995, 99 (12), 4162.
35 Lambers E. S. ; Dykstal C. N. ; Seo J. M. ; Rowe J. E. ; Holloway P. H. Oxid. Met. 1996, 45 (3/4), 301.
36 Kitakatsu N. ; Maurice V. ; Marcus P. Surf. Sci. 1998, 411 (1/2), 215.
37 Kitakatsu N. ; Maurice V. ; Hinnen C. ; Marcus P. Surf. Sci. 1998, 407 (1–3), 36.
38 Rohr F. ; Wirth K. ; Libuda J. ; Cappus D. ; Baeumer M. ; Freund H. J. Surf. Sci. 1994, 315 (1–2), L977.
39 Erley W. ; Ibach H. ; Lehwald S. ; Wagner H. Surf. Sci. 1979, 83 (2), 585.
40 Chen M. S. ; Zheng Y. P. ; Wan H. L. Top. Catal. 2013, 56 (15–17), 1299.
41 Ertl G. J. Mol. Catal. A-Chem. 2002, 182 (1), 10.
[1] YANG Fan, ZHANG Jing, WU Wei-Cheng. Hydrogenation Study of Benzene over a Mo2C/γ-Al2O3 Catalyst by In situ IR Spectroscopy[J]. Acta Phys. -Chim. Sin., 2014, 30(5): 943-949.
[2] YANG Zong-Xian, YU Xiao-Hu, MA Dong-Wei. Adsorption and Diffusion of Oxygen Atomon Pt3Ni(111) Surface with Pt-Skin[J]. Acta Phys. -Chim. Sin., 2009, 25(11): 2329-2335.
[3] ZHANG Fu-Lan, LI Lai-Cai, TIAN An-Min. Ethane Adsorption and Decomposition on Ni(111) Surface[J]. Acta Phys. -Chim. Sin., 2009, 25(09): 1883-1889.
[4] LI Hui-Juan;JIANG Xiao-Yuan;ZHENG Xiao-Ming. Synthesis of TiO2/[[gamma]]r-Al2O3 and Effect of CuO Loading on NO Reduction[J]. Acta Phys. -Chim. Sin., 2006, 22(05): 584-589.
[5] Zhou Zhi-You;Sun Shi-Gang;Chen Sheng-Pei;Si Di;Gong Hui. Electrochemical In Situ Step-scan Time-resolved Microscope FTIR Spectroscopy[J]. Acta Phys. -Chim. Sin., 2002, 18(11): 989-993.
[6] Zhou Ren-Xian,Jiang Xiao-Yuan,Lv Guang-Lie,Zheng Xiao-Ming. Desorption of Surface Oxygen on Cu/ZrO2-γ-Al2O3 and its Influence on the Catalytic Performance[J]. Acta Phys. -Chim. Sin., 1997, 13(02): 128-133.
[7] Li Hai-Yang,Bao Shi-Ning,Zhang Xun-Sheng,Fan Chao-Yang,Feng Xiao-Song,Xu Ya-Bo. Investigation of CO Adsorption on Cs/Ru(1010) Surface Using ARUPS[J]. Acta Phys. -Chim. Sin., 1996, 12(11): 1001-1005.