Please wait a minute...
Acta Phys. -Chim. Sin.  2018, Vol. 34 Issue (12): 1373-1380    DOI: 10.3866/PKU.WHXB201804131
Special Issue: Surface Physical Chemistry
ARTICLE     
Growth of Ordered ZnO Structures on Au(111) and Cu(111)
Xinfei ZHAO1,2,Hao CHEN1,2,Hao WU1,3,Rui WANG4,5,Yi CUI4,Qiang FU1,Fan YANG1,*(),Xinhe BAO1
1 State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning Province, P. R. China
2 University of Chinese Academy of Sciences, Beijing 100049, P. R. China
3 Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, P. R. China
4 Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, Jiangsu Province, P. R. China
5 Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, Jiangsu Province, P. R. China
Download: HTML     PDF(4118KB) Export: BibTeX | EndNote (RIS)      

Abstract  

The growth and structural properties of ZnO thin films on both Au(111) and Cu(111) surfaces were studied using either NO2 or O2 as oxidizing agent. The results indicate that NO2 promotes the formation of well-ordered ZnO thin films on both Au(111) and Cu(111). The stoichiometric ZnO thin films obtained on these two surfaces exhibit a flattened and non-polar ZnO(0001) structure. It is shown that on Au(111), the growth of bilayer ZnO nanostructures (NSs) is favored during the deposition of Zn in presence of NO2 at 300 K, whereas both monolayer and bilayer ZnO NSs could be observed when Zn is deposited at elevated temperatures under a NO2 atmosphere. The growth of bilayer ZnO NSs is caused by the stronger interaction between two ZnO layers than between ZnO and Au(111) surface. In contrast, the growth of monolayer ZnO NSs involves a kinetically controlled process. ZnO thin films covering the Au(111) surface exhibits a multilayer thickness, which is consistent with the growth kinetics of ZnO NSs. Besides, the use of O2 as oxidizing agent could lead to the formation of sub-stoichiometric ZnOx structures. The growth of full layers of ZnO on Cu(111) has been a difficult task, mainly because of the interdiffusion of Zn promoted by the strong interaction between Cu and Zn and the formation of Cu surface oxides by the oxidation of Cu(111). We overcome this problem by using NO2 as oxidizing agent to form well-ordered ZnO thin films covering the Cu(111) surface. The surface of the well-ordered ZnO thin films on Cu(111) displays mainly a moiré pattern, which suggests a (3 × 3) ZnO superlattice supported on a (4 × 4) supercell of Cu(111). The observation of this superstructure provides a direct experimental evidence for the recently proposed structural model of ZnO on Cu(111), which suggests that this superstructure exhibits the minimal strain. Our studies suggested that the surface structures of ZnO thin films could change depending on the oxidation level or the oxidant used. The oxidation of Cu(111) could also become a key factor for the growth of ZnO. When Cu(111) is pre-oxidized to form copper surface oxides, the growth mode of ZnOx is altered and single-site Zn could be confined into the lattice of copper surface oxides. Our studies show that the growth of ZnO is promoted by inhibiting the diffusion of Zn into metal substrates and preventing the formation of sub-stoichiometric ZnOx. In short, the use of an atomic oxygen source is advantageous to the growth of ZnO thin films on Au(111) and Cu(111) surfaces.



Key wordsZnO/Au(111)      ZnO/Cu(111)      STM      XPS      Model catalysis     
Received: 15 March 2018      Published: 13 April 2018
MSC2000:  O643  
Fund:  The project was supported by the Ministry of Science and Technology of China(2017YFB0602205);The project was supported by the Ministry of Science and Technology of China(2016YFA0202803);the National Natural Science Foundation of China(21473191);the National Natural Science Foundation of China(91545204);the Thousand Talents Program for Young Scientists
Corresponding Authors: Fan YANG     E-mail: fyang@dicp.ac.cn
Cite this article:

Xinfei ZHAO,Hao CHEN,Hao WU,Rui WANG,Yi CUI,Qiang FU,Fan YANG,Xinhe BAO. Growth of Ordered ZnO Structures on Au(111) and Cu(111). Acta Phys. -Chim. Sin., 2018, 34(12): 1373-1380.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201804131     OR     http://www.whxb.pku.edu.cn/Y2018/V34/I12/1373

 
 
 
 
 
 
 
1 Klier K. Adv. Catal. 1982, 31, 243.
2 Ratnasamy C. ; Wagner J. P. Catal. Rev. Sci. Eng. 2009, 51, 325.
3 Newsome D. S. Catal. Rev. Sci. Eng. 1980, 21, 275.
4 Jiao F. ; Li J. ; Pan X. ; Xiao J. ; Li H. ; Ma H. ; Wei M. ; Pan Y. ; Zhou Z. ; Li M. ; et al Science 2016, 351, 1065.
5 Pan Q. ; Liu B. H. ; McBriarty M. E. ; Martynova Y. ; Groot I. M. N. ; Wang S. ; Bedzyk M. J. ; Shaikhutdinov S. ; Freund H. J. Catal. Lett. 2014, 144, 648.
6 Martynova Y. ; Liu B. H. ; McBriarty M. E. ; Groot I. M. N. ; Bedzyk M. J. ; Shaikhutdinov S. ; Freund H. J. J. Catal. 2013, 301, 227.
7 Ta H. Q. ; Zhao L. ; Pohl D. ; Pang J. B. ; Trzebicka B. ; Rellinghaus B. ; Pribat D. ; Gemming T. ; Liu Z. F. ; Bachmatiuk A. ; et al Crystals 2016, 6, 100.
8 Weirum G. ; Barcaro G. ; Fortunelli A. ; Weber F. ; Schennach R. ; Surnev S. ; Netzer F. P. J. Phys. Chem. C 2010, 114, 15432.
9 Liu B. H. ; Boscoboinik J. A. ; Cui Y. ; Shaikhutdinov S. ; Freund H. J. J. Phys. Chem. C 2015, 119, 7842.
10 Liu B. H. ; McBriarty M. E. ; Bedzyk M. J. ; Shaikhutdinov S. ; Freund H. J. J. Phys. Chem. C 2014, 118, 28725.
11 Deng X. ; Yao K. ; Sun K. ; Li W. X. ; Lee J. ; Matranga C. J. Phys. Chem. C 2013, 117, 11211.
12 Deng X. ; Sorescu D. C. ; Lee J. J. Phys. Chem. C 2016, 120, 8157.
13 Lee J. ; Sorescu D. C. ; Deng X. J. Phys. Chem. Lett. 2016, 7, 1335.
14 Shiotari A. ; Liu B. H. ; Jaekel S. ; Grill L. ; Shaikhutdinov S. ; Freund H. J. ; Wolf M. ; Kumagai T. J. Phys. Chem. C 2014, 118, 27428.
15 Liu B. H. ; Groot I. M. N. ; Pan Q. S. ; Shailchutdinov S. ; Freund H. J. Appl. Catal. A 2017, 548, 16.
16 Schott V. ; Oberhofer H. ; Birkner A. ; Xu M. ; Wang Y. ; Muhler M. ; Reuter K. ; W?ll C. Angew. Chem. Int. Ed. 2013, 52, 11925.
17 Nilius N. Surf. Sci. Rep. 2009, 64, 595.
18 Kuld S. ; Thorhauge M. ; Falsig H. ; Elkj?r C. F. ; Helveg S. ; Chorkendorff I. ; Sehested J. Science 2016, 352, 969.
19 Lunkenbein T. ; Schumann J. ; Behrens M. ; Schl?gl R. ; Willinger M. G. Angew. Chem. Int. Ed. 2015, 54, 4544.
20 Behrens M. ; Studt F. ; Kasatkin I. ; Kühl S. ; H?vecker M. ; Abild-Pedersen F. ; Zander S. ; Girgsdies F. ; Kurr P. ; Kniep B. L. ; et al Science 2012, 336, 893.
21 Kattel S. ; Ramírez P. J. ; Chen J. G. ; Rodriguez J. A. ; Liu P. Science 2017, 355, 1296.
22 Rodriguez J. A. ; Hrbek J. J. Vac. Sci. Technol. A 1994, 12, 2140.
23 Campbell C. T. Surf. Sci. Rep. 1997, 27, 1.
24 Evans J. W. ; Thiel P. A. ; Bartelt M. C. Surf. Sci. Rep. 2006, 61, 1.
25 Yang F. ; Chen M. S. ; Goodman D. W. J. Phys. Chem. C 2009, 113, 254.
26 Campbell C. T. ; Parker S. C. ; Starr D. E. Science 2002, 298, 811.
27 Okamoto H. ; Massalski T. B. Bull. Alloy Phase Diagrams 1989, 10, 59.
28 Sano M. ; Adaniya T. ; Fujitani T. ; Nakamura J. Surf. Sci. 2002, 514, 261.
29 Yang F. ; Choi Y. ; Liu P. ; Hrbek J. ; Rodriguez J. A. J. Phys. Chem. C 2010, 114, 17042.
30 Jensen F. ; Besenbacher F. ; Stensgaard I. Surf. Sci. 1992, 269, 400.
31 Bieniek B. ; Hofmann O. T. ; Rinke P. Appl. Phys. Lett. 2015, 106, 131602.
32 Tosoni S. ; Li C. ; Schlexer P. ; Pacchioni G. J. Phys. Chem. C 2017, 121, 27453.
[1] Qiang LIU,Yong HAN,Yunjun CAO,Xiaobao LI,Wugen HUANG,Yi YU,Fan YANG,Xinhe BAO,Yimin LI,Zhi LIU. In-situ APXPS and STM Study of the Activation of H2 on ZnO(10${\rm{\bar 1}}$0) Surface[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1366-1372.
[2] Lili HUANG,Xiang SHAO. CO Induced Single and Multiple Au Adatoms Trapped by Melem Self-Assembly[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1390-1396.
[3] Mingshu CHEN. Toward Understanding the Nature of the Active Sites and Structure-Activity Relationships of Heterogeneous Catalysts by Model Catalysis Studies[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2424-2437.
[4] Hui-Ping HU,Meng WANG,Zhi-Ying DING,Guang-Fu JI. FT-IR, XPS and DFT Study of the Adsorption Mechanism of Sodium Salicylate onto Goethite or Hematite[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 2059-2068.
[5] Li WANG,Hong SHI,Hui-Hui LIU,Xiang SHAO,Kai WU. STM Study of CaO(001) Model Catalytic Thin Films Prepared on Mo(001) Surface[J]. Acta Phys. -Chim. Sin., 2016, 32(1): 183-194.
[6] ZHAO Jian, ZHOU Wei, XU Jun-Ke, MA Jian-Xin. Effect of Pretreatment Routes on the Performance and Structure of Ni-Co Bimetallic Catalysts[J]. Acta Phys. -Chim. Sin., 2013, 29(04): 806-812.
[7] QIAO Yin-Po, ZHU Zhen-Feng, ZHANG Yan-Bin, LIU Dian-Guang, WANG Bing-Qing, ZHANG Zhi-Chun. Tunable White Emitting in Ternary Ce/Tb/Sm Codoped CaO-B2O3-SiO2 Glasses[J]. Acta Phys. -Chim. Sin., 2012, 28(03): 706-710.
[8] CHEN Wen-Bin, TAO Xiang-Ming, SHANG Xue-Fu, TAN Ming-Qiu. STM Images of a W(100) c(2×2) Surface[J]. Acta Phys. -Chim. Sin., 2008, 24(12): 2185-2190.
[9] XIAO Li-Hua, SUN Kun-Peng, XU Xian-Lun. Catalytic Combustion of Methane over CeO2-MOx (M=La3+, Ca2+) Solid Solution Promoted Pd/γ-Al2O3 Catalysts[J]. Acta Phys. -Chim. Sin., 2008, 24(11): 2108-2113.
[10] ZHAO Zhi-Juan; LIU Fen; QIU Li-Mei; ZHAO Liang-Zhong; YAN Shou-Ke. Core Level Binding Energy Shifts Caused by Size Effect of Nanoparticles[J]. Acta Phys. -Chim. Sin., 2008, 24(09): 1685-1688.
[11] MA Hai-Bing; LI Jing; YU Yi; ZUO Guang-Zhi; REN Tian-Hui. Tribological Behaviors and Film Analysis of Two Ashless Phosphorus/Sulfur-Containing Additives in Rapeseed Oil[J]. Acta Phys. -Chim. Sin., 2008, 24(05): 799-804.
[12] QIAN Li-Ping; DENG Wen-Li. Adsorption Characteristics of Self-assembled 1-Octadecanol Layer on HOPG[J]. Acta Phys. -Chim. Sin., 2008, 24(03): 443-447.
[13] CHANG Zhao-Rong; CHEN Zhong-Jun; WU Feng; TANG Hong-Wei; ZHU Zhi-Hong. Synthesis of LiNi1/3Co1/3Mn1/3O2 Cathode Material by Eutectic Molten Salt LiOH-LiNO3[J]. Acta Phys. -Chim. Sin., 2008, 24(03): 513-519.
[14] PENG Shun-Jin; ZHAO Lei; WU Li-Min. Surface Properties of Fluorinated Acrylate Polymers Latex Films[J]. Acta Phys. -Chim. Sin., 2007, 23(04): 531-536.
[15] TANG Jing; PETRI Marc; KIBLER Ludwig A.; KOLB Dieter M.. ECSTM Tip-induced Nanostructuring of Ordered Pd Clusters Array[J]. Acta Phys. -Chim. Sin., 2005, 21(11): 1303-1306.