Please wait a minute...
Acta Phys. -Chim. Sin.  2018, Vol. 34 Issue (12): 1366-1372    DOI: 10.3866/PKU.WHXB201804161
Special Issue: Surface Physical Chemistry
In-situ APXPS and STM Study of the Activation of H2 on ZnO(10${\rm{\bar 1}}$0) Surface
Qiang LIU1,4,Yong HAN1,3,Yunjun CAO2,Xiaobao LI1,4,Wugen HUANG2,Yi YU3,Fan YANG2,Xinhe BAO2,Yimin LI1,3,*(),Zhi LIU1,3,*()
1 State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, P. R. China
2 Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning Province, P. R. China
3 School of Physical Science and Technology, Shanghai Tech University, Shanghai 201203, P. R. China
4 University of Chinese Academy of Sciences, Beijing 100049, P. R. China
Download: HTML     PDF(1608KB) Export: BibTeX | EndNote (RIS)      


Cu/ZnO/Al2O3 is one of the most widely used catalysts in industrial methanol synthesis. However, the reaction mechanism and the nature of the active sites on the catalyst for this reaction are still under debate. Thus, detailed information is needed to understand the catalytic processes occurring on the surface of this catalyst. H2 is one of the reaction gases in methanol synthesis. Studies of the activation and dissociation behaviors of H2 on ZnO surfaces are of great importance in understanding the catalytic mechanism of methanol synthesis. In this work, the activation and dissociation processes of H2 on a ZnO(10${\rm{\bar 1}}$0) single crystal surface were investigated in-situ using ambient-pressure X-ray photoelectron spectroscopy (APXPS) and scanning tunneling microscopy (STM), two powerful surface characterization techniques. In the APXPS experiments, results indicated the formation of hydroxyl (OH) species on the ZnO single crystal surface at room temperature in 0.3 mbar (1 mbar = 100 Pa) H2 atmosphere. Meanwhile, STM measurements showed that the ZnO surface was reconstructed from a (1×1) to a (2×1) structure upon introduction of H2. These observations revealed adsorption behaviors of H2 the same as those of atomic H on a ZnO(10${\rm{\bar 1}}$0) surface as seen in previous studies, which could be evidence of the dissociative adsorption of H2 on a ZnO surface. However, H2O adsorption on ZnO surfaces can also result in the formation of OH species, which can be observed using XPS. The STM results show that the exposure of H2O also leads to the reconstruction from a (1×1) to a (2×1) structure on the ZnO(10${\rm{\bar 1}}$0) surface upon H2 introduction. Hence, it is necessary to exclude the influence of H2O in this work, because there may be trace amounts of H2O in the H2 gas. Therefore, we performed a comparative study of H2 and H2O on ZnO(10${\rm{\bar 1}}$0) single crystal surface. A downward band bending of 0.3 eV was observed on the ZnO surface in 0.3 mbar H2 atmosphere using APXPS, while negligible band bending was shown in the case of the H2O atmosphere. Moreover, thermal stability studies revealed that the OH group formed in the H2 atmosphere desorbed at a higher temperature than the one resulting from H2O adsorption, meaning that the two OH groups formed on the ZnO surface were different. Results in this work provide evidence of the dissociative adsorption of H2 on the ZnO(10${\rm{\bar 1}}$0) surface at room temperature and atmospheric pressure. This is in contrast to previous findings, in which no H2 dissociation on a ZnO(10${\rm{\bar 1}}$0) surface under ultra-high vacuum conditions was observed, indicating that the activation of H2 on ZnO surfaces is a pressure dependent process.

Key wordsH2      ZnO(10${\rm{\bar 1}}$0)      Activation      Dissociative adsorption      APXPS      STM     
Received: 14 March 2018      Published: 16 April 2018
MSC2000:  O647  
Fund:  The project was supported by the National Natural Science Foundation of China(11227902);the Ministry of Science and Technology of China(2017YFB0602205);the Ministry of Science and Technology of China(2016YFA0202803);the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB17020200)
Corresponding Authors: Yimin LI,Zhi LIU     E-mail:;
Cite this article:

Qiang LIU,Yong HAN,Yunjun CAO,Xiaobao LI,Wugen HUANG,Yi YU,Fan YANG,Xinhe BAO,Yimin LI,Zhi LIU. In-situ APXPS and STM Study of the Activation of H2 on ZnO(10${\rm{\bar 1}}$0) Surface. Acta Phys. -Chim. Sin., 2018, 34(12): 1366-1372.

URL:     OR

Fig 1 XPS O 1s (a) of ZnO(10${\rm{\bar 1}}$0) surface under UHV (bottom) and 0.3 mbar H2 (top) at RT, STM images of as prepared ZnO(10${\rm{\bar 1}}$0) surface under UHV (b) and after H2 exposure (c), schematic of H adsorption sites on ZnO(10${\rm{\bar 1}}$0) surface (d).
Fig 2 O 1s spectra of ZnO(10${\rm{\bar 1}}$0) surface under different conditions after H2 or H2O exposure; relative area changing of adsorbates on ZnO(10${\rm{\bar 1}}$0) surface under different conditions (c).
Fig 3 Zn 2p and O 1s spectra of ZnO(10${\rm{\bar 1}}$0) surface under different conditions after exposure to H2 or H2O.
Fig 4 Corresponding relationship between the extent of band bending caused by H2 (red) or H2O (blue) exposure and amount of OH produced by H2 or H2O on ZnO(10${\rm{\bar 1}}$0) surface.
1 Wang Z. L. J. Phys.: Condens. Matter 2004, 16, R829.
2 Janotti A. ; Van de Walle C. G. Rep. Prog. Phys. 2009, 72, 126501.
3 Moezzi A. ; McDonagh A. M. ; Cortie M. B. Chem. Eng. J. 2012, 185, 1.
4 W?ll C. Prog. Surf. Sci. 2007, 82, 55.
5 Wang Y. M. ; W?ll C. Chem. Soc. Rev. 2017, 46, 1875.
6 Behrens M. ; Studt F. ; Kasatkin I. ; Kühl S. ; H?vecker M. ; Abild-Pedersen F. ; Zander S. ; Girgsdies F. ; Kurr P. ; Kniep B.-L ;et al Science 2012, 336, 893.
7 Kuld S. ; Thorhauge M. ; Falsig H. ; Elkj?r C. F. ; Helveg S. ; Chorkendorff I. ; Sehested J. Science 2016, 352, 969.
8 Kattel S. ; Ramírez P. J. ; Chen J. G. ; Rodriguez J. A. ; Liu P. Science 2017, 355, 1296.
9 Scarano D. ; Spoto G. ; Bordiga S. ; Zecchina A. ; Lamberti C. Surf. Sci. 1992, 276, 281.
10 Tang C. G. ; Spencer M. J. S. ; Barnard A. S. Phys. Chem. Chem. Phys. 2014, 16, 22139.
11 Becker T. ; H?vel S. ; Kunat M. ; Boas C. ; Burghaus U. ; W?ll C. Surf. Sci. 2001, 486, L502.
12 Eischens R. P. ; Pliskin W. A. ; Low M. J. D. J. Catal. 1962, 1, 180.
13 Kokes R. J. ; Dent A. L. ; Chang C. C. ; Dixon L. T. J. Am. Chem. Soc. 1972, 94, 4429.
14 Boccuzzi F. ; Borello E. ; Zecchina A. ; Bossi A. ; Camia M. J. Catal. 1978, 51, 150.
15 Griffin G. L. ; Yates Jr J. T. J. Chem. Phys. 1982, 77, 3744.
16 Griffin G. L. ; Yates Jr J. T. J. Catal. 1982, 73, 396.
17 Tops?e H. J. Catal. 2003, 216, 155.
18 Oosterbeek H. Phys. Chem. Chem. Phys. 2007, 9, 3570.
19 Vang R. T. ; L?gsgaard E. ; Besenbacher F. Phys. Chem. Chem. Phys. 2007, 9, 3460.
20 Starr D. E. ; Liu Z. ; H?vecker M. ; Knop-Gericke A. ; Bluhm H. Chem. Soc. Rev. 2013, 42, 5833.
21 Wang Y. ; Muhler M. ; W?ll C. Phys. Chem. Chem. Phys. 2006, 8, 1521.
22 Liu Y. ; Yang F. ; Zhang Y. ; Xiao J. P. ; Yu L. ; Liu Q. F. ; Ning Y. X. ; Zhou Z. W. ; Chen H. ; Huang W. G. ; et al Nat. Commun 2017, 8, 14459.
23 Biesinger M. C. ; Lau L. W. W. ; Gerson A. R. ; Smart R. S. C. Appl. Surf. Sci. 2010, 257, 887.
24 Gao Y. K. ; Traeger F. ; Shekhah O. ; Idriss H. ; W?ll C. J. Colloid Interface Sci. 2009, 338, 16.
25 Losurdo M. ; Giangregorio M. M. Appl. Phys. Lett. 2005, 86, 091901.
26 Newberg J. T. ; Goodwin C. ; Arble C. ; Khalifa Y. ; Boscoboinik J. A. ; Rani S. J. Phys. Chem. B 2017, 122, 472.
27 Meyer B. ; Marx D. ; Dulub O. ; Diebold U. ; Kunat M. ; Langenberg D. ; W?ll C. Angew. Chem. Int. Ed. 2004, 43, 6641.
28 Dulub O. ; Meyer B. ; Diebold U. Phys. Rev. Lett. 2005, 95, 136101.
29 Lu Y. F. ; Ni H. Q. ; Mai Z. H. ; Ren Z. M. J. Appl. Phys. 2000, 88, 498.
30 Vi?es F. ; Iglesias-Juez A. ; Illas F. ; Fernández-García M. J. Phys. Chem. C 2014, 118, 1492.
31 Zhang Z. ; Yates Jr. J. T. Chem. Rev. 2012, 112, 5520.
32 Mao B. -H. ; Crumlin E. ; Tyo E. C. ; Pellin M. J. ; Vajda S. ; Li Y. M. ; Wang S. D. ; Liu Z. Catal. Sci. Technol. 2016, 6, 6778.
33 Heinhold R. ; Williams G. T. ; Cooil S. P. ; Evans D. A. ; Allen M. W. Phys. Rev. B 2013, 88, 235315.
34 Porsgaard S. ; Jiang P. ; Borondics F. ; Wendt S. ; Liu Z. ; Bluhm H. ; Besenbacher F. ; Salmeron M. Angew. Chem. Int. Ed. 2011, 50, 2266.
35 Ozawa K. ; Mase K. Phys. Rev. B 2011, 83, 125406.
36 Ozawa K. ; Mase K. Phys. Rev. B 2010, 81, 205322.
[1] Nagaraju NARAYANAM,Kalpana CHINTAKRINDA,Weihui FANG,Lei ZHANG,Jian ZHANG. Atomically Precise Zr-Oxo and Zr/Ti-Oxo Nanoclusters by Deep Eutectic-Solvothermal Synthesis[J]. Acta Phys. -Chim. Sin., 2018, 34(7): 781-785.
[2] Xinhua DU,Yang LI,Hui YIN,Quanjun XIANG. Preparation of Au/TiO2/MoS2 Plasmonic Composite Photocatalysts with Enhanced Photocatalytic Hydrogen Generation Activity[J]. Acta Phys. -Chim. Sin., 2018, 34(4): 414-423.
[3] Yuan DUAN,Mingshu CHEN,Huilin WAN. Adsorption and Activation of O2 and CO on the Ni(111) Surface[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1358-1365.
[4] Lili HUANG,Xiang SHAO. CO Induced Single and Multiple Au Adatoms Trapped by Melem Self-Assembly[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1390-1396.
[5] Xinfei ZHAO,Hao CHEN,Hao WU,Rui WANG,Yi CUI,Qiang FU,Fan YANG,Xinhe BAO. Growth of Ordered ZnO Structures on Au(111) and Cu(111)[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1373-1380.
[6] Lin-Jun ZHAN,Xiao-Yan SUN,Ying ZHOU,Qiu-Lian ZHU,Yin-Fei CHEN,Han-Feng Lu. Deactivation Mechanism of CeO2-Based Mixed Oxide Catalysts Supported on SiO2[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1474-1482.
[7] Yi-Hao HU,Tong-Yang SONG,Yue-Juan WANG,Geng-Sheng HU,Guan-Qun XIE,Meng-Fei LUO. Gas Phase Dehydrochlorination of 1, 1, 2-Trichloroethane over Zn/SiO2 Catalysts: Acidity and Deactivation[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 1017-1026.
[8] Jing TONG,Lu LIU,Duo ZHANG,Xu ZHENG,Xia CHEN,Jia-Zhen YANG. Parameters of the Activation of Viscous Flow of Aqueous[C2mim] [Ala][J]. Acta Phys. -Chim. Sin., 2017, 33(3): 513-519.
[9] Xin CHEN,Shao-Zheng HU,Ping LI,Wei LI,Hong-Fei MA,Guang LU. Photocatalytic Production of Hydrogen Peroxide Using g-C3N4 Coated MgO-Al2O3-Fe2O3 Heterojunction Catalysts Prepared by a Novel Molten Salt-Assisted Microwave Process[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2532-2541.
[10] Yan-Ting LI,Xin-Min LIU,Rui TIAN,Wu-Quan DING,Wei-Ning XIU,Ling-Ling TANG,Jing ZHANG,Hang LI. An Approach to Estimate the Activation Energy of Cation Exchange Adsorption[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 1998-2003.
[11] Zhao-Xin LIU,Wei-Bin LI. Catalytic Activity and Deactivation of Toluene Combustion on Rod-Like Copper-Manganese Mixed Oxides[J]. Acta Phys. -Chim. Sin., 2016, 32(7): 1795-1800.
[12] Si HU,Qing ZHANG,Yan-Jun GONG,Ying ZHANG,Zhi-Jie WU,Tao DOU. Deactivation and Regeneration of HZSM-5 Zeolite in Methanol-to-Propylene Reaction[J]. Acta Phys. -Chim. Sin., 2016, 32(7): 1785-1794.
[13] Bang-De LUO,Xian-Qiang XIONG,Yi-Ming XU. Improved Photocatalytic Activity for Phenol Degradation of Rutile TiO2 on the Addition of CuWO4 and Possible Mechanism[J]. Acta Phys. -Chim. Sin., 2016, 32(7): 1758-1764.
[14] Yuan-Yuan LI,Xin-Xin ZHAO,Yi-Ming MI,Gai-Li SUN,Jian-Bao WU,Li-Li WANG. Effect of Y on the Properties of Graphene for Hydrogen Storage[J]. Acta Phys. -Chim. Sin., 2016, 32(7): 1658-1665.
[15] Ping YUAN,Hao WANG,Yan-Feng XUE,Yan-Chun LI,Kai WANG,Mei DONG,Wei-Bin FAN,Zhang-Feng QIN,Jian-Guo WANG. Catalytic Properties of Different Crystal Sizes for ZSM-5 Zeolites on the Alkylation of Benzene with Methanol and Optimization of the Reaction Conditions[J]. Acta Phys. -Chim. Sin., 2016, 32(7): 1775-1784.