Please wait a minute...
Acta Phys. -Chim. Sin.  2018, Vol. 34 Issue (12): 1390-1396    DOI: 10.3866/PKU.WHXB201804191
Special Issue: Surface Physical Chemistry
ARTICLE     
CO Induced Single and Multiple Au Adatoms Trapped by Melem Self-Assembly
Lili HUANG,Xiang SHAO*()
Download: HTML     PDF(2999KB) Export: BibTeX | EndNote (RIS)      

Abstract  

The controllability of metal adatoms has been attracting ever-growing attention because the metal species in particular single-atom metals can play an important role in various surface processes, including heterogeneous catalytic reactions. On the other hand, organic self-assembly films have been regarded as an efficient and versatile bottom-up method to fabricate surface nanostructures, whose functionality and periodicity can be highly designable. In this work, we have developed a novel strategy to steer the generation and distribution of metal adatoms by combining the surface self-assemblies with exposure to small inorganic gaseous molecules. More specifically, we have prepared a honeycomb structure of melem (triamino-s-heptazine) on the Au(111) surface based on a well-structured hydrogen bonding network. The achieved melem self-assembly contains periodic hexagonal pores having diameters as large as around 1 nm. More importantly, the peripheries of the nanopores are decorated with heterocyclic N atoms that can probably form strong interactions with the metal species. Upon exposing the melem self-assembly to a CO atmosphere at room temperature, a fair number of Au adatoms were produced and trapped inside the nanopores encircled by the melem molecules. Single or clustered Au vacancies were concomitantly formed that were also trapped by the melem pores and stabilized by the surrounding molecules, as confirmed by high-resolution scanning tunneling microscopy (STM) images. Both types of added species showed positive correlations with the CO exposure and saturated at around 0.01 monolayer. In addition, owing to the large pore size, as well as the presence of multiple docking sites inside the nanopores, more than one Au adatom can reside in a melem nanopore; they can be distributed in a variety of configurations for bi-Au (two Au adatoms) and tri-Au (three Au adatoms) species, whose population can be manipulated with the CO exposure. Moreover, control experiments demonstrated that these CO-induced Au species, including the adatoms and vacancies, can survive annealing treatments up to the temperature at which the melem molecules start to desorb, indicating a substantial thermal stability. The formed Au species may hold great potential for serving as active sites for surface reactions. More interestingly, the bi-Au and tri-Au species have moderate Au-Au intervals, and can be potentially active for certain structurally sensitive bimolecular reactions. Considering all these aspects, we believe that this work presents a fresh approach to utilizing organic self-assembly films and has demonstrated a rather novel strategy for preparing various single-atom metal species on substrate surfaces.



Key wordsAu adatom      CO      Melem      Self-assembly      STM     
Received: 02 April 2018      Published: 23 April 2018
MSC2000:  O647  
Fund:  the National Natural Science Foundation of China(21333001);the National Natural Science Foundation of China(91545128);the National Natural Science Foundation of China(91227117);the Ministry of Science and Technology of China(2017YFA0205003);the Thousand Talent Program for Young Outstanding Scientists of the Chinese Government
Corresponding Authors: Xiang SHAO     E-mail: shaox@ustc.edu.cn
Cite this article:

Lili HUANG,Xiang SHAO. CO Induced Single and Multiple Au Adatoms Trapped by Melem Self-Assembly. Acta Phys. -Chim. Sin., 2018, 34(12): 1390-1396.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201804191     OR     http://www.whxb.pku.edu.cn/Y2018/V34/I12/1390

 
 
 
 
 
 
 
1 Yang X. F. ; Wang A. ; Qiao B. ; Li J. ; Liu J. ; Zhang T. Acc. Chem. Res. 2013, 46, 1740.
2 Pan M. ; Gong J. ; Dong G. ; Mullins C. B. Acc. Chem. Res. 2014, 47, 750.
3 Campbell C. T. Annul. Rev. Phys. Chem. 1990, 41, 775.
4 Herzing A. A. ; Kiely C. J. ; Carley A. F. ; Landon P. ; Hutchings G. J. Science 2008, 321, 1331.
5 Hackett S. F. J. ; Brydson R. M. ; Gass M. H. ; Harvey I. ; Newman A. D. ; Wilson K. ; Lee A. F. Angew. Chem. Int. Ed. 2007, 46, 8593.
6 Qiao B. ; Wang A. ; Yang X. ; Allard L. F. ; Zheng J. ; Cui Y. ; Liu J. ; Li J. ; Zhang T. Nat. Chem. 2011, 3, 634.
7 Zhang H. ; Watanabe T. ; Okumura M. ; Haruta M. ; Toshima N. Nat. Mater. 2012, 11, 49.
8 Yang B. ; Pan Y. ; Lin X. ; Nilius N. ; Freund H. J. ; Hulot C. ; Graud A. ; Blechert S. ; Tosoni S. ; Sauer J. J. Am. Chem. Soc. 2012, 134, 11161.
9 Giesen M. Prog. Surf. Sci. 2001, 68, 1.
10 Kern K. ; Niehus H. ; Schatz A. ; Zeppenfeld P. ; Goerge J. ; Comsa G. Phys. Rev. Lett. 1991, 67, 855.
11 Carlisle C. I. ; Fujimoto T. ; Sim W. S. ; King D. A. Surf. Sci. 2000, 470, 15.
12 Nakagoe O. ; Watanabe K. ; Takagi N. ; Matsumoto Y. Phys. Rev. Lett. 2003, 90, 226105.
13 Wang L. ; Li P. ; Shi H. ; Li Z. ; Wu K. ; Shao X. J. Phys. Chem. C 2017, 121, 7977.
14 Agrawal P. M. ; Rice B. M. ; Thompson D. L. Surf. Sci. 2002, 515, 21.
15 Devyatko Y. N. ; Rogozhkin S. V. ; Fadeev A. V. Phys. Rev. B 2001, 63, 193401.
16 Pawin G. ; Wong K. L. ; Kim D. ; Sun D. ; Bartels L. ; Hong S. ; Rahman T. S. ; Carp C. ; Marsella M. A. Angew. Chem. Int. Ed. 2008, 47, 8442.
17 Dong L. ; Sun Q. ; Zhang C. ; Li Z. ; Sheng K. ; Kong H. ; Tan Q. ; Pan Y. ; Hu A. ; Xu W. Chem. Commun. 2013, 49, 1735.
18 Rosei F. ; Schunack M. ; Jiang P. ; Gourdon A. ; L?gsgaard E. ; Stensgaard I. ; Joachim C. ; Besenbacher F. Science 2002, 296, 328.
19 Shi H. ; Wang W. ; Li Z. ; Wang L. ; Shao X. Chin. J. Chem. Phys. 2017, 30, 443.
20 Kudernac T. ; Lei S. ; Elemans J. A. ; De Feyter S. Chem. Soc. Rev. 2009, 38, 402.
21 Liu X. H. ; Mo Y. P. ; Yue J. Y. ; Zheng Q. N. ; Yan H. J. ; Wang D. ; Wan L. J. Small 2014, 10, 4934.
22 Niu L. ; Ma X. ; Liu L. ; Mao X. ; Wu D. ; Yang Y. ; Zeng Q. D. ; Wang C. Phys. Chem. Chem. Phys. 2010, 12, 11683.
23 Ciesielski A. ; Palma C. A. ; Bonini M. ; Samorì P. Adv. Mater. 2010, 22, 3506.
24 Barth J. V. Annul. Rev. Phys. Chem. 2007, 58, 375.
25 Bonifazi D. ; Mohnani S. ; Llanes-Pallas A. Chem. Eur. J. 2009, 15, 7004.
26 Stepanow S. ; Lingenfelder M. ; Dmitriev A. ; Spillmann H. ; Delvigne E. ; Lin N. ; Deng X. B. ; Cai C. Z. ; Barth J. V. ; Kern K. Nat. Mater. 2004, 3, 229.
27 Iancu V. ; Braun K. F. ; Schouteden K. ; Van Haesendonck C. Phys. Rev. Lett. 2014, 113, 106102.
28 Zhou X. ; Yang W. ; Chen Q. ; Geng Z. ; Shao X. ; Li J. ; Wang Y. ; Dai D. ; Chen W ; Xu G. ; Yang X. ; Wu K. J. Phys. Chem. C 2016, 120, 1709.
29 Zhou X. ; Shen Q. ; Yuan K. ; Yang W. ; Chen Q. ; Geng Z. ; Zhang J. ; Shao X. ; Chen W. ; Xu G. ; Yang X. ; Wu K. J. Am. Chem. Soc. 2018, 140, 554.
30 Brown M. A. ; Fujimori Y. ; Ringleb F. ; Shao X. ; Stavale F. ; Nilius N. ; Sterrer M. ; Freund H. J. J. Am. Chem. Soc. 2011, 133, 10668.
31 Yim W. L. ; Nowitzki T. ; Necke M. ; Schnars H. ; Nickut A. ; Shamery K. ; Klüner T. ; B?umer M. J. Phys. Chem. C 2007, 111, 445.
32 Eren B. ; Zherebetskyy D. ; Patera L. L. ; Wu H. C. ; Bluhm H. ; Africh C. ; Wang L. ; Somorjai G. A. ; Salmeron M. Science 2016, 351, 4758.
33 Eren B. ; Liu Z. ; Stacchiola D. ; Somorjai A. G. ; Salmeron M. J. Phys. Chem. C 2016, 120, 8227.
34 Wang L. ; Chen Q. ; Shi H. ; Liu H. ; Ren X. ; Wang B. ; Wu K. ; Shao X. Phys. Chem. Chem. Phys. 2016, 18, 2324.
35 Wang L. ; Shi H. X. ; Wang W. Y. ; Shi H. ; Shao X. Acta Phys. -Chim. Sin. 2017, 33, 393.
35 王利; 石何霞; 王文元; 施宏; 邵翔. 物理化学学报,, 2017, 33, 393.
36 Eichhorn J. ; Lotsch V. B. ; Schnick W. ; Lackinger H. M. Cryst. Eng. Commun. 2011, 13, 5559.
37 Uemura S. ; Aono M. ; Sakata K. ; Komatsu T. ; Kunitake M. J. Phys. Chem. C 2013, 117, 24815.
38 Uemura S. ; Sakata K. ; Aono M. ; Nakamura Y. ; Kunitake M. Front. Chem. Sci. Eng. 2016, 10, 294.
39 Bao M. ; Wei X. ; Cai L. ; Sun Q. ; Liu Z. ; Xu W. Phys. Chem. Chem. Phys. 2017, 19, 18704.
40 Chen M. ; Kumar D. ; Yi C. W Goodman W. D. Science 2015, 310, 291.
41 Greeley J. ; Mavrikakis M. Nat. Mater. 2004, 3, 810.
42 Ma Y. ; Diemant T. ; Bansmann J. ; Behm R. J. Phys. Chem. Chem. Phys. 2011, 13, 10741.
43 Tao F. ; Dag S. ; Wang L. ; Liu Z. ; Butcher D. R. ; Bluhm H. ; Salmeron M. ; Somorjai G. A. Science 2010, 327, 850.
44 Inukai J. ; Tryk D. A. ; Abe T. ; Wakisaka M. ; Uchida H. ; Watanabe M. J. Am. Chem. Soc. 2013, 135, 1476.
45 Toyoshima R. ; Yoshida M. ; Monya Y. ; Suzuki K. ; Amemiya K. ; Mase K. ; Simon Munc B. ; Kondoh H. Phys. Chem. Chem. Phys. 2014, 16, 23564.
46 Piccolo L. ; Loffreda D. ; Cadete Santos Aires F. J. ; Deranlot C. ; Jugnet Y. ; Sautet P. ; Bertolini J. C. Surf. Sci. 2004, 566, 995.
[1] LIU Yanfang, HU Bing, YIN Yazhi, LIU Guoliang, HONG Xinlin. One-Pot Surfactant-free Synthesis of Transition Metal/ZnO Nanocomposites for Catalytic Hydrogenation of CO2 to Methanol[J]. Acta Phys. -Chim. Sin., 2019, 35(2): 223-229.
[2] ZHAO Mingyu, ZHU Lin, FU Bowen, JIANG Suhua, ZHOU Yongning, SONG Yun. Sodium Ion Storage Performance of NiCo2S4 Hexagonal Nanosheets[J]. Acta Phys. -Chim. Sin., 2019, 35(2): 193-199.
[3] GUO Junjiang, TANG Shiyun, LI Rui, TAN Ningxin. Mechanism Construction and Simulation for Combustion of Large Hydrocarbon Fuels Applied in Wide Temperature Range[J]. Acta Phys. -Chim. Sin., 2019, 35(2): 182-192.
[4] XI Shuanghui, WANG Fan, LI Xiangyuan. First-and Second-Order Local and Global Sensitivity Analyses on Ignition Delay Times of Four Typical Fuels[J]. Acta Phys. -Chim. Sin., 2019, 35(2): 167-181.
[5] CHEN Lu, LIU Jun, WANG Yong, ZHANG Ze. Characterization of α-Cu2Se Fine Structure by Spherical-Aberration-Corrected Scanning Transmission Electron Microscope[J]. Acta Phys. -Chim. Sin., 2019, 35(2): 139-144.
[6] Jiawei PENG,Yu XIE,Deping HU,Likai DU,Zhenggang LAN. Treatment of Nonadiabatic Dynamics by On-The-Fly Trajectory Surface Hopping Dynamics[J]. Acta Phys. -Chim. Sin., 2019, 35(1): 28-48.
[7] Fuzhen BI,Xiao ZHENG,Chiyung YAM. First-Principles Study of Mixed Cation Methylammonium-Formamidinium Hybrid Perovskite[J]. Acta Phys. -Chim. Sin., 2019, 35(1): 69-75.
[8] Xiaochun TIAN,Xuee WU,Dongping ZHAN,Feng ZHAO,Yanxia JIANG,Shigang SUN. Research on Electron Transfer in the Microenvironment of the Biofilm by Scanning Electrochemical Microscopy[J]. Acta Phys. -Chim. Sin., 2019, 35(1): 22-27.
[9] Qi HU,Chuanhong JIN. In Situ TEM Observation of Radiolysis and Condensation of Water via Graphene Liquid Cell[J]. Acta Phys. -Chim. Sin., 2019, 35(1): 101-107.
[10] Ganxing DONG,Chuanhong JIN. Probing the Controlled Oxidative Etching of Palladium Nanorods by Liquid Cell Transmission Electron Microscopy[J]. Acta Phys. -Chim. Sin., 2019, 35(1): 15-21.
[11] Zhe WANG,Kangle JIA,Tongqing LIU,Junwen HU,Xuefeng LI,Jinfeng DONG. pH and Light Reconfigured Complex Emulsions by Stimuli-Responsive Surfactants[J]. Acta Phys. -Chim. Sin., 2019, 35(1): 84-91.
[12] Jordan LEE,Yong LI,Jianing TANG,Xiaoli CUI. Synthesis of Hydrogen Substituted Graphyne through Mechanochemistry and Its Electrocatalytic Properties[J]. Acta Phys. -Chim. Sin., 2018, 34(9): 1080-1087.
[13] Jingyuan ZHOU,Jin ZHANG,Zhongfan LIU. Advanced Progress in the Synthesis of Graphdiyne[J]. Acta Phys. -Chim. Sin., 2018, 34(9): 977-991.
[14] Jinyang XI,Yuma NAKAMURA,Tianqi ZHAO,Dong WANG,Zhigang SHUAI. Theoretical Studies on the Deformation Potential, Electron-Phonon Coupling, and Carrier Transports of Layered Systems[J]. Acta Phys. -Chim. Sin., 2018, 34(9): 961-976.
[15] Yasong ZHAO,Lijuan ZHANG,Jian QI,Quan JIN,Kaifeng LIN,Dan WANG. Graphdiyne with Enhanced Ability for Electron Transfer[J]. Acta Phys. -Chim. Sin., 2018, 34(9): 1048-1060.