Please wait a minute...
Acta Phys. -Chim. Sin.  2019, Vol. 35 Issue (6): 607-615    DOI: 10.3866/PKU.WHXB201805054
ARTICLE     
Stability of Ni/SiO2 in Partial Oxidation of Methane: Effects of W Modification
Mengshui LIAN,Yali WANG,Mingquan ZHAO,Qianqian LI,Weizheng WENG,Wensheng XIA*(),Huilin WAN*()
Download: HTML     PDF(1726KB) Export: BibTeX | EndNote (RIS)      

Abstract  

With the discovery and large-scale exploitation of natural gas resources such as shale gas and combustible ice, which are mainly composed of methane, their effective utilization has become a national strategic interest. Partial oxidation of methane (POM) to synthesis gas is one of the important methods for the utilization of natural gas and shale gas resources. The commonly used Ni/SiO2 catalyst for POM easily deactivates due to carbon deposition on the surface. To solve this problem, a urea precipitation method was employed in this work to prepare Ni-based catalysts modified with different amounts of tungsten (at W/Ni molar ratios of 0, 0.01, 0.03, 0.05, 0.07, and 0.10), and the catalyst stability in POM as well as the role of W were investigated. From characterizations such as X-ray diffraction (XRD), transmission electron microscopy (TEM), temperature-programmed reduction (H2-TPR), and X-ray photoelectron spectroscopy (XPS), we obtained the following results. The amount of W added to the Ni-based catalysts has a significant influence on their catalytic performances in POM and their physicochemical properties. The particle size of Ni in the catalysts decreases with W addition, and the Ni particle distribution on the support surfaces becomes more uniformed; however, the catalytic activity for POM is not significantly influenced. However, W-modified Ni-based catalysts show an increasing improvement in their stability in POM with increasing W/Ni molar ratio, with an optimum at the W/Ni molar ratio of 0.07; at the W/Ni molar ratio of 0.10, they exhibit a rapid deactivation in POM in a short time. Although interactions between Ni and SiO2 in the as-prepared catalysts are weak, the presence of adequate tungsten (W/Ni molar ratio of 0.05 and above) in the Ni-based catalysts can reduce the Ni particle size to some extent, and lead to the formation of strong interactions between Ni and W, which leads to an improvement in the dispersion of Ni on the support surface and imparts resistance for Ni particle growth in the POM reaction. The increased interaction between Ni and W changes the chemical state or oxygen affinity of Ni particles on the catalyst surfaces, and some of the partially oxidized Ni species (Niδ+) on the catalyst surfaces coexist with reduced Ni species (Ni0) during POM. Using an adequate amount of W-modified Ni catalysts results in almost no carbon deposition on the surfaces during POM, but using only a moderate amount results in good catalytic behavior and stability in POM. This finding suggests that the presence of W can not only enhance the anti-coking ability of the Ni-based catalysts and sustain their good stability in POM if the W content is low (i.e., W/Ni molar ratio of 0.07 and below), but also lead to the deactivation of W-modified catalysts in POM if the W content is high (i.e., W/Ni molar ratio of 0.10 and above), due to high oxygen affinity or the presence of more Ni species in oxidized form. In addition, α-WC (tungsten carbide) was identified using XRD to be formed on the surface of the moderate-amount W-modified Ni catalysts after POM, and it could inhibit or eliminate carbon deposition on the Ni-based catalyst surfaces. The catalytic performance evaluation of the catalysts in POM under a long time period confirmed that α-WC is stable.



Key wordsPartial oxidation of methane      Stability      Ni based catalyst      Modification of tungsten     
Received: 20 May 2018      Published: 11 July 2018
MSC2000:  O643  
Fund:  the National Natural Science Foundation of China(21373169);PCSIRT(IRT1036)
Corresponding Authors: Wensheng XIA,Huilin WAN     E-mail: wsxia@xmu.edu.cn;hlwan@xmu.edu.cn
Cite this article:

Mengshui LIAN,Yali WANG,Mingquan ZHAO,Qianqian LI,Weizheng WENG,Wensheng XIA,Huilin WAN. Stability of Ni/SiO2 in Partial Oxidation of Methane: Effects of W Modification. Acta Phys. -Chim. Sin., 2019, 35(6): 607-615.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201805054     OR     http://www.whxb.pku.edu.cn/Y2019/V35/I6/607

Fig 1 XRD patterns of the fresh and reduced 9NiWx/SiO2 samples.
Sample ABET/(m2.g-1) Volume/(cm3.g—1) Aperture/nm DXRD/nm DTEM/nm
Fresh Reduced Used (10 h; 50 h) Reduced Used (10 h; 50 h)
SiO2 371.3 0.80 8.6 - - - - -
9Ni/SiO2 327.6 0.67 7.8 26.9 39.7 56.5; - 38.0 55.7; -
9NiW0.01/SiO2 311.3 0.65 7.7 24.7 36.6 46.6; - 36.7 42.2; -
9NiW0.03/SiO2 304.4 0.66 7.7 17.3 32.7 38.8; - 32.2 36.3; -
9NiW0.05/SiO2 296.0 0.61 7.2 11.0 30.9 35.1; - 28.1 33.6; -
9NiW0.07/SiO2 285.9 0.57 6.9 9.3 18.7 19.9; 21.3 18.6 20.0; 21.0
9NiW0.10/SiO2 276.2 0.58 7.0 9.9 22.1 22.7 a; - 19.1 20.6 a; -
Table 1 Specific surface areas (ABET), pore properties and the Ni/NiO particle size of samples before and after POM reaction.
Fig 2 TEM images and particle sizes distribution of the reduced 9NiWx/SiO2 samples. (a, a') 9Ni/SiO2; (b, b') 9NiW0.01/SiO2; (c, c') 9NiW0.03/SiO2; (d, d') 9NiW0.05/SiO2; (e, e') 9NiW0.07/SiO2; (f, f') 9NiW0.10/SiO2.
Fig 3 Catalytic performances of 9NiWx/SiO2 for POM as a function of time on stream. (a) 9Ni/SiO2; (b) 9NiW0.01/SiO2; (c) 9NiW0.03/SiO2; (d) 9NiW0.05/SiO2; (e) 9NiW0.07/SiO2; (f) 9NiW0.10/SiO2.
Fig 4 The XRD patterns of the 9NiWx/SiO2 catalysts after POM reaction for 10 h. (a) 9Ni/SiO2; (b) 9NiW0.01/SiO2; (c) 9NiW0.03/SiO2; (d) 9NiW0.05/SiO2; (e) 9NiW0.07/SiO2; (e') 9NiW0.07/SiO2 (after POM for 50h); (f) 9NiW0.10/SiO2 (after POM for 3 h).
Fig 5 TEM image and particle sizes distribution of the 9NiWx/SiO2 catalysts after POM reaction for 10 h. (a, a') 9Ni/SiO2; (b, b') 9NiW0.01/SiO2; (c, c') 9NiW0.03/SiO2; (d, d') 9NiW0.05/SiO2; (e, e') 9NiW0.07/SiO2; (f, f') 9NiW0.10/SiO2. ** As the 9NiW0.10/SiO2 catalyst quickly deactivated in POM, the data taken from the used in POM for 3 h.
Fig 6 H2-TPR profiles of the 9NiWx/SiO2 catalysts. (a) 9Ni/SiO2; (b) 9NiW0.01/SiO2; (c) 9NiW0.03/SiO2; (d) 9NiW0.05/SiO2; (e) 9NiW0.07/SiO2; (f) 9NiW0.10/SiO2; (g) 9NiW/SiO2.
Catalysts Binding energy/eV [Ni2+]/[Ni0]
Ni0 Ni2+
9Ni/SiO2 852.4 855.6 0.25
9NiW0.07/SiO2 852.7 855.8 0.39
9NiW0.10/SiO2 853.0 856.2 0.59
9Ni/SiO2 used 852.4 855.7 0.30
9NiW0.07/SiO2 used 852.6 855.7 0.65
9NiW0.10/SiO2 used 852.7 855.8 3.01
Table 2 The binding energy in Ni 2p3/2 for the catalysts and an analysis on their surface Ni species.
9Ni/SiO2 13.1 9NiW0.07/SiO2 0.0
9NiW0.01/SiO2 8.2 9NiW0.07/SiO2 * 0.0
9NiW0.03/SiO2 7.2 9NiW0.10/SiO2 0.0
9NiW0.05/SiO2 5.2
Table 3 Carbon deposition on the catalysts through POM for 10 h, 20 h.
Fig 7 XPS profiles of the reduced (A) and used (B) 9NiWx/SiO2 catalysts. (a) 9Ni/SiO2; (b) 9NiW0.07/SiO2; (c) 9NiW0.10/SiO2.
Fig 8 Catalytic performances of 9NiW0.07/SiO2 for POM as a function of time (50 h) on stream.
1 Chai R. J. ; Zhang Z. Q. ; Chen P. J. ; Zhao G. F. ; Liu Y. ; Lu Y. Microporous Mesoporous Mater. 2017, 253, 123.
2 Luo Z. ; Kriz D. A. ; Miao R. ; Kuo C. H. ; Zhong W. ; Guild C. ; He J. K. ; Willis B. ; Dang Y. L. ; Suib S. L. ; et al Appl. Catal. A 2018, 554, 54.
3 Wang F. ; Li W. Z. ; Lin J. D. ; Chen Z. Q. ; Wang Y. Appl. Catal. B 2018, 231, 292.
4 Guo S. S. ; Wang J. W. ; Ding C. M. ; Duan Q. L. ; Ma Q. ; Zhang K. ; Liu P. Int. J. Hydrog. Energy 2018, 43, 6603.
5 Yang M. H. ; Wu H. H. ; Wu H. Y. ; Huang C. J. ; Weng W. Z. ; Chen M. S. ; Wan H. L. RSC Adv. 2016, 6, 81237.
6 Kim D. ; Park G. A. ; Lim J. ; Ha K. S. Chem. Eng. J. 2017, 316, 1011.
7 Rodemerck U. ; Schneider M. ; Linke D. Catal. Commun. 2017, 102, 98.
8 Li L. ; He S. C. ; Song Y. Y. ; Zhao J. ; Ji W. J. ; Au C. T. J. Catal. 2012, 288, 54.
9 Wang F. G. ; Han B. L. ; Zhang L. J. ; Xu L. L. ; Yu H. ; Shi W. D. Appl. Catal. B 2018, 235, 26.
10 Ashok J. ; Bian Z. ; Wang Z. ; Kawi S. Catal. Sci. Technol. 2018, 8, 1730.
11 Li Q. ; Hou Y. H. ; Dong L. Y. ; Huang M. X. ; Weng W. Z. ; Xia W. S. ; Wan H. L. Acta Phys. -Chim. Sin. 2013, 29, 2245.
11 李琪; 侯玉慧; 董玲玉; 黄铭湘; 翁维正; 夏文生; 万惠霖. 物理化学学报, 2013, 29, 2245.
12 Wu H. J. ; Pantaleo G. ; La Parola V. ; Venezia A. M. ; Collard X. ; Aprile C. ; Liotta L. F. Appl. Catal. B 2014, 156- 157.
13 Zhu J. Q. ; Peng X. X. ; Yao L. ; Tong D. M. ; Hu C. W. Catal. Sci. Technol. 2012, 2, 529.
14 Wang Y. L. ; Li Q. ; Weng W. Z. ; Xia W. S. ; Wan H. L. Acta Phys. -Chim. Sin. 2016, 32, 2776.
14 王雅莉; 李琪; 翁维正; 夏文生; 万惠霖. 物理化学学报, 2016, 32, 2776.
15 Zhao X. Y. ; Li H. R. ; Zhang J. P. ; Shi L. Y. ; Zhang D. S. Int. J. Hydrog. Energy 2016, 41, 2447.
16 Zhang S. H. ; Shi C. ; Chen B. B. ; Zhang Y. L. ; Qiu J. S. Catal. Commun. 2015, 69, 123.
17 Claridge J. B. ; York A. P. E. ; Brungs A. J. ; Marquez-Alvarez C. ; Sloan J. ; Tsang S. C. ; Green M. L. H. J. Catal. 1998, 180, 85.
18 Li J. F. ; Xiao B. ; Yan R. ; Yi R. J. Chem. Eng. 2007, 35, 53.
18 李建芬; 肖波; 晏蓉; 易仁金. 化学工程, 2007, 35, 53.
19 Jiang J. T. ; Wei X. J. ; Xu C. Y. ; Zhou Z. X. ; Zhen L. J. Magn. Magn. Mater. 2013, 334, 111.
20 Ding C. M. ; Wang J. W. ; Ai G. G. ; Liu S. B. ; Liu P. ; Zhang K. ; Han Y. L. ; Ma X. S. Fuel 2016, 175, 1.
21 He S. F. ; Zheng X. M. ; Mo L. Y. ; Yu W. J. ; Wang H. ; Luo Y. M. MRS Bull. 2014, 49, 108.
22 Xia W. S. ; Hou Y. H. ; Chang G. ; Weng W. Z. ; Han G. B. ; Wan H. L. Int. J. Hydrog. Energy 2012, 37, 8343.
23 Solsona B. ; López Nieto J. M. ; Concepción P. ; Dejoz A. ; Ivars F. ; Vázquez M. I. J. Catal. 2011, 280, 28.
24 Venugopal A. ; Naveen Kumar S. ; Ashok J. ; Hari Prasad D. ; Durga Kumari V. ; Prasad K. B. S. ; Subrahmanyam M. Int. J. Hydrog. Energy 2007, 32, 1782.
25 Arbag H. ; Yasyerli S. ; Yasyerli N. ; Dogu T. ; Dogu G. Top. Catal. 2013, 56, 1695.
26 Theofanidis S. A. ; Galvita V. V. ; Poelman H. ; Marin G. B. ACS Catal. 2015, 5, 3028.
27 Xia W. S. ; Chang G. ; Hou Y. H. ; Weng W. Z. ; Wan H. L. Acta Phys. -Chim. Sin. 2011, 27, 1567.
27 夏文生; 常刚; 侯玉慧; 翁维正; 万惠霖. 物理化学学报, 2011, 27, 1567.
28 Xia W. S. ; Chen R. F. ; Wang Y. L. ; Li Q. ; Weng W. Z. ; Wan H. L. Xiamen Univ. J. Nat. Sci. Ed. 2015, 54, 17.
28 夏文生; 陈蓉芳; 王雅莉; 李琪; 翁维正; 万惠霖. 厦门大学学报(自然科学版), 2015, 54, 17.
29 Mohammadzadeh Valendar H. ; Yu D. W. ; Barati M. ; Rezaie H. J. Therm. Anal. Calorim. 2016, 128, 553.
[1] Qun LEI,Yurong ZHANG,Jianhui LUO,Rongcheng HAN,Xiangfei GENG,Xiaodong Lü,Yan LIU,Yuan WANG. Method for Evaluating Stability of Highly Concentrated Emulsion and Its Application[J]. Acta Phys. -Chim. Sin., 2019, 35(4): 415-421.
[2] Wenjun CHEN,Zhimin XUE,Jinfang WANG,Jingyun JIANG,Xinhui ZHAO,Tiancheng MU. Investigation on the Thermal Stability of Deep Eutectic Solvents[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 904-911.
[3] Paul GEERLINGS,Frank DE PROFT,Stijn FIAS. Analogies between Density Functional Theory Response Kernels and Derivatives of Thermodynamic State Functions[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 699-707.
[4] Marco FRANCO-PÉREZ,José L. GÁZQUEZ,W. AYERS Paul,Alberto VELA. Thermodynamic Dual Descriptor[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 683-391.
[5] Aiguo ZHONG,Rongrong LI,Qin HONG,Jie ZHANG,Dan CHEN. Understanding the Isomerization of Monosubstituted Alkanes from Energetic and Information-Theoretic Perspectives[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 303-313.
[6] Jing-Hua YU,Wen-Wen LI,Hong ZHU. Effect of the Diameter of Carbon Nanotubes Supporting Platinum Nanoparticles on the Electrocatalytic Oxygen Reduction[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1838-1845.
[7] Hui-Jun YAN,Biao LI,Ning JIANG,Ding-Guo XIA. First-Principles Study:the Structural Stability and Sulfur Anion Redox of Li1-xNiO2-ySy[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1781-1788.
[8] Fang-Fang ZHENG,Qian LI,Hong ZHANG,Wei-Zheng WENG,Xiao-Dong YI,Yan-Ping ZHENG,Chuan-Jing HUANG,Hui-Lin WAN. Preparation and Characterization of Sinter-Resistant Rh-Sm2O3/SiO2 Catalyst and Its Performance for Partial Oxidation of Methane to Syngas[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1689-1698.
[9] Jing-Wei LIU,Na-Ting YANG,Yan ZHU. Pd/Co3O4 Nanoparticles Inlaid in Alkaline Al2O3 Nanosheets as an Efficient Catalyst for Catalytic Oxidation of Methane[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1453-1461.
[10] Jin-Yu GU,Peng-Wei QI,Yang PENG. Progress on the Development of Inorganic Lead-Free Perovskite Solar Cells[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1379-1389.
[11] Yan-Tao ZHANG,Zhen-Jie LIU,Jia-Wei WANG,Liang WANG,Zhang-Quan PENG. Recent Advances in Li Anode for Aprotic Li-O2 Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 486-499.
[12] Xu-Xia SHAI,Dan LI,Shuang-Shuang LIU,Hao LI,Ming-Kui WANG. Advances and Developments in Perovskite Materials for Solar Cell Applications[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2159-2170.
[13] Juan XIAO,Hao-Li ZHANG. Recent Progress in Organic-Inorganic Hybrid Perovskite Materials for Luminescence Applications[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 1894-1912.
[14] Xiao-Xiang SUN,Yu CHEN,Jian-Xi ZHAO. Foams Stabilized by Fumed Silica Particles with a Quaternary Ammonium Gemini Surfactant[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 2045-2051.
[15] Hong-Mei LI,Li LAN,Shan-Hu CHEN,Da-Yu LIU,Wei WANG,Mao-Chu GONG,Yao-Qiang CHEN. Preparation of CeO2-ZrO2-Al2O3 with a Composite Precipitant and Its Supported Pd-Only Three-Way Catalyst[J]. Acta Phys. -Chim. Sin., 2016, 32(7): 1734-1746.