Please wait a minute...
Acta Phys. -Chim. Sin.  2019, Vol. 35 Issue (6): 644-650    DOI: 10.3866/PKU.WHXB201805068
Self-Conversion from ZnO Nanorod Arrays to Tubular Structures and Their Applications in Nanoencapsulated Phase-Change Materials
Yingjie FENG1,Jinping WANG2,Lili LIU1,Xidong WANG1,*()
1 College of Engineering, Peking University, Beijing 100871, P. R. China
2 Beijing Research Institute of Chemical Industry, SINOPEC, Beijing 100013, P. R. China
Download: HTML     PDF(3962KB) Export: BibTeX | EndNote (RIS)      


In the emerging field of nanoscience, tubular structures have been attracting remarkable interest due to their well-defined geometry, high specific area, and exceptional physical and chemical properties. Among them, oriented ZnO tubular arrays are regarded as promising candidates for various applications such as optoelectronics, solar cells, sensors, field emission, piezoelectrics, and catalysis. Although template-directed and selective dissolution synthesizing strategies are commonly used to prepare ZnO nanotubes, repeatability and large scale preparation are still challenging. In this study, ZnO nanotube arrays were controllably prepared by tuning the hydrothermal parameters, without the use of any additives. The mechanism underlying the self-conversion of ZnO nanorods to nanotubes was comprehensively studied based on the surface energy theory. It has been proved that the metastable top surface of the ZnO nanorods dissolves preferentially to reach a stable state during the hydrothermal growth. The specific surface energy of different crystal faces of ZnO nanorods was calculated using molecular dynamics simulation. The top surface of the ZnO nanorod, the Zn-terminated [0001] face, demonstrated much higher surface free energy than did the lateral faces, which indicated that the self-dissolution of top face (002) is energetically favorable. The self-conversion behavior of ZnO nanorod arrays with different diameters was specifically investigated by adjusting the initial precursor concentration, density of the crystal seed layers, and growth time. The dissolution-crystallization equilibrium concentration, determined by crystal surface energy, was found to be a key factor for the formation of the tubular structure. Notably, the critical equilibrium conditions for the self-conversion of ZnO nanorods to nanotubes, including zinc ion concentration and pH, have been identified by studying parameters corresponding to the dissolution-crystallization equilibrium for the metastable top surface of the ZnO nanorods. The preparation of the ZnO nanotube arrays was successfully accelerated and simplified via two-step procedure: (1) preparation of ZnO nanorod arrays and (2) self-conversion of ZnO nanorods to nanotubes. The preparation method based on the self-conversion mechanism from rods to tubes for polar oxides is simpler and more easily controllable as compared to the reported methods involving variety of additives. Because of the advantages of adaptability to a wide range of substrates, excellent conducting properties, and filling ability, the prepared ZnO nanotube array films were used in encapsulating phase-change materials. The encapsulated phase-change material exhibited excellent heat storage/release properties and heat conductivities. This indicates the potential application of precision devices for temperature control.

Key wordsZnO nanotubes      Crystal surface energy      Dissolution-crystallization equilibrium      Self-conversion      Encapsulated phase-change materials     
Received: 24 May 2018      Published: 09 July 2018
MSC2000:  O647  
Fund:  The project was supported by the Common Development Fund of Beijing, China and the National Natural Science Foundation of China(北京市公共发展基金及国家自然科学基金)
Corresponding Authors: Xidong WANG     E-mail:
Cite this article:

Yingjie FENG,Jinping WANG,Lili LIU,Xidong WANG. Self-Conversion from ZnO Nanorod Arrays to Tubular Structures and Their Applications in Nanoencapsulated Phase-Change Materials. Acta Phys. -Chim. Sin., 2019, 35(6): 644-650.

URL:     OR

Precursor concentration/(mol·L-1)Diameter/nmEtched Length/μmStart etch time/hStart etch concentration(Zn2+)/(mol·L-1)pH
1 (a) Greyson, E. C.; Babayan, Y.; Odom, T. W. Adv. Mater. 2004, 16, 1348. doi: 10.1002/adma.200400765
1 (b) Greene, L. E.; Law, M.; Tan, D. H.; Montano, M.; Goldberger, J.; Somorjai, G.; Yang, P. D. Nano Lett. 2005, 5, 1231. doi: 10.1021/nl050788p
2 Sun Y. ; Fuge G. M. ; Fox N. A. ; Riley D. J. ; Ashfold M. N. R. Adv. Mater. 2005, 17, 2477.
3 (a) Pan, Z. X.; Dai, Z. R.; Wang, Z. L. Science 2001, 291, 1947. doi: 10.1126/science.1058120
3 (b) Wen, X. G.; Fang, Y. P.; Pang, Q.; Yang, C. L.; Wang, J. N.; Ge, W. K.; Wong, K. S.; Yang, S. H. J. Phys. Chem. B 2005, 109, 15303. doi: 10.1021/jp052466f
4 (a) Gao, P. X.; Wang, Z. L. J. Am. Chem. Soc. 2003, 125, 11299. doi: 10.1021/ja035569p
4 (b) Li, G. R.; Lu, X. H.; Zhao, W. X.; Su, C. Y.; Tong, Y. X. Cryst. Growth Des. 2008, 8, 1276. doi: 10.1021/cg7009995
5 (a) Konenkamp, R.; Word, R. C.; Godinez, M. Nano Lett. 2005, 5, 2005. doi: 10.1021/nl051501r
5 (b) Flemban, T. H.; Haque, M. A.; Ajia, I.; Alwadai, N.; Mitra, S.; Wu, T.; Roqan, I. S. ACS Appl. Mater. Interfaces 2017, 9, 37120. doi: 10.1021/acsami.7b09645
6 (a) Valls, I. G.; Cantu, M. L. Energy Environ. Sci. 2009, 2, 19. doi: 10.1002/adma.200400765
6 (b) Martinson, A. B.; Elam, J. W.; Hupp, J. T.; Pelin, M. J. Nano Lett. 2007, 7, 2183. doi: 10.1021/nl070160+
7 (a) Yang, K.; She, G. W.; Wang, H.; Ou, X. M.; Zhang, X. H.; Lee, C. S.; Lee, S. T. J. Phys. Chem. C 2009, 113, 20169. doi: 10.1021/jp901894j
7 (b) Huang, Y. C.; Chang, S. Y.; Jehng, J. M. J. Phys. Chem. C 2017, 121, 19063. doi: 10.1021/acs.jpcc.7b05806
8 (a) Ye, C.; Bando, Y.; Fang, X.; Shen, G.; Goldberg, D. J. Phys. Chem. C 2007, 111, 12673. doi: 10.1021/jp073928n
8 (b) Wang, X.; Zhou, J.; Lao, C.; Song, J.; Xu, N.; Wang, Z. L. Adv. Mater. 2007, 19, 1627. doi: 10.1002/adma.200602467
9 (a) Wang, X.; Song, J.; Liu, J.; Wang, Z. L. Science 2007, 316, 102. doi: 10.1126/science.1139366
9 (b) Lu, M. P.; Song, J. H.; Lu, M. Y.; Chen, M. T.; Gao, Y. F.; Chen, L. J.; Wang, Z. L. Nano Lett. 2009, 9, 1223. doi: 10.1021/nl900115y
10 Chouhan N. ; Yeh C. L. ; Hu S. F. ; Liu R. S. ; Chang W. S. ; Chene K. H. Chem. Comm. 2011, 47, 3493.
11 Zhao X. F. ; Chen H. ; Wu H. ; Wang R. ; Cui Y. ; Fu Q. ; Yang F. ; Bao X. H. Acta Phys. -Chim. Sin. 2018, 34, 1373.
11 赵新飞; 陈浩; 吴昊; 王睿; 崔义; 傅强; 杨帆; 包信和. 物理化学学报, 2018, 34, 1373.
12 Elias J. ; Tena-Zaera R. ; Wang Y. S. ; Lévy-Clément C. Chem. Mater. 2008, 20, 6633.
13 Xu L. F. ; Liao Q. ; Zhang J. P. ; Ai X. C. ; Xu D. S. J. Phys. Chem. C 2007, 111, 4549.
14 Li G. R. ; Lu X. H. ; Zhao W. X. ; Su C. Y. ; Tong Y. X. Cryst. Growth Des. 2008, 8, 1276.
15 Fujimura N. ; Nishihara T. ; Goto S. ; Xu J. F. ; Ito T. J. Cryst. Growth 1993, 130, 269.
16 Wang Z. L. ; Kong X. Y. ; Zuo J. M. Phys. Rev. Lett. 2003, 91, 185502.
17 Yu H. D. ; Zhang Z. P. ; Han M. Y. ; Hao X. T. ; Zhu F. R. J. Am. Chem. Soc. 2005, 127, 2378.
18 Zhang B. P. ; Binh N. T. ; Wakatsuki K. ; Segawa Y. ; Yamada Y. ; Usami N. ; Kawasaki M. ; Koinuma H. J. Phys. Chem. B 2004, 108, 10899.
19 Vayssieres L. ; Keis K. ; Hagfeldt A. ; Lindquist S. E. Chem. Mater. 2001, 13, 4395.
20 Matijevi? E. Langmuir 1994, 10, 8.
21 Vayssieres L. Adv. Mater. 2003, 15, 464.
22 Pardeshi S. K. ; Patil A. B. J. Hazard. Mater. 2009, 163, 403.
23 Chu D. W. ; Masuda Y. ; Ohji T. ; Kato K. Langmuir 2010, 26, 2811.
24 Mondal S. Appl. Therm. Eng. 2008, 28, 1536.
25 Wu S. Y. ; Zhu D. S. ; Zhang X. R. ; Huang J. Energy Fuels 2010, 24, 1894.
[1] Shuang LIANG,Ran GAO,Mengying ZHANG,Ning XUE,Zhimei QI. Gold-Silver Alloy Film Based Spectral Surface Plasmon Resonance Imaging Sensor with High Sensitivity[J]. Acta Phys. -Chim. Sin., 2019, 35(6): 630-636.
[2] Xiejun XU,Xingqing XIAO,Shouhong XU,Honglai LIU. Computational Study of Thermosensitivity of Liposomes Modulated by Leucine Zipper-Structured Lipopeptides[J]. Acta Phys. -Chim. Sin., 2019, 35(6): 598-606.
[3] JIANG Zhe, YU Fei, MA Jie. Design of Graphene-based Adsorbents and Its Removal of Antibiotics in Aqueous Solution[J]. Acta Phys. -Chim. Sin., 0, (): 0-0.
[4] JIAO Jianmei, XU Guiying, XIN Xia. Effect of Bile Salts on Self-Assembly and Construction of Micro-/nanomaterials[J]. Acta Phys. -Chim. Sin., 0, (): 0-0.
[5] Lili HUANG,Xiang SHAO. CO Induced Single and Multiple Au Adatoms Trapped by Melem Self-Assembly[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1390-1396.
[6] Qiang LIU,Yong HAN,Yunjun CAO,Xiaobao LI,Wugen HUANG,Yi YU,Fan YANG,Xinhe BAO,Yimin LI,Zhi LIU. In-situ APXPS and STM Study of the Activation of H2 on ZnO(10${\rm{\bar 1}}$0) Surface[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1366-1372.
[7] Pan LUO,Fang SUN,Ju DENG,Haitao XU,Huijuan ZHANG,Yu WANG. Tree-Like NiS-Ni3S2/NF Heterostructure Array and Its Application in Oxygen Evolution Reaction[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1397-1404.
[8] Yuan DUAN,Mingshu CHEN,Huilin WAN. Adsorption and Activation of O2 and CO on the Ni(111) Surface[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1358-1365.
[9] Yeliang ZHAO,Bing WANG. Effect of Substrate on the Electron Spin Resonance Spectra of N@C60 Molecules[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1312-1320.
[10] Xinyi WANG,Lei XIE,Yuanqi DING,Xinyi YAO,Chi ZHANG,Huihui KONG,Likun WANG,Wei XU. Interactions between Bases and Metals on Au(111) under Ultrahigh Vacuum Conditions[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1321-1333.
[11] Dan DONG,Zhiyuan MIN,Jun LIU,Gufeng HE. Improved Hole Injection Property of Solution-Processed MoO3 with[J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1286-1292.
[12] Zhe ZHAO, Yue LU, Zhenhua ZHANG, Manling SUI. In situ Liquid Environmental TEM Observation of Self-Assembly of Oxide Nanoparticles Driven by Electric Charge[J]. Acta Phys. -Chim. Sin., 2019, 35(5): 539-545.
[13] Teng LU,Yongxiang ZHOU,Hongxia GUO. Deformation of Polymer-Grafted Janus Nanosheet: A Dissipative Particle Dynamic Simulations Study[J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1144-1150.
[14] Chengzhen SUN,Bofeng BAI. Selective Permeation of Gas Molecules through a Two-Dimensional Graphene Nanopore[J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1136-1143.
[15] Xiangyan SHEN,Jianjiang HE,Ning WANG,Changshui HUANG. Graphdiyne for Electrochemical Energy Storage Devices[J]. Acta Phys. -Chim. Sin., 2018, 34(9): 1029-1047.