Acta Physico-Chimica Sinica ›› 2019, Vol. 35 ›› Issue (6): 565-571.doi: 10.3866/PKU.WHXB201805080
• REVIEW • Previous Articles Next Articles
Qin WANG,Minmin XUE,Zhuhua ZHANG*()
Received:
2018-05-28
Accepted:
2018-07-01
Published:
2018-10-31
Contact:
Zhuhua ZHANG
E-mail:chuwazhang@nuaa.edu.cn
Supported by:
MSC2000:
Qin WANG,Minmin XUE,Zhuhua ZHANG. Chemical Synthesis of Borophene: Progress and Prospective[J].Acta Physico-Chimica Sinica, 2019, 35(6): 565-571.
Fig 1
The parallel of chemistry between carbon and boron (a) Carbon can form sp3, sp2 and sp bonds, thus can form a variety of nanostructures, such as 1D atomic chains, nanotubes and diamond. (b) Because of electronic deficiency, boron can form a vast number of multicenter chemical bonds, forming a typical B12 icosahedron in bulk phases as well as planar, fullerene molecules and nanotube structure at nanoscale."
Fig 2
Theoretical and experimental synthesis of two-dimensional borophene (a) Historical evolution of theoretical models of borophene, from the initial triangular structure to the combined structure of triangular lattice and hollow hexagons, to the polymorphism of borophene, and then to the energetically preferred borophene on substrates. (b) High resolution scanning electron microscope (SEM) image of stripe borophene (S1) synthesized by molecular beam epitaxy, compared to simulated SEM image using the v1/6 model on Ag substrate. (c) SEM image of homogeneous phase borophene (S2), compared to simulated SEM image based on the v1/5 model. (b) is adopted from American Association for the Advancement of Science publisher and (c) is adopted from Springer Nature publisher 11, 12."
Fig 3
The nucleation selectivity of borophene (a) Schematic diagram of the free energy of boron growth on a substrate along two- and three-dimensional routes. The range of temperature corresponding to the energy range of yellow shaded area should benefit boron nucleation along the 2D route. (b) A schematic diagram of nucleation and growth of 3D boron along a step of metal substrate. (c) The same as (b) but for 2D boron. (a) is adopted from Springer Nature publisher 44."
1 |
Mannix A. J. ; Kiraly B. ; Hersam M. C. ; Guisinger N. P. Nat. Rev. Chem. 2017, 1, 0014.
doi: 10.1038/s41570-016-0014 |
2 |
Molle A. ; Goldberger J. ; Houssa M. ; Xu Y. ; Zhang S. C. ; Akinwande D. Nat. Mater. 2017, 16, 163.
doi: 10.1038/NMAT4802 |
3 |
Oganov A. R. ; Solozhenko V. L. J. Superhard Mater. 2009, 31, 285.
doi: 10.3103/S1063457609050013 |
4 |
Huang W. ; Sergeeva A. P. ; Zhai H. J. ; Averkiev B. B. ; Wang L. S. ; Boldyrev A. I. Nat. Chem. 2010, 2, 202.
doi: 10.1038/NCHEM.534 |
5 |
Sergeeva A. P. ; Popov I. A. ; Piazza Z. A. ; Li W. L. ; Romanescu C. ; Wang L. S. ; Boldyrev A. I. Acc. Chem. Res. 2014, 2, 1349.
doi: 10.1021/ar400310g |
6 |
Zhai H. J. ; Zhao Y. F. ; Li W. L. ; Chen Q. ; Bai H. ; Hu H. S. ; Piazza Z. A. ; Tian W. J. ; Lu H. G. ; Wu Y. B. ; et al Nat. Chem. 2014, 6, 727.
doi: 10.1038/NCHEM.1999 |
7 |
Ciuparu D. ; Klie R. F. ; Zhu Y. M. ; Pfefferle L. J. Phys. Chem. B 2004, 108, 3967.
doi: 10.1021/jp049301b |
8 |
Liu F. ; Shen C. M. ; Su Z. J. ; Ding X. L. ; Deng S. Z. ; Chen J. ; Xu N. S. ; Gao H. J. J. Mater. Chem. 2010, 20, 2197.
doi: 10.1039/b919260c |
9 |
Tai G. A. ; Hu T. S. ; Zhou Y. G. ; Wang X. F. ; Kong J. Z. ; Zeng T. ; You Y. C. ; Wang Q. Angew. Chem. Int. Ed. 2015, 54, 15473.
doi: 10.1002/anie.201509285 |
10 |
Sun X. ; Liu X. F. ; Yin J. ; Yu J. ; Li Y. ; Hang Y. ; Zhou X. C. ; Yu M. L. ; Li J. D. ; Tai G. A. ; et al Adv. Funct. Mater. 2017, 27, 1603300.
doi: 10.1002/adfm.201603300 |
11 |
Mannix A. J. ; Zhou X. F. ; Kiraly B. ; Wood J. D. ; Alducin D. ; Myers B. D. ; Liu X. L. ; Fisher B. L. ; Santiago U. ; Guest J. R. ; et al Science 2015, 350, 1513.
doi: 10.1126/science.aad1080 |
12 |
Feng B. J. ; Zhang J. ; Zhong Q. ; Li W. B. ; Li S. ; Li H. ; Cheng P. ; Meng S. ; Chen L. ; Wu K. H. Nat. Chem. 2016, 8, 563.
doi: 10.1038/NCHEM.2491 |
13 |
Zhang Z. H. ; Penev E. S. ; Yakobson B. I. Chem. Soc. Rev. 2017, 46, 6746.
doi: 10.1039/c7cs00261k |
14 |
Feng B. J. ; Sugino O. ; Liu R. Y. ; Zhang J. ; Yukawa R. ; Kawamura M. ; Iimori T. ; Kim H. ; Hasegawa Y. ; Li H. ; et al Phys. Rev. Lett. 2017, 118, 096401.
doi: 10.1103/PhysRevLett.118.096401 |
15 |
Huang Y. F. ; Shirodkar S. N. ; Yakobson B. I. J. Am. Chem. Soc. 2017, 139, 17181.
doi: 10.1021/jacs.7b10329 |
16 |
Zhang Z. H. ; Yang Y. ; Penev E. S. ; Yakobson B. I. Adv. Funct. Mater. 2017, 27, 1605059.
doi: 10.1002/adfm.201605059 |
17 |
Boustani I. ; Quandt A. ; Hernandez E. ; Rubio A. J. Chem. Phys. 1999, 110, 3176.
doi: 10.1063/1.477976 |
18 |
Boustani I. Phys. Rev. B 1997, 55, 16426.
doi: 10.1103/PhysRevB.55.16426 |
19 |
Yang X. B. ; Ding Y. ; Ni J. Phys. Rev. B 2008, 77, 041402.
doi: 10.1103/PhysRevB.77.041402 |
20 |
Tang H. ; Ismail-Beigi S. Phys. Rev. Lett. 2007, 99, 115501.
doi: 10.1103/PhysRevLett.99.115501 |
21 |
Szwacki N. G. ; Sadrzadeh A. ; Yakobson B. I. Phys. Rev. Lett. 2007, 98, 166804.
doi: 10.1103/PhysRevLett.98.166804 |
22 |
Penev E. S. ; Bhowmick S. ; Sadrzadeh A. ; Yakobson B. I. Nano Lett. 2012, 12, 2441.
doi: 10.1021/nl3004754 |
23 |
Wu X. ; Dai J. ; Zhao Y. ; Zhuo Z. ; Yang J. ; Zeng X. C. ACS Nano 2012, 6, 7443.
doi: 10.1021/nn302696v |
24 |
Lu H. ; Mu Y. ; Bai H. ; Chen Q. ; Li S. J. Chem. Phys. 2013, 138, 024701.
doi: 10.1063/1.4774082 |
25 |
Yu X. ; Li L. ; Xu X. ; Tang C. J. Phys. Chem. C 2012, 116, 20075.
doi: 10.1021/jp305545z |
26 |
Xu S. ; Li X. ; Zhao Y. ; Liao J. ; Xu W. ; Yang X. ; Xu H. J. Am. Chem. Soc. 2017, 139, 17233.
doi: 10.1021/jacs.7b08680 |
27 |
Zhou X. F. ; Dong X. ; Oganov A. R. ; Zhu Q. ; Tian Y. J. ; Wang H. T. Phys. Rev. Lett. 2014, 112, 085502.
doi: 10.1103/PhysRevLett.112.085502 |
28 |
Ma F. ; Jiao Y. ; Gao G. ; Gu Y. ; Bilic A. ; Chen Z. ; Du A. Nano Lett. 2016, 16, 3022.
doi: 10.1021/acs.nanolett.5b05292 |
29 |
Liu Y. ; Penev E. S. ; Yakobson B. I. Angew. Chem. Int. Ed. 2013, 52, 3156.
doi: 10.1002/anie.201207972 |
30 |
Liu H. S. ; Gao J. F. ; Zhao J. J. Sci. Rep. 2013, 3, 3238.
doi: 10.1038/srep03238 |
31 |
Zhang Z. H. ; Yang Y. ; Gao G. Y. ; Yakobson B. I. Angew. Chem. Int. Ed. 2015, 54, 13022.
doi: 10.1002/anie.201505425 |
32 |
Meng X. M. ; Hu J. Q. ; Jiang Y. ; Lee C. S. ; Lee S. T. Chem. Phys. Lett. 2003, 370, 825.
doi: 10.1016/S0009-2614(03)00202-1 |
33 |
Cao L. M. ; Zhang Z. ; Sun L. L. ; Gao C. X. ; He M. ; Wang Y. Q. ; Li Y. C. ; Zhang X. Y. ; Li G. ; Zhang J. ; et al Adv. Mater. 2001, 13, 1701.
doi: 10.1002/1521-4095(200111)13:22<1701::AID-ADMA1701>3.0.CO;2-Q |
34 |
Cao L. M. ; Hahn K. ; Wang Y. Q. ; Scheu C. ; Zhang Z. ; Gao C. X. ; Li Y. C. ; Zhang X. Y. ; Sun L. L. ; Wang W. K. ; et al Adv. Mater. 2002, 14, 1294.
doi: 10.1002/1521-4095(20020916)14:18<1294::AID-ADMA1294>3.0.CO;2-# |
35 |
Ni H. ; Li X. D. J. Nano Res. 2008, 1, 10.
doi: 10.4028/www.scientific.net/JNanoR.1.10 |
36 |
Xu J. Q. ; Chang Y. Y. ; Gan L. ; Ma Y. ; Zhai T. Y. Adv. Sci. 2015, 2, 1500023.
doi: 10.1002/advs.201500023 |
37 |
Tian J. F. ; Xu Z. C. ; Shen C. M. ; Liu F. ; Xu N. S. ; Gao H. J. Nanoscale 2010, 2, 1375.
doi: 10.1039/c0nr00051e |
38 |
Yang J. K. ; Yang Y. ; Waltermire S. W. ; Wu X. X. ; Zhang H. T. ; Gutu T. ; Jiang Y. F. ; Chen Y. F. ; Zinn A. A. ; Prasher R. ; et al Nat. Nanotechnol. 2012, 7, 91.
doi: 10.1038/NNANO.2011.216 |
39 |
Zhong Q. ; Kong L. J. ; Gou J. ; Li W. B. ; Sheng S. X. ; Yang S. ; Cheng P. ; Li H. ; Wu K. H. ; Chen L. Phys. Rev. Mater. 2017, 1, 021001.
doi: 10.1103/PhysRevMaterials.1.021001 |
40 |
Zhang Z. H. ; Mannix A. J. ; Hu Z. L. ; Kiraly B. ; Guisinger N. P. ; Hersam M. C. ; Yakobson B. I. Nano Lett. 2016, 16, 6622.
doi: 10.1021/acs.nanolett.6b03349 |
41 |
Shirodkar S. N. ; Penev E. S. ; Yakobson B. I. Sci. Bull. 2018, 63, 270.
doi: 10.1016/j.scib.2018.02.019 |
42 |
Li W. B. ; Kong L. J. ; Chen C. Y. ; Gou J. ; Sheng S. X. ; Zhang W. F. ; Li H. ; Chen L. ; Cheng P. ; Wu K. H. Sci. Bull. 2018, 63, 282.
doi: 10.1016/j.scib.2018.02.006 |
43 |
Nørskov J. K. ; Bligaard T. ; Rossmeisl J. ; Christensen C. H. Nat. Chem. 2009, 1, 37.
doi: 10.1038/nchem.121 |
44 |
Zhang Z. ; Penev E. S. ; Yakobson B. I. Nat. Chem. 2016, 8, 525.
doi: 10.1038/nchem.2521 |
45 |
Xu S. G. ; Zhao Y. J. ; Liao J. H. ; Yang X. B. ; Xu H. Nano Res. 2016, 9, 2616.
doi: 10.1007/s12274-016-1148-0 |
46 |
Tibbetts G. G. J. Cryst. Growth 1984, 66, 632.
doi: 10.1016/0022-0248(84)90163-5 |
47 |
Ding F. ; Harutyunyan A. R. ; Yakobson B. I. Proc. Nat. Acad. Sci. USA 2009, 106, 2506.
doi: 10.1073/pnas.0811946106 |
48 |
Artyukhov V. I. ; Liu Y. Y. ; Yakobson B. I. Proc. Natl. Acad. Sci. USA 2012, 109, 15136.
doi: 10.1073/pnas.1207519109 |
49 |
Zhang Z. H. ; Liu Y. Y. ; Yang Y. ; Yakobson B. I. Nano Lett. 2016, 16, 1398.
doi: 10.1021/acs.nanolett.5b04874 |
[1] | Ruojuan Liu, Bingzhi Liu, Jingyu Sun, Zhongfan Liu. Gaseous-Promotor-Assisted Direct Growth of Graphene on Insulating Substrates: Progress and Prospects [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2111011-0. |
[2] | Zeyao Zhang, Yixi Yao, Yan Li. Modulating the Diameter of Bulk Single-Walled Carbon Nanotubes Grown by FeCo/MgO Catalyst [J]. Acta Phys. -Chim. Sin., 2022, 38(8): 2101055-. |
[3] | Yi Cheng, Kun Wang, Yue Qi, Zhongfan Liu. Chemical Vapor Deposition Method for Graphene Fiber Materials [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2006046-. |
[4] | Bei Jiang, Jingyu Sun, Zhongfan Liu. Synthesis of Graphene Wafers: from Lab to Fab [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2007068-. |
[5] | Heng Chen, Jincan Zhang, Xiaoting Liu, Zhongfan Liu. Effect of Gas-Phase Reaction on the CVD Growth of Graphene [J]. Acta Phys. -Chim. Sin., 2022, 38(1): 2101053-. |
[6] | Ting Cheng, Luzhao Sun, Zhirong Liu, Feng Ding, Zhongfan Liu. Roles of Transition Metal Substrates in Graphene Chemical Vapor Deposition Growth [J]. Acta Phys. -Chim. Sin., 2022, 38(1): 2012006-. |
[7] | Xiaoting Liu, Jincan Zhang, Heng Chen, Zhongfan Liu. Synthesis of Superclean Graphene [J]. Acta Phys. -Chim. Sin., 2022, 38(1): 2012047-. |
[8] | Guangbin Hua, Yanchen Fan, Qianfan Zhang. Application of Computational Simulation on the Study of Lithium Metal Anodes [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2008089-. |
[9] | Fei Wang, Zhaolong Chen, Jiawei Yang, Hao Li, Jingyuan Shan, Feng Zhang, Baolu Guan, Zhongfan Liu. Heating Characteristics of Graphene Glass Transparent Films [J]. Acta Phys. -Chim. Sin., 2021, 37(10): 2001024-. |
[10] | Xiaoguang Qiu, Wei Liu, Jiuding Liu, Junzhi Li, Kai Zhang, Fangyi Cheng. Nucleation Mechanism and Substrate Modification of Lithium Metal Anode [J]. Acta Phys. -Chim. Sin., 2021, 37(1): 2009012-. |
[11] | Zhaolong Chen, Peng Gao, Zhongfan Liu. Graphene-Based LED: from Principle to Devices [J]. Acta Physico-Chimica Sinica, 2020, 36(1): 1907004-. |
[12] | Huabo Zhao, Ding Ma. χ-Fe5C2: Structure, Synthesis, and Tuning of Catalytic Properties [J]. Acta Physico-Chimica Sinica, 2020, 36(1): 1906087-. |
[13] | Fang LIU,Lufeng ZHANG,Qian DONG,Zhuo CHEN. Synthesis and Characterization of Small Size Gold-Graphitic Nanocapsules [J]. Acta Physico-Chimica Sinica, 2019, 35(6): 651-656. |
[14] | Kexin WANG,Liurong SHI,Mingzhan WANG,Hao YANG,Zhongfan LIU,Hailin PENG. Biomass Hydroxyapatite-templated Synthesis of 3D Graphene [J]. Acta Physico-Chimica Sinica, 2019, 35(10): 1112-1118. |
[15] | Shuai CHEN,Junfeng GAO,Bharathi M. SRINIVASAN,Yong-Wei ZHANG. A Kinetic Monte Carlo Study for Mono- and Bi-layer Growth of MoS2 during Chemical Vapor Deposition [J]. Acta Physico-Chimica Sinica, 2019, 35(10): 1119-1127. |
|