Please wait a minute...
Acta Phys. -Chim. Sin.  2019, Vol. 35 Issue (6): 616-623    DOI: 10.3866/PKU.WHXB201805082
ARTICLE     
Construction and Visible-Light-Driven Photocatalytic Properties of LaCoO3-TiO2 Nanotube Arrays
Cheng GONG1,2,Siwan XIANG1,2,Zeyang ZHANG1,2,Lan SUN1,2,*(),Chenqing YE2,Changjian LIN1
1 State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian Province, P. R. China
2 Fujian Provincial Key Laboratory of Featured Materials in Biochemical Industry, Ningde Normal University, Ningde 352100, Fujian Province, P. R. China
Download: HTML     PDF(2847KB) Export: BibTeX | EndNote (RIS)      

Abstract  

TiO2 nanotube arrays (NTAs) have high photocatalytic activity; however, their weak visible light absorption limits their solar energy utilization and environmental application. Perovskite (ABO3)-type oxides with a narrow band gap can absorb visible light in a wide wavelength range and have excellent stability; however, their photocatalytic activity is relatively low. Coupling TiO2 NTAs with ABO3 to form heterojunctions is one of the most promising approaches to extend the optical absorption of TiO2 NTAs into the visible-light range and promote the separation rate of photogenerated electron–hole pairs. However, to date, constructing ABO3-TiO2 NTA heterostructured composites has been extremely challenging owing to the different crystallization temperatures of anatase TiO2 NTAs and ABO3. In this work, LaCoO3 nanoparticles were first synthesized using a sol-gel method. The as-prepared LaCoO3 nanoparticles were then modified on the surface of the TiO2 NTAs using an electrophoretic deposition technique, and a series of LaCoO3-TiO2 NTAs photocatalysts were thus constructed by controlling the deposition time. Results of the scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) demonstrated that the nanoparticles prepared through the sol-gel method were LaCoO3 with a uniform size and high crystallization. The average diameter of the LaCoO3 nanoparticles was 100 nm. The binding strength between the LaCoO3 nanoparticles and the TiO2 NTAs was strong. The UV-visible absorption spectra (diffuse reflectance spectroscopy; DRS) demonstrated that the absorption band edge of the LaCoO3-TiO2 NTAs was gradually red-shifted into the visible light region with the increase in electrophoretic time. The LaCoO3-TiO2 NTAs prepared by the electrophoretic deposition technique for 15 min exhibited a strong light absorption in the wide wavelength range from 250 to 700 nm, which was the same as that of the LaCoO3 nanoparticles loaded on a Ti foil. The results of the photocatalytic degradation of methyl orange (MO) under visible light irradiation demonstrated that the photocatalytic degradation rate of MO over LaCoO3-TiO2 NTAs was considerably higher than those of TiO2 NTAs and LaCoO3 nanoparticles loaded on a Ti foil. The LaCoO3-TiO2 NTAs prepared by the electrophoretic deposition technique for 15 min showed the highest photocatalytic degradation rate of MO, which was a four-fold enhancement compared to that of TiO2 NTs under the same conditions. The p-n heterojunctions between the LaCoO3 nanoparticles and the TiO2 nanotubes were responsible for the enhanced visible light photocatalytic activity. The results of the electrochemical impedance spectroscopy (EIS) and photoluminescence spectroscopy (PL) tests demonstrated that the loading of the LaCoO3 nanoparticles effectively promoted the separation and transport of photogenerated charges, thereby enhancing the visible light photocatalytic activity of the TiO2 NTAs.



Key wordsLaCoO3      TiO2 nanotube arrays      Visible light      Photocatalysis      Methyl orange     
Received: 29 May 2018      Published: 25 July 2018
MSC2000:  O644  
Fund:  the National Natural Science Foundation of China(21621091);Guangdong Natural Science Foundation, China(2016A030313845)
Corresponding Authors: Lan SUN     E-mail: sunlan@xmu.edu.cn
Cite this article:

Cheng GONG,Siwan XIANG,Zeyang ZHANG,Lan SUN,Chenqing YE,Changjian LIN. Construction and Visible-Light-Driven Photocatalytic Properties of LaCoO3-TiO2 Nanotube Arrays. Acta Phys. -Chim. Sin., 2019, 35(6): 616-623.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201805082     OR     http://www.whxb.pku.edu.cn/Y2019/V35/I6/616

Fig 1 SEM (a), EDX (b), TEM (c) and HRTEM (d) images of LaCoO3 nanoparticles.
Fig 2 XRD patterns of LaCoO3 nanoparticles.
Fig 3 High-resolution XPS spectra of La 3d and Co 2p of LaCoO3 nanoparticles.
Fig 4 SEM images of TiO2 nanotube arrays (a, b) and LaCoO3-TiO2 nanotube arrays prepared by electrophoresis for 1 min (c), 7 min (d), 15 min (e) and 25 min (f).
Fig 5 XRD patterns of TiO2 nanotube arrays and LaCoO3-TiO2 nanotube arrays.
Fig 6 XPS spectra of LaCoO3-TiO2 nanotube arrays.
Fig 7 DRS spectra of TiO2 nanotube arrays, LaCoO3 and LaCoO3-TiO2 nanotube arrays prepared by electrophoresis for different times.
Fig 8 Kinetic curves of different photocatalysts in the photocatalytic degradation of MO under visible light irradiation.
Fig 9 PL spectra (a) and EIS plots under visible light irradiation (b) of different photocatalysts.
Fig 10 Schematic illustration of the separation and transport of charge carriers between LaCoO3 nanoparticles and TiO2 nanotube arrays under visible light irradiation.
1 Wu L. ; Zhang M. ; Li J. ; Cen C. ; Li X Res. Chem. Intermed 2016, 42, 4569.
2 Xiao F. X. ; Liu B Nanoscale 2017, 9, 17118.
3 Leung D. Y. ; Fu X. ; Wang C. ; Ni M. ; Leung M. K. ; Wang X ChemSusChem 2010, 3, 681.
4 Wang J. ; Lin Z Chem. Mater 2010, 22, 579.
5 Wang M. ; Ioccozia J. ; Sun L. ; Lin C. ; Lin Z Energy Environ. Sci 2014, 7, 2182.
6 Zhou H. ; Ge J. ; Zhang M. ; Yuan S Res. Chem. Intermed 2016, 42, 1929.
7 Xiao F. X. ; Liu B Adv. Mater. Interfaces 2018, 5, 1701098.
8 Wu Z ; Gong C ; Yu J ; Sun L ; Xiao W. ; Lin C. J. Mater. Chem. A 2017, 5, 1292.
9 Chen C. ; Ye M. ; Lv M. ; Gong C. ; Guo W. ; Lin C. Electrochim. Acta 2014, 121, 175.
10 Chen H. ; Fu W. ; Yang H. ; Sun P. ; Zhang Y ; Wang L. ; Zhao W. ; Zhou X. ; Zhao H. ; Jing Q. ; Qi X ; Li Y. Electrochim. Acta 2010, 56, 919.
11 Su Y. ; Wu Z. ; Wu Y. ; Yu Y. ; Sun L. ; Lin C. J. Mater. Chem. A 2015, 3, 8537.
12 Sun L. ; Wu Z. ; Xiang S. ; Yu Y. ; Wang Y. ; Lin C. ; Lin Z RSC Adv 2017, 7, 17551.
13 Britoa J. F. ; Tavella F. ; Genovese C. ; Ampelli C. ; Zanoni M. V. B. ; Centi G. ; Perathoner S Appl. Catal. B: Environ 2018, 224, 136.
14 Xiao F. X. ; Zhang J. J Mater. Chem. A 2017, 5, 23681.
15 Xie K. ; Wu Z. ; Wang M. ; Yu J. ; Gong C. ; Sun L. ; Lin C Electrochem. Commun 2016, 63, 56.
16 Zeng Z. ; Xiao F. X. ; Phan H. ; Chen S. ; Y Z. ; Wang R. ; Nguyen T. Q. ; Tan T. T. Y. J. Mater. Chem. A 2018, 6, 1700.
17 Mao Z. ; Lin H. ; Xu M. ; Miao J. ; He S. ; Li Q. J Appl. Electrochem 2018, 48, 147.
18 Zhang W. ; Liu J. ; Guo Z. ; Yao S. ; Wang H. J Mater. Sci: Mater. Electron 2017, 28, 9505.
19 Zhao Q. ; Ren Y. ; Li X. ; Shi Y Mater. Res. Bull 2016, 83, 396.
20 Xiang S. ; Zhang Z. ; Gong C. ; Wu Z. ; Sun L. ; Ye C. ; Lin C. Mater Lett 2018, 216, 1.
21 Grabowska E Appl. Catal. B: Environ 2016, 186, 97.
22 Meziani D. ; Reziga A. ; Rekhila G. ; Bellal B. ; Trari M Energy Convers. Manage 2014, 82, 244.
23 Guo J. ; Dai Y. ; Chen X. ; Zhou L. ; Liu T. J Alloy. Compd 2017, 696, 226.
24 Ling F. ; Anthony O. C. ; Xiong Q. ; Luo M. ; Pan X. ; Jia L. ; Huang J. ; Sun D. ; Li Q. Int. J. Hydrogen Energy 2016, 41, 6115.
25 Qin J. ; Lin L. ; Wang X Chem. Commun 2018, 54, 2272.
26 Niu K. ; Liang L. ; Li J. ; Zhang F Micropor. Mesopor. Mat 2016, 220, 220.
27 Hu M. ; Zhang Q. ; Gu L. ; Guo Q. ; Cao Y. ; Kareev M. ; Chakhalian J. ; Guo J Appl. Phys. Lett 2018, 112, 031603.
28 Xie K. ; Gong C. ; Wang M. ; Sun L. ; Lin C. J Appl. Electrochem 2017, 47, 959.
29 Wu Z. ; Wang Y. ; Sun L. ; Mao Y. ; Wang M. ; Lin C. J. Mater. Chem. A 2014, 2, 8223.
[1] Yan HE,Hao LI,Li ZHOU,Ting XU,Changjun PENG,Honglai LIU. Removal of Methyl Orange from Aqueous Solutions by a Novel Hyper-Cross-Linked Aromatic Triazine Porous Polymer[J]. Acta Phys. -Chim. Sin., 2019, 35(3): 299-306.
[2] Shaohai LI,Bo WENG,Kangqiang LU,Yijun XU. Improving the Efficiency of Carbon Quantum Dots as a Visible Light Photosensitizer by Polyamine Interfacial Modification[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 708-718.
[3] Ruo-Lin CHENG,Xi-Xiong JIN,Xiang-Qian FAN,Min WANG,Jian-Jian TIAN,Ling-Xia ZHANG,Jian-Lin SHI. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1436-1445.
[4] Hai-Long HU,Sheng WANG,Mei-Shun HOU,Fu-Sheng LIU,Tian-Zhen WANG,Tian-Long LI,Qian-Qian DONG,Xin ZHANG. Preparation of p-CoFe2O4/n-CdS by Hydrothermal Method and Its Photocatalytic Hydrogen Production Activity[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 590-601.
[5] Ming XIAO,Zai-Yin HUANG,Huan-Feng TANG,Sang-Ting LU,Chao LIU. Facet Effect on Surface Thermodynamic Properties and In-situ Photocatalytic Thermokinetics of Ag3PO4[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 399-406.
[6] Yang CHEN,Xiao-Yan YANG,Peng ZHANG,Dao-Sheng LIU,Jian-Zhou GUI,Hai-Long PENG,Dan LIU. Noble Metal-Supported on Rod-Like ZnO Photocatalysts with Enhanced Photocatalytic Performance[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2082-2091.
[7] Cui-Ping YU,Yan WANG,Jie-Wu CUI,Jia-Qin LIU,Yu-Cheng WU. Recent Advances in the Multi-Modification of TiO2 Nanotube Arrays and Their Application in Supercapacitors[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 1944-1959.
[8] Ya-Yu HUANG,Qiu-Yan FANG,Jian-Zhang ZHOU,Dong-Ping ZHAN,Kang SHI,Zhong-Qun TIAN. Deposition and Inhibition of Cu on TiO2 Nanotube Photoelectrode in Photoinduced Confined Etching System[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2042-2051.
[9] Hao ZHANG,Xin-Gang LI,Jin-Meng CAI,Ya-Ting WANG,Mo-Qing WU,Tong DING,Ming MENG,Ye TIAN. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2072-2081.
[10] Wei-Tao QIU,Yong-Chao HUANG,Zi-Long WANG,Shuang XIAO,Hong-Bing JI,Ye-Xiang TONG. Effective Strategies towards High-Performance Photoanodes for Photoelectrochemical Water Splitting[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 80-102.
[11] Yang LU. Recent Progress in Crystal Facet Effect of TiO2 Photocatalysts[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2185-2196.
[12] Fei ZHAO,Lin-Qi SHI,Jia-Bao CUI,Yan-Hong LIN. Photogenerated Charge-Transfer Properties of Au-Loaded ZnO Hollow Sphere Composite Materials with Enhanced Photocatalytic Activity[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 2069-2076.
[13] Ying-Shuang MENG,Yi AN,Qian GUO,Ming GE. Synthesis and Photocatalytic Performance of a Magnetic AgBr/Ag3PO4/ZnFe2O4 Composite Catalyst[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 2077-2083.
[14] Bang-De LUO,Xian-Qiang XIONG,Yi-Ming XU. Improved Photocatalytic Activity for Phenol Degradation of Rutile TiO2 on the Addition of CuWO4 and Possible Mechanism[J]. Acta Phys. -Chim. Sin., 2016, 32(7): 1758-1764.
[15] Kai-Jian ZHU,Wen-Qing YAO,Yong-Fa ZHU. Preparation of Bismuth Phosphate Photocatalyst with High Dispersion by Refluxing Method[J]. Acta Phys. -Chim. Sin., 2016, 32(6): 1519-1526.