Please wait a minute...
Acta Phys. -Chim. Sin.  2019, Vol. 35 Issue (6): 591-597    DOI: 10.3866/PKU.WHXB201806042
ARTICLE     
A Comparative Study of Ignition Delay of Cracked Kerosene/Air and Kerosene/Air over a Wide Temperature Range
Yijun WANG,Dexiang ZHANG,Zhongjun WAN,Ping LI*(),Changhua ZHANG
Download: HTML     PDF(1895KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Kerosene is an ideal endothermic hydrocarbon. Its pyrolysis plays a significant role in the thermal protection for high-speed aircraft. Before it reacts, kerosene experiences thermal decomposition in the heat exchanger and produces cracked products. Thus, to use cracked kerosene instead of pure kerosene, knowledge of their ignition properties is needed. In this study, ignition delay times of cracked kerosene/air and kerosene/air were measured in a heated shock tube at temperatures of 657–1333 K, an equivalence ratio of 1.0, and pressures of 1.01 × 105–10.10 × 105 Pa. Ignition delay time was defined as the time interval between the arrival of the reflected shock and the occurrence of the steepest rise of excited-state CH species (CH*) emission at the sidewall measurement location. Pure helium was used as the driver gas for high-temperature measurements in which test times needed to be shorter than 1.5 ms, and tailored mixtures of He/Ar were used when test times could reach up to 15 ms. Arrhenius-type formulas for the relationship between ignition delay time and ignition conditions (temperature and pressure) were obtained by correlating the measured high-temperature data of both fuels. The results reveal that the ignition delay times of both fuels are close, and an increase in the pressure or temperature causes a decrease in the ignition delay time in the high-temperature region (> 1000 K). Both fuels exhibit similar high-temperature ignition delay properties, because they have close pressure exponents (cracked kerosene: τignP-0.85; kerosene:τignP-0.83) and global activation energies (cracked kerosene: Ea = 143.37 kJ·mol-1; kerosene: Ea = 144.29 kJ·mol-1). However, in the low-temperature region (< 1000 K), ignition delay characteristics are quite different. For cracked kerosene/air, while the decrease in the temperature still results in an increase in the ignition delay time, the negative temperature coefficient (NTC) of ignition delay does not occur, and the low-temperature ignition data still can be correlated by an Arrhenius-type formula with a much smaller global activation energy compared to that at high temperatures. However, for kerosene/air, this NTC phenomenon was observed, and the Arrhenius-type formula fails to correlate its low-temperature ignition data. At temperatures ranging from 830 to 1000 K, the cracked kerosene ignites faster than the kerosene; at temperatures below 830 K, kerosene ignition delay times become much shorter than those of cracked kerosene. Surrogates for cracked kerosene and kerosene are proposed based on the H/C ratio and average molecular weight in order to simulate ignition delay times for cracked kerosene/air and kerosene/air. The simulation results are in fairly good agreement with current experimental data for the two fuels at high temperatures (> 1000 K). However, in the low-temperature NTC region, the results are in very good agreement with kerosene ignition delay data but disagree with cracked kerosene ignition delay data. The comparison between experimental data and model predictions indicates that refinement of the reaction mechanisms for cracked kerosene and kerosene is needed. These test results are helpful to understand ignition properties of cracked kerosene in developing regenerative cooling technology for high-speed aircraft.



Key wordsCracked kerosene      Kerosene      Ignition delay time      Heated shock tube     
Received: 21 June 2018      Published: 13 August 2018
MSC2000:  O643  
Fund:  The project was supported by the National Key R & D Program of China(2017YFB0202400);The project was supported by the National Key R & D Program of China(2017YFB0202401)
Corresponding Authors: Ping LI     E-mail: lpscun@scu.edu.cn
Cite this article:

Yijun WANG,Dexiang ZHANG,Zhongjun WAN,Ping LI,Changhua ZHANG. A Comparative Study of Ignition Delay of Cracked Kerosene/Air and Kerosene/Air over a Wide Temperature Range. Acta Phys. -Chim. Sin., 2019, 35(6): 591-597.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201806042     OR     http://www.whxb.pku.edu.cn/Y2019/V35/I6/591

 
 
Φ Xgas Xliquid XO2 XN2
1.0 1.20 0.21 20.70 77.89
 
Cracked kerosene Kerosene
T/K 10-5P/Pa τign/μs T/K 10-5P/Pa τign/μs T/K 10-5P/Pa τign/μs
1166 3.09 916 1233 1.19 969 928 11.86 3034
1320 3.04 181 1279 1.03 706 919 11.53 3608
1278 3.20 300 1331 1.01 341 915 1 0.68 3212
1215 3.00 510 1353 0.96 218 891 1 0.62 5552
1354 3.13 113 1370 1.01 210 866 10.50 5221
1 390 3.16 72 1398 1.06 138 838 11.79 4912
1348 5.42 80 1270 4.85 232 830 11.39 3824
1 093 5.19 1576 1222 4.53 336 811 10.79 3748
1163 5.01 680 1333 5.26 1 08 787 1 0.48 3544
1255 5.09 238 1248 5.10 286 749 9.41 3488
1341 5.14 84 1212 5.26 397 744 1 0.29 3792
1184 4.70 602 1176 5.19 523 714 1 2.61 3692
1268 4.96 201 1131 5.17 998 700 11.04 4034
1333 11.11 45 1237 9.77 117 677 1 0.64 6354
1087 9.30 907 1299 10.28 61 657 1 0.47 8708
1226 10.8 186 1179 9.79 300
1178 1 0.13 274 1139 9.63 491
1277 11.00 96 1083 9.21 848
1153 1 0.27 430 1192 9.73 264
1025 10.56 1116 1215 11.24 181
764 10.5 7708 1199 10.05 256
810 1 0.19 5474 1144 10.65 333
822 1 0.05 4794 1113 11.05 480
841 1 0.00 4574 1101 11.58 565
865 9.70 3674 1050 1 0.1 6 947
773 1 0.40 7514 1044 10.34 1104
898 1 0.64 3320 1025 10.31 1154
921 1 0.14 2280 1008 9.95 1465
755 10.55 8880 978 12.02 1516
731 1 0.48 8640 968 12.00 1712
949 10.4 1932 958 11.8 2244
 
 
 
 
Component Kerosene Cracked kerosene
n-dodecane 89
1, 2, 4-trimethylbenzene 11
n-decane 5.35
benzene 9.65
hydrogen 26
methane 23
ethane 12
ethylene 12
propane 4
propylene 8
 
 
 
1 Huang H. ; Spadaccini L. J. ; Sobel D. R. J. Eng. Gas Turbines Power. 2004, 126, 284.
2 Zhong F. Q. ; Fan X. J. ; Yu G. ; Li J. G. Sci China, Ser. E. 2009, 52, 2644.
3 Fry R. S. J. Propul. Power 2004, 20, 27.
4 Liu S. ; Zhang B. M. Sci. Technol. 2011, 15, 526.
5 Ning H. B. ; Li Z. R. ; Li X. Y. Acta Phys. -Chim. Sin. 2016, 32, 131.
5 甯红波; 李泽荣; 李象远. 物理化学学报, 2006, 32, 131.
6 Puri P. ; Ma F. H. ; Choi J.-Y. ; Yong V. Combust. Flame 2005, 142, 454.
7 Xu S. L. ; Liao Q. Proc. Eng. 2015, 99, 338.
8 Castaldi, M.; Leylegian, J. C.; Chinitz, W.; Modroukas, D. Development of an Effective Endothermic Fuel Platform for Regeneratively-Cooled Hypersonic Vehicles. In the American Institute of Aeronautics and Astronautics, 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Sacramento, CA, USA, July 9–12, 2006. doi: 10.2514/6.2006-4403
9 Zhang C. H. ; Li B. ; Rao F. ; Li P. ; Li X. Y. Proc. Combust. Inst. 2015, 35, 3151.
10 Rao F. ; Li B. ; Li P. ; Zhang C. H. ; Li X. Y. Energy Fuel. 2014, 28, 6707.
11 Yong K. L. ; He J. N. ; Zhang W. F. ; Xian L. Y. ; Zhang C. H. ; Li P. ; Li X. Y. Fuel 2017, 188, 567.
12 He J. N. ; Gou Y. D. ; Lu P. F. ; Zhang C. H. ; Li P. ; Li X. Y. Combust. Flame 2018, 192, 358.
13 Zhukov V. P. ; Sechenov V. A. ; Starikovskiy A. Y. Fuel 2014, 126, 169.
14 Davidson D. F. ; Zhu Y. ; Shao J. ; Hanson R. K. Fuel 2017, 187, 26.
15 Akih-Kumgeh B. ; Bergthorson J. M. Combust. Flame 2011, 158, 1037.
16 Liang W. K. ; Law C. K. Combust. Flame 2018, 118, 162.
17 Ji W. Q. ; Zhao P. ; He T. J. ; He X. ; Farooq A. ; Law C. K. Combust. Flame 2016, 164, 294.
18 Kalyan K. ; Andreas G. ; Friedrich D. Fuel 2018, 222, 859.
19 Malewicki T. ; Gudiyella S. ; Brezinsky K. Combust. Flame 2013, 160, 17.
20 Dooley S. ; Won S. H. ; Chaos M. ; Heyne J. ; Ju Y. G. ; Dryer F. L. ; Kumar K. ; Sung C. -J. Wang H. W. Oehlschlaeger M. A. ; et al Combust. Flame 2010, 157, 2333.
21 Narayanaswamy K. ; Pitsch H. ; Pepiot P. Combust. Flame 2016, 165, 288.
22 Egolfopoulos F. N. ; Zhang H. ; Zhang Z. Combust. Flame 1997, 109, 237.
[1] Shuanghui XI,Fan WANG,Xiangyuan LI. First- and Second-Order Local and Global Sensitivity Analyses on Ignition Delay Times of Four Typical Fuels[J]. Acta Phys. -Chim. Sin., 2019, 35(2): 167-181.
[2] Pengfei LU,Yudan GOU,Jiuning HE,Ping LI,Changhua ZHANG,Xiangyuan LI. Shock Tube Study of Methyl Pentanoate Ignition at High Temperatures[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 618-624.
[3] Dong ZHENG,Bei-Jing ZHONG,Tong YAO. Methodology for Formulating Aviation Kerosene Surrogate Fuels and The Surrogate Fuel Model for HEF Kerosene[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2438-2445.
[4] Wei-Feng ZHANG,Lei-Yong XIAN,Kang-Le YONG,Jiu-Ning HE,Chang-Hua ZHANG,Ping LI,Xiang-Yuan LI. A Shock Tube Study of n-Undecane/Air Ignition Delays over a Wide Range of Temperatures[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2216-2222.
[5] ZHENG Zhao-Lei, LIANG Zhen-Long. Reduced Chemical Kinetic Model of a Gasoline Surrogate Fuel for HCCI Combustion[J]. Acta Phys. -Chim. Sin., 2015, 31(7): 1265-1274.
[6] HE Jiu-Ning, LI You-Liang, ZHANG Chang-Hua, LI Ping, LI Xiang-Yuan. Shock Tube Ignition Delay Measurements of Decalin/Air Mixtures at High Temperatures[J]. Acta Phys. -Chim. Sin., 2015, 31(5): 836-842.
[7] ZHENG Dong, YU Wei-Ming, ZHONG Bei-Jing. RP-3 Aviation Kerosene Surrogate Fuel and the Chemical Reaction Kinetic Model[J]. Acta Phys. -Chim. Sin., 2015, 31(4): 636-642.
[8] XU Jia-Qi, GUO Jun-Jiang, LIU Ai-Ke, WANG Jian-Li, TAN Ning-Xin, LI Xiang-Yuan. Construction of Autoignition Mechanisms for the Combustion of RP-3 Surrogate Fuel and Kinetics Simulation[J]. Acta Phys. -Chim. Sin., 2015, 31(4): 643-652.
[9] YAO Tong, ZHONG Bei-Jing. Chemical Kinetic Model for Auto-Ignition and Combustion of n-Decane[J]. Acta Phys. -Chim. Sin., 2013, 29(02): 237-244.
[10] ZHENG Dong, ZHONG Bei-Jing. Chemical Kinetic Model for Ignition of Three-Component Fuel Comprising iso-Octane/n-Heptane/Ethanol[J]. Acta Phys. -Chim. Sin., 2012, 28(09): 2029-2036.
[11] WEN Fei, ZHONG Bei-Jing. Skeletal Mechanism Generation Based on Eigenvalue Analysis Method[J]. Acta Phys. -Chim. Sin., 2012, 28(06): 1306-1312.
[12] TANG Hong-Chang, ZHANG Chang-Hua, LI Ping, WANG Li-Dong, YE Bin, LI Xiang-Yuan. Experimental Study of Autoignition Characteristics of Kerosene[J]. Acta Phys. -Chim. Sin., 2012, 28(04): 787-791.