Please wait a minute...
Acta Phys. -Chim. Sin.  2019, Vol. 35 Issue (6): 572-590    DOI: 10.3866/PKU.WHXB201806060
REVIEW     
Recent Advances in the Synthesis and Applications of Carbon Dots
Chao HU1,Ye MU1,Mingyu LI2,Jieshan QIU2,3,*()
1 School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
2 Liaoning Key Lab for Energy Materials and Chemical Engineering, School of Chemical Engineering, State Key Lab of Fine Chemicals, Dalian University of Technology, Dalian 116024, Liaoning Province, P. R. China
3 College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
Download: HTML     PDF(3715KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Carbon atoms can bond together in different molecular configurations leading to different carbon allotropes including diamond, fullerene, carbon nanotubes, graphene, and graphdiyne that are widely used or explored in a number of fields. Carbon dots (CDs), which are generally surface-passivated carbon nanoparticles less than 10 nm in size, are other new members of carbon allotropes. CDs were serendipitously discovered in 2004 during the electrophoresis purification of single-walled carbon nanotubes. Similar to their popular older cousins, fullerenes, carbon nanotubes, and graphene, CDs have drawn much attention in the past decade and have gradually become a rising star because of the advantages of chemical inertness, high abundance, good biocompatibility, and low toxicity. Interestingly, CDs typically display excitation-energy- and size-dependent fluorescent behavior. Depending on their structures, the fluorescence from CDs is either attributed to the quantum-confinement effect and conjugated π-domains of the carbogenic core (intrinsic states), or determined by the hybridization of the carbon skeleton and the connected chemical groups (surface states). Compared with the traditional semiconductors, quantum dots, and their organic dye counterparts, fluorescent CDs possess not only excellent optical properties and small-size effect, but also the advantages of low-cost synthesis, good photo-bleaching resistance, tunable band gaps, and surface functionalities. For these reasons, CDs are considered to be emergent nanolights for bio-imaging, sensing, and optoelectronic devices. Additionally, CDs feature abundant structural defects at their surface and edges, excellent light-harvesting capability, and photo-induced electron-transfer ability, thus facilitating their applications in photocatalysis and energy storage and conversions. To date, remarkable progress has been achieved in terms of synthetic approaches, properties, and applications of CDs. This review aims to classify the different types of CDs, based on the structures of their carbogenic cores, and to describe their structural characteristics in terms of synthesis approaches. Two well-established strategies for synthesizing CDs, the top-down and bottom-up routes, are highlighted. The diverse potential applications, in the bio-imaging and diagnosis, sensing, catalysis, optoelectronics, and energy-storage fields, of CDs with different structures and physicochemical properties, are summarized, covering the issues of surface modification, heteroatom doping, and hybrids made by combining CDs with other species such as metals, metal oxides, and biological molecules. The challenges and opportunities for the future development of CDs are also briefly outlined.



Key wordsFluorescence      Carbon dot      Bioimaging      Sensing      Catalysis      Optoelectronic device      Energy storage     
Received: 27 June 2018      Published: 01 August 2018
MSC2000:  O648  
Fund:  The project was supported by the Fundamental Research Funds for the Central Universities, China(xjj2017083);The project was supported by the Fundamental Research Funds for the Central Universities, China(zrzd2017014);the National Natural Science Foundation of China(51702254);the National Natural Science Foundation of China(U1710117);the China Postdoctoral Science Foundation(2016M602827);the Natural Science Basic Research Plan in Shanxi Province, China(2017JQ5027);the Liaoning Province Doctoral Startup Grant(201501173)
Corresponding Authors: Jieshan QIU     E-mail: qiujs@mail.buct.edu.cn
Cite this article:

Chao HU,Ye MU,Mingyu LI,Jieshan QIU. Recent Advances in the Synthesis and Applications of Carbon Dots. Acta Phys. -Chim. Sin., 2019, 35(6): 572-590.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201806060     OR     http://www.whxb.pku.edu.cn/Y2019/V35/I6/572

Fig 1 Schematic of the structures of CDs
Fig 2 (a) XRD patterns, (b) Raman spectra (λex = 633 nm), (c) C 1s XPS spectra and (d) FT-IR spectra of CDs and graphite 17
Fig 3 Scheme of oxidation cutting of carbon fibers (CF) into CDs 28
Fig 4 Mechanism for the hydrothermal cutting of GO into CDs 53
Fig 5 Schematic for synthesis of GQDs and GO from citric acid 12
Fig 6 A schematic of the CDs made at different hydrothermal temperatures 43
Fig 7 Tumor uptake of ZW800-CDs after different routes of injection 76. (a) NIR fluorescence images of SCC-7 tumor-bearing mice acquired at different injection times (white arrow indicates tumor; red arrow indicates kidney); (b) Tumor region of interest analysis; (c) Fluorescence imaging of the frozen tissue slices.
Fig 8 Fluorescence image with (a) normal excitation (458 nm) and (b) two-photon excitation (800 nm) for HT-29 cells labeled with PEG1500N-CDs 77
Fig 9 Dual-emission fluorescent sensing of Cu2+ ions based on a CdSe@C-TPEA nanohybrid 114
Fig 10 Schematic of the fabrication and sensing process of CDs-P for H2O2 121
Fig 11 The proposed reaction mechanism for visible-light-driven water splitting by CDs-C3N4 nanocomposite 122
Fig 12 (a) Schematic and (b) energy band diagram of the ITO/PEDOT:PSS/P3HT:GQDs/Al device, and (c) J–V characteristic curves of different photovoltaic devices 168
Fig 13 (a) Emission spectra, (b) CIE chromaticity chart, and (c–e) photographs of the corresponding LEDs with different CDs as phosphors 180
Fig 14 (a) Fabrication processes of graphene frame supported CDs-coated VO2 nanobelt arrays; (b) Schematic of the electrode with bicontinuous electron and ion transfer channels; (c) Cycling performance for 1500 cycles 197
1 Zhan J. ; Geng B. ; Wu K. ; Xu G. ; Wang L. ; Guo R. ; Lei B. ; Zheng F. ; Pan D. ; Wu M. Carbon 2018, 130, 153.
2 Bao L. ; Liu C. ; Zhang Z.-L. ; Pang D. -W. Adv. Mater. 2015, 27, 1663.
3 Zhang W. ; Xu T. ; Liu Z. ; Wu N.-L. ; Wei M. Chem. Commun. 2018, 54, 1413.
4 Bourlinos A. B. ; Stassinopoulos A. ; Anglos D. ; Zboril R. ; Georgakilas V. ; Giannelis E. P. Chem. Mater. 2008, 20, 4539.
5 Zheng L. ; Chi Y. ; Dong Y. ; Lin J. ; Wang B. J. Am. Chem. Soc. 2009, 131, 4564.
6 Xu X. ; Ray R. ; Gu Y. ; Ploehn H. J. ; Gearheart L. ; Raker K. ; Scrivens W. A. J. Am. Chem. Soc. 2004, 126, 12736.
7 Sun Y.-P. ; Zhou B. ; Lin Y. ; Wang W. ; Fernando K. A. S. ; Pathak P. ; Meziani M. J. ; Harruff B. A. ; Wang X. ; Wang H. F. ; et al J. Am. Chem. Soc. 2006, 128, 7756.
8 Wang X. ; Cao L. ; Yang S. T. ; Lu F. S. ; Meziani M. J. ; Tian L. L. ; Sun K. W. ; Bloodgood M. A. ; Sun Y. P. Angew. Chem. Int. Ed. 2010, 49, 5310.
9 Luo P. G. ; Sahu S. ; Yang S. T. ; Sonkar S. K. ; Wang J. ; Wang H. ; LeCroy G. E. ; Cao L. ; Sun Y.-P. J. Mater. Chem. B 2013, 1, 2116.
10 Zhu S. ; Song Y. ; Zhao X. ; Shao J. ; Zhang J. ; Yang B. Nano Res. 2015, 8, 355.
11 Liu H. P. ; Ye T. ; Mao C. D. Angew. Chem. Int. Ed. 2007, 46, 6473.
12 Dong Y. ; Shao J. ; Chen C. ; Li H. ; Wang R. ; Chi Y. ; Lin X. ; Chen G. Carbon 2012, 50, 4738.
13 Zhao Q. L. ; Zhang Z. L. ; Huang B. H. ; Peng J. ; Zhang M. ; Pang D. W. Chem. Commun. 2008, 5116.
14 Zhou J. G. ; Booker C. ; Li R. Y. ; Zhou X. T. ; Sham T. K. ; Sun X. L. ; Ding Z. F. J. Am. Chem. Soc. 2007, 129, 744.
15 Jaiswal A. ; Ghosh S. S. ; Chattopadhyay A. Chem. Commun. 2012, 48, 407.
16 Zhu C. ; Zhai J. ; Dong S. Chem. Commun. 2012, 48, 9367.
17 Ming H. ; Ma Z. ; Liu Y. ; Pan K. ; Yu H. ; Wang F. ; Kang Z. Dalton Trans. 2012, 41, 9526.
18 Hu C. ; Liu Y. ; Yang Y. ; Cui J. ; Huang Z. ; Wang Y. ; Yang L. ; Wang H. ; Xiao Y. ; Rong J. J. Mater. Chem. B 2013, 1, 39.
19 Li H. ; Sun C. ; Vijayaraghavan R. ; Zhou F. ; Zhang X. ; MacFarlane D. R. Carbon 2016, 104, 33.
20 Peng H. ; Travas-Sejdic J. Chem. Mater. 2009, 21, 5563.
21 Mei Q. ; Zhang K. ; Guan G. ; Liu B. ; Wang S. ; Zhang Z. Chem. Commun. 2010, 46, 7319.
22 Wang F. ; Pang S. ; Wang L. ; Li Q. ; Kreiter M. ; Liu C.-Y. Chem. Mater. 2010, 22, 4528.
23 Bottini M. ; Balasubramanian C. ; Dawson M. I. ; Bergamaschi A. ; Bellucci S. ; Mustelin T. J. Phys. Chem. B 2005, 110, 831.
24 Bao L. ; Zhang Z. L. ; Tian Z. Q. ; Zhang L. ; Liu C. ; Lin Y. ; Qi B. ; Pang D. W. Adv. Mater. 2011, 23, 5801.
25 Li Y. ; Zhao Y. ; Cheng H. ; Hu Y. ; Shi G. ; Dai L. ; Qu L. J. Am. Chem. Soc. 2012, 134, 15.
26 Li H. ; He X. ; Kang Z. ; Huang H. ; Liu Y. ; Liu J. ; Lian S. ; Tsang C. H. A. ; Yang X. ; Lee S. T. Angew. Chem. Int. Ed. 2010, 49, 4430.
27 Hu C. ; Yu C. ; Li M. ; Wang X. ; Dong Q. ; Wang G. ; Qiu J. Chem. Commun. 2015, 51, 3419.
28 Peng J. ; Gao W. ; Gupta B. K. ; Liu Z. ; Romero-Aburto R. ; Ge L. ; Song L. ; Alemany L. B. ; Zhan X. ; Gao G. ; et al Nano Lett. 2012, 12, 844.
29 Hu C. ; Yu C. ; Li M. ; Wang X. ; Yang J. ; Zhao Z. ; Eychmüller A. ; Sun Y. P. ; Qiu J. Small 2014, 10, 4926.
30 Tao H. ; Yang K. ; Ma Z. ; Wan J. ; Zhang Y. ; Kang Z. ; Liu Z. Small 2012, 8, 281.
31 Chen W. ; Li F. ; Wu C. ; Guo T. Appl. Phys. Lett. 2014, 104, 063109.
32 Dong Y. ; Chen C. ; Zheng X. ; Gao L. ; Cui Z. ; Yang H. ; Guo C. ; Chi Y. ; Li C. M. J. Mater. Chem. 2012, 22, 8764.
33 Pan D. Y. ; Zhang J. C. ; Li Z. ; Wu C. ; Yan X. M. ; Wu M. H. Chem. Commun. 2010, 46, 3681.
34 Callan J. F. ; Fowley C. P. ; McCaughan B. ; Devlin A. Chem. Commun. 2012, 48, 9361.
35 Liu R. ; Wu D. ; Liu S. ; Koynov K. ; Knoll W. ; Li Q. Angew. Chem. Int. Ed. 2009, 48, 4598.
36 Lai C.-W. ; Hsiao Y. H. ; Peng Y. ; Chou P. T. J. Mater. Chem. 2012, 22, 14403.
37 Lin P. -Y. ; Hsieh C. -W. ; Kung M. -L. ; Hsieh S. Sci. Rep. 2013, 3, 1703.
38 Zhu H. ; Wang X. ; Li Y. ; Wang Z. ; Yang F. ; Yang X. Chem. Commun. 2009, 45, 5118.
39 Zhai X. ; Zhang P. ; Liu C. ; Bai T. ; Li W. ; Dai L. ; Liu W. Chem. Commun. 2012, 48, 7955.
40 Pan L. ; Sun S. ; Zhang A. ; Jiang K. ; Zhang L. ; Dong C. ; Huang Q. ; Wu A. ; Lin H. Adv. Mater. 2015, 27, 7782.
41 Rahy A. ; Zhou C. ; Zheng J. ; Park S. Y. ; Kim M. J. ; Jang I. ; Cho S. J. ; Yang D. J. Carbon 2012, 50, 1298.
42 Sahoo B. N. ; Kandasubramanian B. RSC Adv. 2014, 4, 11331.
43 Song Y. ; Zhu S. ; Zhang S. ; Fu Y. ; Wang L. ; Zhao X. ; Yang B. J. Mater. Chem. C 2015, 3, 5976.
44 Zhu S. ; Zhao X. ; Song Y. ; Lu S. ; Yang B. Nano Today 2016, 11, 128.
45 Wang L. ; Wang Y. ; Xu T. ; Liao H. ; Yao C. ; Liu Y. ; Li Z. ; Chen Z. ; Pan D. ; Sun L. ; et al Nat. Commun. 2014, 5, 5357.
46 Hsu P. C. ; Chang H. T. Chem. Commun. 2012, 48, 3984.
47 Yao S. ; Hu Y. ; Li G. Carbon 2014, 66, 77.
48 Zhu X. ; Wang H. ; Jiao Q. ; Xiao X. ; Zuo X. ; Liang Y. ; Nan J. ; Wang J. ; Wang L. Part. Part. Syst. Char. 2014, 31, 771.
49 Zong J. ; Zhu Y. ; Yang X. ; Shen J. ; Li C. Chem. Commun. 2011, 47, 764.
50 Kwon W. ; Do S. ; Rhee S.-W. RSC Adv. 2012, 2, 11223.
51 Kwon W. ; Rhee S.-W. Chem. Commun. 2012, 48, 5256.
52 Zhu S. ; Song Y. ; Shao J. ; Zhao X. ; Yang B. Angew. Chem. Int. Ed. 2015, 54, 14626.
53 Pan D. ; Zhang J. ; Li Z. ; Wu M. Adv. Mater. 2010, 22, 734.
54 Ding H. ; Cheng L.-W. ; Ma Y.-Y. ; Kong J.-L. ; Xiong H.-M. New J. Chem. 2013, 37, 2515.
55 Sun J. ; Yang S. ; Wang Z. ; Shen H. ; Xu T. ; Sun L. ; Li H. ; Chen W. ; Jiang X. ; Ding G. ; et al Part. Part. Syst. Char. 2014, 32, 434.
56 Zhuo S. ; Shao M. ; Lee S. T. ACS Nano 2012, 6, 1059.
57 Buzaglo M. ; Shtein M. ; Regev O. Chem. Mater. 2016, 28, 21.
58 Zhang J. ; Shen W. ; Pan D. ; Zhang Z. ; Fang Y. ; Wu M. New J. Chem. 2010, 34, 591.
59 Bhunia S. K. ; Saha A. ; Maity A. R. ; Ray S. C. ; Jana N. R. Sci. Rep. 2013, 3, 1473.
60 Chen B. ; Li F. ; Li S. ; Weng W. ; Guo H. ; Guo T. ; Zhang X. ; Chen Y. ; Huang T. ; Hong X. ; et al Nanoscale 2013, 5, 1967.
61 Chen Q. L. ; Wang C. F. ; Chen S. J. Mater. Sci. 2013, 48, 2352.
62 Wu X. ; Tian F. ; Wang W. ; Chen J. ; Wu M. ; Zhao J. X. J. Mater. Chem. C 2013, 1, 4676.
63 Hsu P. C. ; Chen P. C. ; Ou C. M. ; Chang H. Y. ; Chang H. T. J. Mater. Chem. B 2013, 1, 1774.
64 Zhu L. ; Yin Y. ; Wang C.-F. ; Chen S. J. Mater. Chem. C 2013, 1, 4925.
65 Hsu P. C. ; Shih Z. Y. ; Lee C. H. ; Chang H. T. Green Chem. 2012, 14, 917.
66 Liu J. L. ; Lin L. Z. ; Hu J. F. ; Bai M. J. ; Chen L. X. ; Wei J. J. ; Hei L. F. ; Li C. M. Acta Phys. -Chim. Sin. 2018, 34, 92.
66 刘金龙; 林亮珍; 胡锦凤; 白明洁; 陈良贤; 魏俊俊; 黑立富; 李成明. 物理化学学报, 2018, 34, 92.
67 Wang Z. ; Lu Y. ; Yuan H. ; Ren Z. ; Xu C. ; Chen J. Nanoscale 2015, 7, 20743.
68 Li F. ; Li Y. ; Yang X. ; Han X. ; Jiao Y. ; Wei T. ; Yang D. ; Xu H. ; Nie G. Angew. Chem. Int. Ed. 2018, 57, 2377.
69 Li H. ; Ming H. ; Liu Y. ; Yu H. ; He X. ; Huang H. ; Pan K. ; Kang Z. ; Lee S.-T. New J. Chem. 2011, 35, 2666.
70 Niu F. ; Xu Y. ; Liu M. ; Sun J. ; Guo P. ; Liu J. Nanoscale 2016, 8, 5470.
71 Yang W. ; Zhang H. ; Lai J. ; Peng X. ; Hu Y. ; Gu W. ; Ye L. Carbon 2018, 128, 78.
72 Ding H. ; Ji Y. ; Wei J.-S. Gao Q.-Y. Zhou Z.-Y. Xiong H.-M. J. Mater. Chem. B 2017, 5, 5272.
73 Ruan S. ; Zhu B. ; Zhang H. ; Chen J. ; Shen S. ; Qian J. ; He Q. ; Gao H. J. Colloid Interface Sci. 2014, 422, 25.
74 Shi L. ; Li Y. ; Li X. ; Wen X. ; Zhang G. ; Yang J. ; Dong C. ; Shuang S. Nanoscale 2015, 7, 7394.
75 Zheng M. ; Ruan S. ; Liu S. ; Sun T. ; Qu D. ; Zhao H. ; Xie Z. ; Gao H. ; Jing X. ; Sun Z. ACS Nano 2015, 9, 11455.
76 Huang X. ; Zhang F. ; Zhu L. ; Choi K. Y. ; Guo N. ; Guo J. ; Tackett K. ; Anilkumar P. ; Liu G. ; Quan Q. ; et al ACS Nano 2013, 7, 5684.
77 Liu J.-H. ; Cao L. ; LeCroy G. E. ; Wang P. ; Meziani M. J. ; Dong Y. ; Liu Y. ; Luo P. G. ; Sun Y. -P. ACS Appl. Mater. Interfaces 2015, 7, 19439.
78 Yang X. ; Yang X. ; Li Z. ; Li S. ; Han Y. ; Chen Y. ; Bu X. ; Su C. ; Xu H. ; Jiang Y. ; et al J. Colloid Interface Sci. 2015, 456, 1.
79 Cao L. ; Wang X. ; Meziani M. J. ; Lu F. ; Wang H. ; Luo P. G. ; Lin Y. ; Harruff B. A. ; Veca L. M. ; Murray D. ; et al J. Am. Chem. Soc. 2007, 129, 11318.
80 Tong G. ; Wang J. ; Wang R. ; Guo X. ; He L. ; Qiu F. ; Wang G. ; Zhu B. ; Zhu X. ; Liu T. J. Mater. Chem. B 2015, 3, 700.
81 Liu Q. ; Guo B. ; Rao Z. ; Zhang B. ; Gong J. R. Nano Lett. 2013, 13, 2436.
82 Li D. ; Jing P. ; Sun L. ; An Y. ; Shan X. ; Lu X. ; Zhou D. ; Han D. ; Shen D. ; Zhai Y. ; et al Adv. Mater. 2018, 30, 1705913.
83 Zhao H. ; Duan J. ; Xiao Y. ; Tang G. ; Wu C. ; Zhang Y. ; Liu Z. ; Xue W. Chem. Mater. 2018, 30, 3438.
84 Sun J. ; Xin Q. ; Yang Y. ; Shah H. ; Cao H. ; Qi Y. ; Gong J. R. ; Li J. Chem. Commun. 2018, 54, 715.
85 Rakovich A. ; Rakovich T. J. Mater. Chem. B 2018, 6, 2690.
86 Ding H. ; Du F. ; Liu P. ; Chen Z. ; Shen J. ACS Appl. Mater. Interfaces 2015, 7, 6889.
87 Wang Z. ; Liao H. ; Wu H. ; Wang B. ; Zhao H. ; Tan M. Anal. Methods 2015, 7, 8911.
88 Choi Y. ; Kim S. ; Choi M.-H. ; Ryoo S.-R. ; Park J. ; Min D.-H. ; Kim B.-S. Adv. Funct. Mater. 2014, 24, 5781.
89 Wang J. ; Zhang Z. ; Zha S. ; Zhu Y. ; Wu P. ; Ehrenberg B. ; Chen J.-Y. Biomaterials 2014, 35, 9372.
90 Guo M. ; Xiang H. J. ; Wang Y. ; Zhang Q. ; An L. ; Yang S. ; Ma Y. ; Wang Y. C. ; Liu J. G. Chem. Commun. 2017, 53, 3253.
91 Jia Q. ; Ge J. ; Liu W. ; Zheng X. ; Chen S. ; Wen Y. ; Zhang H. ; Wang P. Adv. Mater. 2018, 30, 1706090.
92 Shen C. ; Ge S. ; Pang Y. ; Xi F. ; Liu J. ; Dong X. ; Chen P. J. Mater. Chem. B 2017, 5, 6593.
93 Lu W. ; Gao Y. ; Jiao Y. ; Shuang S. ; Li C. ; Dong C. Nanoscale 2017.
94 Chen B. B. ; Li R. ; Liu M. L. ; Zhang H. Z. ; Huang C. Z. Chem. Commun. 2017.
95 Gao G. ; Jiang Y.-W. ; Jia H.-R. ; Yang J. ; Wu F.-G. Carbon 2018, 134, 232.
96 Zhao H. X. ; Liu L. Q. ; Liu Z. D. ; Wang Y. ; Zhao X. J. ; Huang C. Z. Chem. Commun. 2011, 47, 2604.
97 Lin Z. ; Xue W. ; Chen H. ; Lin J. M. Anal. Chem. 2011, 83, 8245.
98 Zhang H. ; Li Y. ; Liu X. ; Liu P. ; Wang Y. ; An T. ; Yang H. ; Jing D. ; Zhao H. Environ. Sci. Technol. Lett. 2013, 1, 87.
99 Bai J.-M. ; Zhang L. ; Liang R.-P. ; Qiu J. -D. Chem. Eur. J. 2013, 19, 3822.
100 Shi W. ; Wang Q. ; Long Y. ; Cheng Z. ; Chen S. ; Zheng H. ; Huang Y. Chem. Commun. 2011, 47, 6695.
101 Yan Y. ; Li H. ; Wang Q. ; Mao H. ; Wang K. J. Mater. Chem. C 2017, 5, 6092.
102 Hu J. ; Zou C. ; Su Y. ; Li M. ; Hu N. ; Ni H. ; Yang Z. ; Zhang Y. J. Mater. Chem. C 2017, 5, 6862.
103 Sun X. ; He J. ; Meng Y. ; Zhang L. ; Zhang S. ; Ma X. ; Dey S. ; Zhao J. ; Lei Y. J. Mater. Chem. A 2016, 4, 4161.
104 Miao H. ; Wang Y. ; Yang X. Nanoscale 2018, 10, 8139.
105 Dai H. ; Yang C. ; Tong Y. ; Xu G. ; Ma X. ; Lin Y. ; Chen G. Chem. Commun. 2012, 48, 3055.
106 Loo A. H. ; Sofer Z. ; Bou?a D. ; Ulbrich P. ; Bonanni A. ; Pumera M. ACS Appl. Mater. Interfaces 2016, 8, 1951.
107 Huan H. ; Li P. ; Zhang M. ; Yu Y. ; Huang Y. ; Gu H. ; Wang C. ; Yang Y. Nanoscale 2017, 9, 5044.
108 Jurado-Sánchez B. ; Pacheco M. ; Rojo J. ; Escarpa A. Angew. Chem. Int. Ed. 2017, 56, 6957.
109 Liu G. ; Zhang K. ; Ma K. ; Care A. ; Hutchinson M. R. ; Goldys E. M. Nanoscale 2017, 9, 4934.
110 Kalytchuk S. ; Poláková K. ; Wang Y. ; Froning J. P. ; Cepe K. ; Rogach A. L. ; Zbo?il R. ACS Nano 2017, 11, 1432.
111 Liu J. ; Ren X. ; Yan Y. ; Wang N. ; Wang S. ; Zhang H. ; Li J. ; Yu J. Inorg. Chem. Front. 2018, 5, 139.
112 Wei L. ; Ma Y. ; Shi X. ; Wang Y. ; Su X. ; Yu C. ; Xiang S. ; Xiao L. ; Chen B. J. Mater. Chem. B 2017, 5, 3383.
113 Zhou L. ; Lin Y. ; Huang Z. ; Ren J. ; Qu X. Chem. Commun. 2012, 48, 1147.
114 Zhu A. ; Qu Q. ; Shao X. ; Kong B. ; Tian Y. Angew. Chem. Int. Ed. 2012, 51, 7185.
115 Lu W. ; Qin X. ; Asiri A. ; Al-Youbi A. ; Sun X. J. Nanopart. Res. 2012, 15, 1.
116 Xu Q. ; Pu P. ; Zhao J. ; Dong C. ; Gao C. ; Chen Y. ; Chen J. ; Liu Y. ; Zhou H. J. Mater. Chem. A 2015, 3, 542.
117 Liu J. M. ; Lin L. P. ; Wang X. X. ; Jiao L. ; Cui M. L. ; Jiang S. L. ; Cai W. L. ; Zhang L. H. ; Zheng Z. Y. Analyst 2013, 138, 278.
118 Cayuela A. ; Carrillo-Carrión C. ; Soriano M. L. ; Parak W. J. ; Valcárcel M. Anal. Chem. 2016, 88, 3178.
119 Zhang H. ; Zhang X. ; Dong S. Anal. Chem. 2015, 87, 11167.
120 Jiang B. P. ; Zhou B. ; Shen X. C. ; Yu Y. X. ; Ji S. C. ; Wen C. C. ; Liang H. Chem. Eur. J. 2015, 21, 18993.
121 Lan M. ; Di Y. ; Zhu X. ; Ng T. W. ; Xia J. ; Liu W. ; Meng X. ; Wang P. ; Lee C. S. ; Zhang W. Chem. Commun. 2015, 51, 15574.
122 Zhao H. ; Chang Y. ; Liu M. ; Gao S. ; Yu H. ; Quan X. Chem. Commun. 2013, 49, 234.
123 Wang C. I. ; Periasamy A. P. ; Chang H. T. Anal. Chem. 2013, 85, 3263.
124 Li H. ; Kang Z. ; Liu Y. ; Lee S.-T. J. Mater. Chem. 2012, 22, 24230.
125 Feng C. ; Deng X. Y. ; Ni X. X. ; Li W. B. Acta Phys. -Chim. Sin. 2015, 31, 2349.
125 冯昌; 邓晓燕; 倪晓晓; 李卫兵. 物理化学学报, 2015, 31, 2349.
126 Zhang H. ; Ming H. ; Lian S. ; Huang H. ; Li H. ; Zhang L. ; Liu Y. ; Kang Z. ; Lee S. T. Dalton Trans. 2011, 40, 10822.
127 Han X. ; Han Y. ; Huang H. ; Zhang H. ; Zhang X. ; Liu R. ; Liu Y. ; Kang Z. Dalton Trans. 2013, 42, 10380.
128 Yu H. ; Zhang H. ; Huang H. ; Liu Y. ; Li H. ; Ming H. ; Kang Z. New J. Chem. 2012, 36, 1031.
129 Li H. ; Liu R. ; Liu Y. ; Huang H. ; Yu H. ; Ming H. ; Lian S. ; Lee S.T. ; Kang Z. J. Mater. Chem. 2012, 22, 17470.
130 Di J. ; Xia J. ; Ji M. ; Xu L. ; Yin S. ; Zhang Q. ; Chen Z. ; Li H. Carbon 2016, 98, 613.
131 Li Z. ; Zhu L. ; Wu W. ; Wang S. ; Qiang L. Appl. Catal. B-Environ. 2016, 192, 277.
132 Wu W. ; Zhan L. ; Fan W. ; Song J. ; Li X. ; Li Z. ; Wang R. ; Zhang J. ; Zheng J. ; Wu M. ; et al Angew. Chem. Int. Ed. 2015, 54, 6540.
133 Zhang Q. ; Xu W. ; Han C. ; Wang X. ; Wang Y. ; Li Z. ; Wu W. ; Wu M. Carbon 2018, 126, 128.
134 Wu W. ; Zhang Q. ; Wang R. ; Zhao Y. ; Li Z. ; Ning H. ; Zhao Q. ; Wiederrecht G. P. ; Qiu J. ; Wu M. ACS Catal. 2018, 8, 747.
135 Liu J. ; Liu Y. ; Liu N. ; Han Y. ; Zhang X. ; Huang H. ; Lifshitz Y. ; Lee S.-T. ; Zhong J. ; Kang Z. Science 2015, 347, 970.
136 Zou J.-P. ; Wang L. -C. ; Luo J. ; Nie Y.-C. ; Xing Q.-J. ; Luo X.-B. ; Du H. -M. ; Luo S.-L. ; Suib S. L. Appl. Catal. B-Environ. 2016, 193, 103.
137 Fang S. ; Xia Y. ; Lv K. ; Li Q. ; Sun J. ; Li M. Appl. Catal. B-Environ. 2016, 185, 225.
138 Cao L. ; Sahu S. ; Anilkumar P. ; Bunker C. E. ; Xu J. ; Fernando K. A. S. ; Wang P. ; Guliants E. A. ; Tackett K. N. ; Sun Y.-P. J. Am. Chem. Soc. 2011, 133, 4754.
139 Li H. ; Zhang X. ; MacFarlane D. R. Adv. Energy Mater. 2015, 5, 1401077.
140 Martindale B. C. M. ; Hutton G. A. M. ; Caputo C. A. ; Prantl S. ; Godin R. ; Durrant J. R. ; Reisner E. Angew. Chem. Int. Ed. 2017, 56, 6459.
141 Wang D.-W. ; Su D. Energy Environ. Sci. 2014, 7, 576.
142 Tam T. V. ; Kang S. G. ; Kadumudi F. B. ; Oh E. ; Lee S. G. ; Choi W. M. J. Mater. Chem. A 2017, 5, 10537.
143 Fei H. ; Ye R. ; Ye G. ; Gong Y. ; Peng Z. ; Fan X. ; Samuel E. L. G. ; Ajayan P. M. ; Tour J. M. ACS Nano 2014, 8, 10837.
144 Gao S. ; Chen Y. ; Fan H. ; Wei X. ; Hu C. ; Wang L. ; Qu L. J. Mater. Chem. A 2014, 2, 6320.
145 Liu J. ; Zhao S. ; Li C. ; Yang M. ; Yang Y. ; Liu Y. ; Lifshitz Y. ; Lee S.-T. ; Kang Z. Adv. Energy Mater. 2016, 6, 1502039.
146 Rao Y. ; Ning H. ; Ma X. ; Liu Y. ; Wang Y. ; Liu H. ; Liu J. ; Zhao Q. ; Wu M. Carbon 2018, 129, 335.
147 Lv J. J. ; Zhao J. ; Fang H. ; Jiang L. P. ; Li L.-L. ; Ma J. ; Zhu J. J. Small 2017, 13, 1700264.
148 Wu J. ; Ma S. ; Sun J. ; Gold J. I. ; Tiwary C. ; Kim B. ; Zhu L. ; Chopra N. ; Odeh I. N. ; Vajtai R. ; et al Nat. Commun. 2016, 7, 13869.
149 Guo S. ; Zhao S. ; Gao J. ; Zhu C. ; Wu X. ; Fu Y. ; Huang H. ; Liu Y. ; Kang Z. Nanoscale 2017, 9, 298.
150 Fu J. ; Wang Y. ; Liu J. ; Huang K. ; Chen Y. ; Li Y. ; Zhu J.-J. ACS Energy Lett. 2018, 3, 946.
151 Sim U. ; Moon J. ; An J. ; Kang J. H. ; Jerng S. E. ; Moon J. ; Cho S.-P. ; Hong B. H. ; Nam K. T. Energy Environ. Sci. 2015, 8, 1329.
152 Chen D. ; Dai S. ; Su X. ; Xin Y. ; Zou S. ; Wang X. ; Kang Z. ; Shen M. Chem. Commun. 2015, 51, 15340.
153 Guo C. X. ; Dong Y. Q. ; Yang H. B. ; Li C. M. Adv. Energy Mater. 2013, 3, 997.
154 Shi W. ; Zhang X. ; Brillet J. ; Huang D. ; Li M. ; Wang M. ; Shen Y. Carbon 2016, 105, 387.
155 Zhang P. ; Wang T. ; Chang X. ; Zhang L. ; Gong J. Angew. Chem. Int. Ed. 2016, 55, 5851.
156 Ye K. ; Wang Z. ; Gu J. ; xiao S. ; Yuan Y. ; Zhu Y. ; Zhang Y. ; Mai W. ; Yang S. Energy Environ. Sci. 2017, 10, 772.
157 Sun H. ; Zhao A. ; Gao N. ; Li K. ; Ren J. ; Qu X. Angew. Chem. Int. Ed. 2015, 54, 7176.
158 Han Y. ; Huang H. ; Zhang H. ; Liu Y. ; Han X. ; Liu R. ; Li H. ; Kang Z. ACS Catal. 2014, 4, 781.
159 Li H. ; Liu R. ; Lian S. ; Liu Y. ; Huang H. ; Kang Z. Nanoscale 2013, 5, 3289.
160 Li H. ; Sun C. ; Ali M. ; Zhou F. ; Zhang X. ; MacFarlane D. R. Angew. Chem. Int. Ed. 2015, 54, 8420.
161 Tetsuka H. ; Nagoya A. ; Fukusumi T. ; Matsui T. Adv. Mater. 2016, 28, 4632.
162 Yang B. J. ; Chen J. T. ; Cui L. F. ; Liu W. W. RSC Adv. 2015, 5, 59204.
163 Lee K. ; Cho S. ; Kim M. ; Kim J. ; Ryu J. ; Shin K.-Y. ; Jang J. J. Mater. Chem. A 2015, 31, 19018.
164 Dinari M. ; Momeni M. M. ; Goudarzirad M. J. Mater. Sci. 2015, 51, 2964.
165 Briscoe J. ; Marinovic A. ; Sevilla M. ; Dunn S. ; Titirici M. Angew. Chem. Int. Ed. 2015, 54, 4463.
166 Qu S. ; Zhou D. ; Li D. ; Ji W. ; Jing P. ; Han D. ; Liu L. ; Zeng H. ; Shen D. Adv. Mater. 2016, 28, 3516.
167 Kwon W. ; Kim Y.-H. ; Kim J.-H. ; Lee T. ; Do S. ; Park Y. ; Jeong M. S. ; Lee T.-W. ; Rhee S.-W. Sci. Rep. 2016, 6, 24205.
168 Li Y. ; Hu Y. ; Zhao Y. ; Shi G. ; Deng L. ; Hou Y. ; Qu L. Adv. Mater. 2011, 23, 776.
169 Li H. ; Shi W. ; Huang W. ; Yao E.-P. ; Han J. ; Chen Z. ; Liu S. ; Shen Y. ; Wang M. ; Yang Y. Nano Lett. 2017, 17, 2328.
170 Ryu J. ; Lee J. W. ; Yu H. ; Yun J. ; Lee K. ; Lee J. ; Hwang D. ; Kang J. ; Kim S. K. ; Jang J. J. Mater. Chem. A 2017, 5, 16834.
171 Duan J. ; Zhao Y. ; He B. ; Tang Q. Angew. Chem. Int. Ed. 2018, 57, 3787.
172 Yan X. ; Cui X. ; Li B. ; Li L.-S. Nano Lett. 2010, 10, 1869.
173 Mirtchev P. ; Henderson E. J. ; Soheilnia N. ; Yip C. M. ; Ozin G. A. J. Mater. Chem. 2012, 12, 1265.
174 Liu T. ; Yu K. ; Chen H. ; Hao L. ; Li T. ; Gao L. ; He H. ; Wang N. ; Guo Z. J. Mater. Chem. A 2017, 5, 17848.
175 He Y. ; He J. ; Yu Z. ; Zhang H. ; Liu Y. ; Hu G. ; Zheng M. ; Dong H. ; Zhuang J. ; Lei B. J. Mater. Chem. C 2018, 6, 2495.
176 Chen Y. ; Lian H. ; Wei Y. ; He X. ; Chen Y. ; Wang B. ; Zeng Q. ; Lin J. Nanoscale 2018, 10, 6734.
177 Zhou D. ; Li D. ; Jing P. ; Zhai Y. ; Shen D. ; Qu S. ; Rogach A. L. Chem. Mater. 2017, 29, 1779.
178 Zheng J. ; Wang Y. ; Zhang F. ; Yang Y. ; Liu X. ; Guo K. ; Wang H. ; Xu B. J. Mater. Chem. C 2017, 5, 8105.
179 Wang Z. ; Yuan F. ; Li X. ; Li Y. ; Zhong H. ; Fan L. ; Yang S. Adv. Mater. 2017, 29, 1702910.
180 Guo X. ; Wang C.-F. ; Yu Z. -Y. ; Chen L. ; Chen S. Chem. Commun. 2012, 48, 2692.
181 Tang L. ; Ji R. ; Cao X. ; Lin J. ; Jiang H. ; Li X. ; Teng K. S. ; Luk C. M. ; Zeng S. ; Hao J. ; et al ACS Nano 2012, 6, 5102.
182 Kwon W. ; Do S. ; Lee J. ; Hwang S. ; Kim J. K. ; Rhee S.-W. Chem. Mater. 2013, 25, 1893.
183 Zhu J. ; Bai X. ; Zhai Y. ; Chen X. ; Zhu Y. ; Pan G. ; Zhang H. ; Dong B. ; Song H. J. Mater. Chem. C 2017, 5, 11416.
184 Miao X. ; Qu D. ; Yang D. ; Nie B. ; Zhao Y. ; Fan H. ; Sun Z. Adv. Mater. 2018, 30, 1704740.
185 Yuan F. ; Wang Z. ; Li X. ; Li Y. ; Tan Z. a. ; Fan L. ; Yang S. Adv. Mater. 2017, 29, 1604436.
186 Zhang C. ; Zhu F. ; Xu H. ; Liu W. ; Yang L. ; Wang Z. ; Ma J. ; Kang Z. ; Liu Y. Nanoscale 2017, 9, 14592.
187 Hu Y. ; Zhao Y. ; Lu G. ; Chen N. ; Zhang Z. ; Li H. ; Shao H. ; Qu L. Nanotechnology 2013, 24, 195401.
188 Liu W. ; Yan X. ; Chen J. ; Feng Y. ; Xue Q. Nanoscale 2013, 5, 6053.
189 Unnikrishnan B. ; Wu C.-W. ; Chen I. W. P. ; Lin C.-H. ; Huang C.-C. ACS Sustain. Chem. Eng. 2016, 4, 3008.
190 Zhang X. ; Wang J. ; Liu J. ; Wu J. ; Chen H. ; Bi H. Carbon 2017, 115, 134.
191 Miltenburg M. B. ; Schon T. B. ; Kynaston E. L. ; Manion J. G. ; Seferos D. S. Chem. Mater. 2017, 29, 6611.
192 Jian X. ; Yang H.-M. ; Li J. -G. ; Zhang E.-H. ; Cao L.-L. ; Liang Z.-H. Electrochim. Acta 2017, 228, 483.
193 Chen G. ; Wu S. ; Hui L. ; Zhao Y. ; Ye J. ; Tan Z. ; Zeng W. ; Tao Z. ; Yang L. ; Zhu Y. Sci. Rep. 2016, 6, 19028.
194 Strauss V. ; Marsh K. ; Kowal M. D. ; El-Kady M. ; Kaner R. B. Adv. Mater. 2018, 30, 1704449.
195 Hou H. ; Banks C. E. ; Jing M. ; Zhang Y. ; Ji X. Adv. Mater. 2015, 27, 7861.
196 Zhu C. ; Chao D. ; Sun J. ; Bacho I. M. ; Fan Z. ; Ng C. F. ; Xia X. ; Huang H. ; Zhang H. ; Shen Z. X. ; et al Adv. Mater. Interfaces 2015, 2, 1400499.
197 Chao D. ; Zhu C. ; Xia X. ; Liu J. ; Zhang X. ; Wang J. ; Liang P. ; Lin J. ; Zhang H. ; Shen Z. X. ; et al Nano Lett. 2015, 15, 565.
198 Chen Y. M. ; Hsu S. T. ; Tseng Y. H. ; Yeh T. F. ; Hou S. S. ; Jan J. S. ; Lee Y. L. ; Teng H. Small 2018, 14, 1703571.
[1] Cheng GONG,Siwan XIANG,Zeyang ZHANG,Lan SUN,Chenqing YE,Changjian LIN. Construction and Visible-Light-Driven Photocatalytic Properties of LaCoO3-TiO2 Nanotube Arrays[J]. Acta Phys. -Chim. Sin., 2019, 35(6): 616-623.
[2] Peixuan BU,Chenhui HE,Xinsheng ZHAO. Single-Molecule Study on the Folding of OmpT in Tween-20 Micelles[J]. Acta Phys. -Chim. Sin., 2019, 35(5): 546-554.
[3] Xiaodong YANG,Chi CHEN,Zhiyou ZHOU,Shigang SUN. Advances in Active Site Structure of Carbon-Based Non-Precious Metal Catalysts for Oxygen Reduction Reaction[J]. Acta Phys. -Chim. Sin., 2019, 35(5): 472-485.
[4] Zhou LIN,Linfan SHEN,Ximing QU,Junming ZHANG,Yanxia JIANG,Shigang SUN. Molybdenum Carbide Prepared by a Salt Sealing Approach as an Electrocatalyst for Enhanced Hydrogen Evolution Reaction[J]. Acta Phys. -Chim. Sin., 2019, 35(5): 523-530.
[5] Dandan CAO,Rong LÜ,Anchi YU. Preparation and Characterization of Carbon Nitride Film with High Optical Quality[J]. Acta Phys. -Chim. Sin., 2019, 35(4): 442-450.
[6] Shushan ZHANG,Jianzhang ZHOU,Deyin WU,Zhongqun TIAN. Application of Ag Nanoparticle-Modified Fiber Probe for Plasmonic[J]. Acta Phys. -Chim. Sin., 2019, 35(3): 307-316.
[7] Huiyun XIA,Tong GENG,Xu ZHAO,Fangfang LI,Fengyan WANG,Lining GAO. Preparation and Sensing Properties of Organic Gel Fluorescence Films Based on ZnS Nanoparticles[J]. Acta Phys. -Chim. Sin., 2019, 35(3): 337-344.
[8] Xiangyan SHEN,Jianjiang HE,Ning WANG,Changshui HUANG. Graphdiyne for Electrochemical Energy Storage Devices[J]. Acta Phys. -Chim. Sin., 2018, 34(9): 1029-1047.
[9] Yunnan GAO,Shizhen LIU,Zhenqing ZHAO,Hengcong TAO,Zhenyu SUN. Heterogeneous Catalysis of CO2 Hydrogenation to C2+ Products[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 858-872.
[10] Bihua CHEN,H. M. ELAGEED Elnazeer,Yongya ZHANG,Guohua GAO. BmmimOAc-Catalyzed Direct Condensation of 2-(Arylamino) Alcohols to Synthesize 3-Arylthiazolidine-2-thiones[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 952-958.
[11] Zhihua ZHOU,Shumei XIA,Liangnian HE. Green Catalysis for Three-Component Reaction of Carbon Dioxide, Propargylic Alcohols and Nucleophiles[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 838-844.
[12] Xiaohong GUO,Ying ZHOU,Lihong SHI,Yan ZHANG,Caihong ZHANG,Chuan DONG,Guomei ZHANG,Shaomin SHUANG. Luminescence Emission of Copper Nanoclusters by Ethanol-induced Aggregation and Aluminum Ion-induced Aggregation[J]. Acta Phys. -Chim. Sin., 2018, 34(7): 818-824.
[13] Shaohai LI,Bo WENG,Kangqiang LU,Yijun XU. Improving the Efficiency of Carbon Quantum Dots as a Visible Light Photosensitizer by Polyamine Interfacial Modification[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 708-718.
[14] Xue HAN,Jin YANG,Yingying LIU,Jianfang MA. Syntheses and Luminescent Properties of Coordination Polymers Based on 1, 2, 4-Triazole-Substituted Resorcin[4]arene[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 476-482.
[15] Jiao LIU,Jicun HUO,Min ZHANG,Xiandui DONG. Ultrafast Photoluminescence Dynamics of Organic Photosensitizers with Conjugated Linkers Containing Different Heteroatoms[J]. Acta Phys. -Chim. Sin., 2018, 34(4): 424-436.