Please wait a minute...
Acta Phys. -Chim. Sin.  2019, Vol. 35 Issue (6): 630-636    DOI: 10.3866/PKU.WHXB201806082
ARTICLE     
Gold-Silver Alloy Film Based Spectral Surface Plasmon Resonance Imaging Sensor with High Sensitivity
Shuang LIANG1,2,Ran GAO1,Mengying ZHANG1,Ning XUE1,Zhimei QI1,*()
1 State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, P. R. China
2 University of Chinese Academy of Sciences, Beijing 100049, P. R. China
Download: HTML     PDF(2064KB) Export: BibTeX | EndNote (RIS)      

Abstract  

This paper reports, for the first time, a gold-silver alloy film based broadband spectral surface plasmon resonance imaging (SPRI) sensor that enables in situ quantitative detection of chemical and biological molecules adsorbed on the partial or entire surface of the alloy film. The use of the gold-silver alloy film as the sensing layer makes the SPRI sensor lower in detection cost and higher in detection sensitivity as compared with the conventional sensor with a pure gold film. The gold-silver alloy films of ~50 nm thicknesses were deposited on glass substrates using a sputtering target made of gold (50%)-silver (50%, w, mass fraction) alloy. Both the SPR spectra and SPR color images for the gold-silver alloy films covered with pure water were measured at different incident angles using the laboratory-made Krestchmann-type multifunctional platform. The two-dimensional (2D) hue profile and the average hue for each SPR color image were obtained by calculation with the hue algorithm. Using the average hue as the sensitivity parameter, the spectral SPRI sensor enables quantitative detection. The spectral range in which the average hue is most sensitive to refractive index (RI) changes of bulk solution and to molecular adsorption was determined to be between 595 and 610 nm. In this narrow spectral range the average hue is linearly dependent on the resonant wavelength and its slope (representing the hue variation induced by per unit change in resonant wavelength) is Δhue/ΔλR = 7.52 nm-1, implying that the hue-based RI sensitivity is 7.52 times as high as the wavelength-based RI sensitivity. This implication was experimentally demonstrated in this work. After setting the initial resonant wavelength of the sensor in the hue-sensitive spectral range, the hue-based RI sensitivity of the SPRI sensor was measured to be S = 29879 RIU-1, which is 8 times higher than that obtained with the gold-film SPR chip under the same conditions (S = 3658 RIU-1 for the gold-film SPR chip). Nonspecific adsorption of bovine serum albumin (BSA) molecules on the gold-silver alloy film was monitored in real time by the time-resolved spectral SPRI method, and the temporal change in the average hue was obtained. The time required for BSA adsorption to reach equilibrium is determined to be about 15 min. This study illustrates that the gold-silver alloy film based SPRI sensor has the powerful capability of quantitative detection of sub-monomolecular adsorption of proteins.



Key wordsGold-silver alloy film      Broadband spectral SPR imaging      Hue      High sensitivity      Quantitative     
Received: 27 April 2018      Published: 08 June 2018
MSC2000:  O647  
  TP212.14  
Fund:  The project was supported by the National Key Basic Research Program of China (973)(2015CB352100);National Natural Science Foundation of China(61675203);Research Equipment Development Project of Chinese Academy of Sciences(YZ201508)
Corresponding Authors: Zhimei QI     E-mail: zhimei-qi@mail.ie.ac.cn
Cite this article:

Shuang LIANG,Ran GAO,Mengying ZHANG,Ning XUE,Zhimei QI. Gold-Silver Alloy Film Based Spectral Surface Plasmon Resonance Imaging Sensor with High Sensitivity. Acta Phys. -Chim. Sin., 2019, 35(6): 630-636.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201806082     OR     http://www.whxb.pku.edu.cn/Y2019/V35/I6/630

Fig 1 Schematic diagram of the laboratory-made spectral SPR imaging platform
Fig 2 (a) Resonance spectra measured at different incident angles, (b) the corresponding resonance images and their 2D hue profiles; (c) relationship between the average hue and the resonance wavelength
Fig 3 (a) Resonance color images and the corresponding 2D hue profiles (images obtained after covering the goldsilver alloy film with different concentrations of aqueous NaCl solutions); (b) relationship between average hue and refractive index of aqueous NaCl solution.
Fig 4 (a) Resonance spectra measured after covering the gold-silver alloy film with different concentrations of aqueous NaCl solutions; (b) relationship between resonance wavelength and refractive index of aqueous NaCl solution
Fig 5 (a) A change of hue at each pixel in the resonant image caused by a change in the refractive index of the solution, (b) The relationship between the average hue for 6 × 6 pixels and the solution index of refraction
Fig 6 (a) SPR images corresponding to different adsorption time and two-dimensional hue profiles corresponding to different SPR images; (b) average hue versus adsorption time
1 Yeatman E. ; Ash E. A. Electron. Lett. 1987, 23 (20), 1091.
2 Rothenh?usler B. ; Knoll W. Nature 1988, 332 (6165), 615.
3 Gobi K. V. ; Tanaka H. ; Shoyama Y. ; Miura N. Biosens. Bioelectron. 2004, 20 (2), 350.
4 Gifford L. K. ; Sendroiu I. E. ; Corn R. M. ; Lupták A. J. Am. Chem. Soc. 2010, 132 (27), 9265.
5 Zhou W. J. ; Halpern A. R. ; Seefeld T. H. ; Corn R. M. Anal. Chem. 2012, 84 (1), 440.
6 Yuk J. S. ; Kim H. S. ; Jung J. W. ; Jung S. H. ; Lee S. J. ; Kim W. J. ; Han J. A. ; Kim Y. M. ; Ha K. S. Biosens. Bioelectron. 2008, 21 (8), 1521.
7 Knobloch H. ; Woigk S. ; Helms A. ; Brehmer L. Appl. Phys. Lett. 1996, 69 (16), 2336.
8 Andersson O. ; Ulrich C. ; Bj refors F. ; Liedberg B. Sens. Actuators B 2008, 134 (2), 545.
9 Beusink J. B. ; Lokate A. M. ; Besselink G. A. ; Pruijn G. J. ; Schasfoort R. B. Biosens. Bioelectron. 2008, 23 (6), 839.
10 Zhang P. ; Liu L. ; He Y. ; Shen Z. Y. ; Guo J. Appl. Opt. 2014, 53 (26), 6037.
11 Ho H. P. ; Wong C. L. ; Chan K. S. ; Wu S. Y. ; Lin C. Appl. Opt. 2006, 45 (23), 5819.
12 Smith A. R. Acm Siggraph Computer Graphics 1978, 12 (3), 12.
13 Liang J. Q. ; Cui D. F. ; Cai H. Y. ; Wang J. B. ; Wang Y. J. Transd. Microsys. Technol. 2006, 25 (10), 57.
13 梁金庆; 崔大付; 蔡浩原; 王军波; 王于杰. 传感器与微系统, 2006, 25 (10), 57.
14 Liu W. ; Chen Y. Chem. J. Chin. Univ. 2008, 29 (9), 1744.
14 刘巍; 陈义. 高等学校化学学报, 2008, 29 (9), 1744.
15 Yu X. L. ; Wang D. X. ; Yan Z. B. Sens. Actuators B 2003, 91 (1-3), 285.
16 Yu X. L. ; Ding X. ; Liu F. ; Deng Y. Sens. Actuators B 2008, 130 (1), 52.
17 Shen, G. Y.; Chen, Y.; Zhang, Y. M.; Chen, Y.; Cui, J. Prog. Chem. 2010, 22 (8), 1648.
17 申刚义,陈义,张轶鸣,崔箭.化学进展, 2010, 22 (8), 1648.
18 Shen G. Y. ; Han Z. Q. ; Liu W. ; Chen Y. Chem. J. Chin. Univ. 2007, 28 (9), 1651.
18 申刚义; 韩志强; 刘巍; 陈义. 高等学校化学学报, 2007, 28 (9), 1651.
19 Fan Z.B. ; Gong X. Q. ; Lu D. F. ; Gao R. ; Deng Y. H. ; Qi Z. M. Chin. J. Liq. Crys. Disp. 2017, 32 (5), 402.
19 范智博; 龚晓庆; 逯丹凤; 高然; 邓耀华; 祁志美. 液晶与显示, 2017, 32 (5), 402.
20 Fan Z. B. ; Gong X. Q. ; Lu D. F. ; Gao R. ; Qi Z. M. Acta Phys. -Chim. Sin. 2017, 33 (5), 1001.
20 范智博; 龚晓庆; 逯丹凤; 高然; 祁志美. 物理化学学报, 2017, 33 (5), 1001.
21 Hodnik V. ; Anderluh G. Sensors 2009, 9 (3), 1339.
22 Alleyne C. J. ; Kirk A. G. ; McPhedran R. C. ; Nicorovici N. A. P. ; Maystre D. Opt. Express. 2007, 15 (13), 8163.
23 Manickam G. ; Gandhiraman R. ; Vijayaraghavan R. K. ; Kerr L. ; Doyle C. ; Williams D. E. ; Daniels S. Analyst 2012, 137, 5265.
24 Zhang Z. ; Liu J. ; Lu D. F. ; Qi Z. M. Acta Phys. -Chim. Sin. 2014, 30 (9), 1771.
24 张喆; 刘杰; 逯丹凤; 祁志美. 物理化学学报, 2014, 30 (9), 1771.
25 Zhang Z. ; Liu Q. ; Qi Z. M. Acta Phys. Sin. 2013, 62 (6), 81.
25 张喆; 柳倩; 祁志美. 物理学报, 2013, 62 (6), 81.
26 Liu D. L. ; Zhao Q. ; Lu D. F. ; Qi Z. M. Chem. J. Chin. Univ. 2014, 35 (10), 2207.
26 刘德龙; 赵乔; 逯丹凤; 祁志美. 高等学校化学学报, 2014, 35 (10), 2207.
[1] Hassan GOLMOHAMMADI,Zahra DASHTBOZORGI,Sajad KHOOSHECHIN. Prediction of Blood-to-Brain Barrier Partitioning of Drugs and Organic Compounds Using a QSPR Approach[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1160-1170.
[2] Li WANG,Dan-Feng LU,Ran GAO,Jin CHENG,Zhe ZHANG,Zhi-Mei QI. Theoretical Analyses and Chemical Sensing Application of Surface Plasmon Resonance Effect of Nanoporous Gold Films[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1223-1229.
[3] Hassan GOLMOHAMMADI,Zahra DASHTBOZORGI,Sajad KHOOSHECHIN. Developing a Support Vector Machine Based QSPR Model to PredictGas-to-Benzene Solvation Enthalpy of Organic Compounds[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 918-926.
[4] Zhi-Bo FAN,Xiao-Qing GONG,Dan-Feng LU,Ran GAO,Zhi-Mei QI. Benzo[a]pyrene Sensing Properties of Surface Plasmon Resonance Imaging Sensor Based on the Hue Algorithm[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 1001-1009.
[5] Wei-Jin YUAN,Zhen DONG,Long ZHAO,Tian-Lin YU,Mao-Lin ZHAI. γ-Ray-Induced Radiolysis of CMPO/[C2mim][NTf2] and Its Effect on Eu3+ Extraction[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 2101-2107.
[6] TANG Qing-Long, ZHANG Peng, LIU Hai-Feng, YAO Ming-Fa. Quantitative Measurements of Soot Volume Fractions in Diesel Engine Using Laser-Induced Incandescence Method[J]. Acta Phys. -Chim. Sin., 2015, 31(5): 980-988.
[7] Hai-Chun. LIU,Shuai. LU,Ting. RAN,Yan-Min. ZHANG,Jin-Xing. XU,Xiao. XIONG,An-Yang. XU,Tao. LU,Ya-Dong. CHEN. Accurate Activity Predictions of B-Raf Type II Inhibitors via Molecular Docking and QSAR Methods[J]. Acta Phys. -Chim. Sin., 2015, 31(11): 2191-2206.
[8] LIU Fen, ZOU Jian-Wei, HU Gui-Xiang, JIANG Yong-Jun. Quantitative Structure-Property Relationship Studies on the Adsorption of Aromatic Contaminants by Carbon Nanotubes[J]. Acta Phys. -Chim. Sin., 2014, 30(9): 1616-1624.
[9] ZHAO Qiao, LU Dan-Feng, CHEN Chen, QI Zhi-Mei. Characterization of Mesoporous Silica Film Sensitized SERS Substrates Based on Evanescent-Wave Excitation[J]. Acta Phys. -Chim. Sin., 2014, 30(12): 2335-2341.
[10] HAN Na, YUAN Zhe-Ming, CHEN Yuan, DAI Zhi-Jun, WANG Zhi-Ming. Prediction of HLA-A*0201 Restricted Cytotoxic T Lymphocyte Epitopes Based on High-Dimensional Descriptor Nonlinear Screening[J]. Acta Phys. -Chim. Sin., 2013, 29(09): 1945-1953.
[11] SUN Sang-Dun, MI Si-Qi, YOU Jing, YU Ji-Liang, HU Song-Qing, LIU Xin-Yong. HQSAR Study and Molecular Design of Benzimidazole Derivatives as Corrosion Inhibitors[J]. Acta Phys. -Chim. Sin., 2013, 29(06): 1192-1200.
[12] ZHANG Zhe, LU Dan-Feng, QI Zhi-Mei. Surface Plasmon Resonance Sensing Properties of Nanoporous Gold Thin Films[J]. Acta Phys. -Chim. Sin., 2013, 29(04): 867-873.
[13] WANG Zhi-Ming, HAN Na, YUAN Zhe-Ming, WU Zhao-Hua. Feature Selection for High-Dimensional Data Based on Ridge Regression and SVM and Its Application in Peptide QSAR Modeling[J]. Acta Phys. -Chim. Sin., 2013, 29(03): 498-507.
[14] KANG Cong-Min, ZHAO Xu-Hao, WANG Xin-Yu, CHENG Jia-Gao, LÜ Ying-Tao. QSAR and Molecular Docking on Five-Membered Heterocyclopyrimidines as Thymidylate Synthase Inhibitors[J]. Acta Phys. -Chim. Sin., 2013, 29(02): 431-438.
[15] DAI Zhi-Jun, ZHOU Wei, YUAN Zhe-Ming. A Novel Method of Nonlinear Rapid Feature Selection for High Dimensional Data and Its Application in Peptide QSAR Modeling Based on Support Vector Machine[J]. Acta Phys. -Chim. Sin., 2011, 27(07): 1654-1660.