Please wait a minute...
Acta Phys. -Chim. Sin.  2019, Vol. 35 Issue (6): 624-629    DOI: 10.3866/PKU.WHXB201807035
ARTICLE     
Moisture-Responsive Behavior in the Azophenolic Ionic Liquid Solution Accompanied by a Naked-Eye Color Change
Mingguang PAN1,*(),Yongsheng ZHAO2,Xiaoqin ZENG1,Jianxin ZOU1,*()
1 National Engineering Research Center of Light Alloy Net Forming, State Key Laboratory of Metal Matrix Composite, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
2 Department of Micro/Nano-electronics, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
Download: HTML     PDF(1453KB) Export: BibTeX | EndNote (RIS)       Supporting Info

Abstract  

Room temperature ionic liquids (ILs) that can exhibit a colorimetric response to moisture in the air are rarely reported in the literature. In this study, an azophenolic IL solution exhibited a spontaneous a colorimetric response, driven by the formation of hydrogen bonding between the [PhN=NPhO] anion and moisture in the air. This phenomenon was clearly understood using ultraviolet-visible (UV-Vis) absorption spectroscopy, nuclear magnetic resonance (NMR) spectra, experimental data, and theoretical calculations. Specifically, in the UV-Vis absorption spectra, absorption around 455 nm decreased, while the band around 343 nm increased in the IL CHCl3 solution as time progressed; this was accompanied by a color change from orange to faint yellow. This spontaneous, self-responsive process was further observed using 1H NMR data. When the IL solution was placed with sufficient time, all the 1H NMR peaks of the azophenolic anion shifted downfield, but no new signals appeared in the upfield region. The reason for this was easily identified as the stimuli in the air, such as CO2 and moisture. When pure CO2 was bubbled through the IL CHCl3 solution, the solution color changed from its original orange to light orange, but could not change further to faint yellow, which ruled out CO2 gas as a stimulus. When a small amount of water was gradually added to the IL solution (MeCN solvent), the absorption band around 474 nm decreased, coupled with an increase in the absorption band around 347 nm. This was accompanied by a color change from orange to faint yellow, which was almost identical to the self-responsive process in CHCl3 and CCl4. Moreover, two cuvettes of IL CHCl3 solution were placed under relative humidities of 28% and 100%, respectively; the IL CHCl3 solution required a much longer time to exhibit a complete color change from orange to faint yellow under a lower relative humidity, demonstrating that moisture is the most likely stimulus triggering the self-responsive color change of the IL solution. As revealed by the Gaussian 09 program at the B3LYP/6-31++G(p, d) level, the distance between the oxygen atom on the azophenolic anion and the hydrogen atom on the H2O molecule was 0.174 nm, and the corresponding angle was 171.12°. Furthermore, the atomic dipole moment corrected Hirshfeld (ADCH) charge of the oxygen atom on the azophenolic anion was −0.52, and it increased to −0.62 after the azophenolic anion interacted with the H2O. Reduced density gradient analysis revealed that the spike corresponding to O∙∙∙H―O for the IL-H2O complex was located at around −0.04 a.u.. All the above data indicate that the presence of hydrogen bonding rendered the IL solution responsive to the moisture stimulus, and this response was accompanied by a color change that was visible to the naked eye. To the best of our knowledge, this is the first demonstration of a colorimetric change in an IL solution in response to moisture. We hope this work can help us to gain insight into some seemingly abnormal phenomena that occur during the research process.



Key wordsStimuli-responsive      Moisture      Colorimetric change      Hydrogen bonding      Ionic liquid solution     
Received: 16 July 2018      Published: 27 August 2018
MSC2000:  O645  
Fund:  the China Postdoctoral Science Foundation(2017M621476);the China Postdoctoral Science Foundation(2017M621477);National Natural Science Foundation of China(51771112)
Corresponding Authors: Mingguang PAN,Jianxin ZOU     E-mail: panmingguang@sjtu.edu.cn;zoujx@sjtu.edu.cn
Cite this article:

Mingguang PAN,Yongsheng ZHAO,Xiaoqin ZENG,Jianxin ZOU. Moisture-Responsive Behavior in the Azophenolic Ionic Liquid Solution Accompanied by a Naked-Eye Color Change. Acta Phys. -Chim. Sin., 2019, 35(6): 624-629.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201807035     OR     http://www.whxb.pku.edu.cn/Y2019/V35/I6/624

 
Solvent λmax/nm a Color of solution b
CCl4 414 yellow
PhH 424 yellow
CHCl3 456 orange
MeCN 474 orange
DMSO 490 orange
MeOH 374 light yellow
 
 
 
 
 
 
1 Wojtecki R. J. ; Meador M. A. ; Rowan S. J Nat. Mater 2011, 10, 14.
2 Stuart M. A. C. ; Huck W. T. S. ; Genzer J. ; Müller M. ; Ober C. ; Stamm M. ; Sukhorukov G. B. ; Szleifer I. ; Tsukruk V. V. ; Urban M. ; et al Nat. Mater 2010, 9, 101.
3 Lendlein A. ; Jiang H. ; Jünger O. ; Langer R. Nature 2005, 434, 879.
4 Ma M. ; Guo L. ; Anderson D. G. ; Langer R. Science 2013, 339, 186.
5 Kim J. ; Hanna J. A. ; Byun M. ; Santangelo C. D. ; Hayward R. C. Science 1201, 335, 1201.
6 Yan X. ; Wang F. ; Zeng B. ; Huang F Chem. Soc. Rev 2012, 41, 6042.
7 Folmer B. J. B. ; Sijbesma R. P. ; Versteegen R. M. ; van der Rijt J. A. J. ; Meijer E. W Adv. Mater 2000, 12, 874.
8 Liao X. ; Chen G. ; Liu X. ; Chen W. ; Chen F. ; Jiang M Angew. Chem. Int. Ed 2010, 49, 4409.
9 Xie T. Nature 2010, 464, 267.
10 Aida T. ; Meiger E. W. ; Stupp S. I. Science 2012, 335, 813.
11 Jeon Y. J. ; Bharadwaj P. K. ; Choi S. ; Lee J. W. ; Kim K Angew. Chem. Int. Ed 2002, 41, 4474.
12 Thibault R. J. ; Hotchkiss P. J. ; Gray M. ; Rotello V. M. J Am. Chem. Soc 2003, 125, 11249.
13 Wilson A. J. Soft Matter 2007, 3, 409.
14 Zhang X. ; Wang C Chem. Soc. Rev 2011, 40, 94.
15 Tao W. ; Liu Y. ; Jiang B. ; Yu S. ; Huang W. ; Zhou Y. ; Yan D. J Am. Chem. Soc 2012, 134, 762.
16 Neal J. A. ; Mozhdehi D. ; Guan Z. J Am. Chem. Soc 2015, 137, 4846.
17 Xu X. ; Song C. ; Miller B. G. ; Scaoni A. W Ind. Eng. Chem. Res 2005, 44, 8113.
18 McDanel W. M. ; Cowan M. G. ; Chisholm N. O. ; Gin D. L. ; Noble R. D. J Membr. Sci 2015, 492, 303.
19 Zeng R. ; Zhang J. ; Huang W. ; Dietzel W. ; Kainer K. U. ; Blawert C. ; Ke W Trans. Nonferrous Met. Soc 2006, 16.
20 Li C. ; Chen L Chem. Soc. Rev 2006, 35, 68.
21 Wu W. Z. ; Han B. X. ; Gao H. X. ; Liu Z. M. ; Jiang T. ; Huang J Angew. Chem. Int. Ed 2004, 43, 2415.
22 Huang J. F. ; Luo H. M. ; Liang C. D. ; Sun I. W. ; Baker G. A. ; Dai S. J Am. Chem. Soc 2005, 127, 12784.
23 Armond M. ; Endres F. ; MacFarlane D. R. ; Ohno H. ; Scrosati B Nat. Mater 2009, 8, 621.
24 Cui G. ; Wang J. ; Zhang S Chem. Soc. Rev 2016, 45, 4307.
25 Zeng S. ; Zhang X. ; Bai L. ; Zhang X. ; Wang H. ; Wang J. ; Bao D. ; Li M. ; Liu X. ; Zhang S Chem. Rev 2017, 117, 9625.
26 Han B Acta Phys. -Chim. Sin 2018, 34, 451.
26 韩布兴. 物理化学学报, 2018, 34, 451.
27 Zhao Y. ; Pan M. ; Kang X. ; Tu W. ; Gao H. ; Zhang X Chem. Eng. Sci 2018, 189, 43.
28 Pan M. ; Zhao Y. ; Zeng X. ; Zou J Energy Fuels 2018, 32, 6130.
29 Jessop P. G. ; Heldebrant D. J. ; Li X. ; Eckert C. A. ; Liotta C. L Nature 2005, 436, 1102.
30 Liu Y. ; Tang T. ; Barashkov N. N. ; Irgibaeva I. S. ; Lam J. W. Y. ; Hu R. ; Birimzhanova D. ; Yu Y. ; Tang B. Z. J Am. Chem. Soc 2010, 132, 13951.
31 Che S. ; Dao R. ; Zhang W. ; Lv X. ; Li H. ; Wang C Chem. Commun 2017, 53, 3862.
32 Wang C. ; Luo H. ; Jiang D. E. ; Li H. ; Dai S Angew. Chem. Int. Ed 2010, 49, 5978.
33 Jin Z. ; Xie D. X. ; Zhang X. B. ; Gong Y. J. ; Tan W Anal. Chem 2012, 84, 4253.
34 Must I. ; Vonder V. ; Kassik F. ; P?ldsalu I. ; Johanson U. ; Punning A. ; Aabloo A Sensor Actuat. B-Chem 2014, 202, 114.
35 Sullivan-González F. ; Scovazzo P. ; Amos R. ; Bae S.-K. J. Membr. Sci 2017, 533, 190.
36 Pan M. ; Cao N. ; Lin W. ; Luo X. ; Chen K. ; Che S. ; Li H. ; Wang C ChemSusChem 2016, 9, 2351.
37 Frisch M. J. ; Trucks G. W. ; Schlegel H. B. ; Scuseria G. E. ; Robb M. A. ; Cheeseman J. R. ; Scalmani G. ; Barone V. ; Mennucci B. ; Petersson G. A. ; et al Gaussian 09 Revision C..01; Wallingford, CT: Gaussian Inc, 2010.
38 Bortolus P. ; Monti S. J Phys. Chem 1979, 83, 648.
39 Johnson E. R. ; Keinan S. ; Mori-Sanche P. ; Contretras-Garicia J. ; Cohen A. J. ; Yang W. J Am. Chem. Soc 2010, 132, 6498.
40 Wang C. ; Luo X. ; Luo H. ; Jiang D. E. ; Li H. ; Dai S Angew. Chem. Int. Ed 2011, 50, 4918.
41 Cao L. ; Zhu P. ; Zhao Y. ; Zhao J. J Hazard Mater 2018, 352, 17.
[1] Rui GUO,Jialin ZHANG,Songtao ZHAO,Xiaojiang YU,Shu ZHONG,Shuo SUN,Zhenyu LI,Wei CHEN. LT-STM Investigation of the Self-Assembled F16CuPc-Corannulene Binary System on Ag (111) and Grap[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 627-632.
[2] Shan-Shan LIU,Shan JI,Qi-Bin CHEN,Chang-Jun PENG,Hong-Lai LIU. Surface Patterning and Force-Induced Reversible Structural Transformation of a PVP-Chol Supramolecular Polymer Brush[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2318-2326.
[3] Ai-Bin HU,Zhi-Quan PAN,Qing-Rong CHENG,Hong ZHOU. Experimental and Theoretical Evidence for Supramolecular Self-Assembly and Hydrogen Bonding between Squaric Acid and 2, 6-Bis(2-benzimidazolyl)pyridine[J]. Acta Phys. -Chim. Sin., 2016, 32(3): 665-670.
[4] Su-Min WANG,Rong-Na ZHAO,Qi-Guan WANG,Hao GUO,Jin-Hua LI,Wen-Hui ZHANG. Ureidopyrimidinone Quadruple Hydrogen-Bonded Ferrocene Dimer: Control of Electronic Communication[J]. Acta Phys. -Chim. Sin., 2016, 32(3): 611-616.
[5] Mei-Qing LIANG,Hong-Yao YIN,Yu-Jun FENG. Smart Aqueous Foams: State of the Art[J]. Acta Phys. -Chim. Sin., 2016, 32(11): 2652-2662.
[6] SONG Da-Yong, CHEN Jing. Hydrogen-Bonding Interactions between Ionic Liquid 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate and Water[J]. Acta Phys. -Chim. Sin., 2014, 30(9): 1605-1610.
[7] ZHONG Jin-Lian, PAN Hong, LUO Xu-Zhong, HONG San-Guo, ZHANG Ning, HUANG Jian-Bin. Two-Component Supramolecular Organogels Formed from L-Phenylalanine Derivatives and Aliphatic Amines[J]. Acta Phys. -Chim. Sin., 2014, 30(9): 1688-1696.
[8] CHEN Han-Ting, FAN Ye, FANG Yun. Dual pH-and Thermo-Responsive Self-Assembly of the P(NIPAM-co-AA) Hydrophilic Random Copolymer in Pure Aqueous Solution[J]. Acta Phys. -Chim. Sin., 2014, 30(7): 1290-1296.
[9] GUO Xin, TAN See-Hua, SHANG Zhi-Jun, GUO Yu-Cong, ZHANG Yun-Hong. Confocal Raman Spectroscopy Studies on the Interactions between NH4+, NO3- and H2O in Supersaturated NH4NO3 Droplets[J]. Acta Phys. -Chim. Sin., 2012, 28(04): 766-772.
[10] YE Bin, GAO Cai, ZHAO Han, CHEN Kai-Song, YANG Suo, LIU Xiang-Nong. 1H NMR Investigation on Effect of Solute Concentration on the Hydrogen Bonding and Glass Transition of Three-Carbon Polyalcohol Aqueous Solutions[J]. Acta Phys. -Chim. Sin., 2011, 27(11): 2505-2511.
[11] HE Rui, JIAO Yan-Hua, LIANG Yuan-Yuan, CHEN Can-Yu. Accurate Predictions of the NMR Parameters in Organic and Biological Crystallines[J]. Acta Phys. -Chim. Sin., 2011, 27(09): 2051-2058.
[12] HAO Ping, GAO Yun-Yan, OU Zhi-Ze, LI Yi, WANG Zhong-Li, WANG Xue-Song. Preparation of Aminopyridine Grafted Carbon Nanotube and Its Interaction with Horseradish Peroxidase[J]. Acta Phys. -Chim. Sin., 2011, 27(01): 233-240.
[13] WEN Li; LIN Zhong-Yu; ZHOU Jian-Zhang; GU Ping-Ying; FU Jin-Kun; LIN Zhong-Hua. Au/γ-Al2O3 Catalyst Prepared from Octanethiolate Monolayer Protected Au Nanoparticles for CO Oxidation[J]. Acta Phys. -Chim. Sin., 2008, 24(04): 581-586.
[14] LIANG Xiao-Fei; WANG Han-Jie; TIAN Hui; LUO Hao; CHANG Jin. Syntheis, Structure and Properties of Novel Quaternized Carboxymethyl Chitosan with Drug Loading Capacity[J]. Acta Phys. -Chim. Sin., 2008, 24(02): 223-229.
[15] LIU Hong; CHEN Yan-Qin. Nature and Structural Property of Dihydrogen-bond Complexes of BeH2 with Hydrogen Halides[J]. Acta Phys. -Chim. Sin., 2007, 23(12): 1974-1978.