Acta Physico-Chimica Sinica ›› 2019, Vol. 35 ›› Issue (9): 968-976.doi: 10.3866/PKU.WHXB201810007
Special Issue: C–H Activation
• Review • Previous Articles Next Articles
Received:
2018-10-08
Accepted:
2018-11-30
Published:
2018-12-07
Contact:
Lu LI
E-mail:luli@jlu.edu.cn
Supported by:
MSC2000:
Xiaoyue MU,Lu LI. Photo-Induced Activation of Methane at Room Temperature[J].Acta Physico-Chimica Sinica, 2019, 35(9): 968-976.
1 |
Choudhary V. R. ; Kinage A. K. ; Choudhary T. V. Science 1997, 275, 1286.
doi: 10.1126/science.275.5304.1286 |
2 |
Lunsford J. H. Catal. Today 2000, 63, 165.
doi: 10.1016/S0920-5861(00)00456-9 |
3 |
Holmen A. Catal. Today 2009, 142, 2.
doi: 10.1016/j.cattod.2009.01.004 |
4 |
Schwach P. ; Pan X. L. ; Bao X. H. Chem. Rev. 2017, 117, 8497.
doi: 10.1021/acs.chemrev.6b00715 |
5 |
Gunsalus N. J. ; Koppaka A. ; Park S. H. ; Bischof S. M. ; Hashiguchi B. G. ; Periana R. A. Chem. Rev. 2017, 117, 8521.
doi: 10.1021/acs.chemrev.6b00739 |
6 |
Tang P. ; Zhu Q. J. ; Wu Z. X. ; Ma D. Energy Environ. Sci. 2014, 7, 2580.
doi: 10.1039/C4EE00604F |
7 |
Richard A. K. Science 2010, 328, 1624.
doi: 10.1126/science.328.5986.1624 |
8 |
Schwarz H. Angew. Chem. Int. Ed. 2011, 50, 10096.
doi: 10.1002/anie.201006424 |
9 |
Lelieveld J. ; Lechtenböhmer S. ; Assonov S. S. ; Brenninkmeijer C. A. M. ; Dienst C. ; Fischedick M. ; Hanke T. Nature 2005, 434, 841.
doi: 10.1038/434841a |
10 |
Bergman R. G. Nature 2007, 446, 391.
doi: 10.1038/446391a |
11 |
Arora S. ; Prasad R. RSC Adv. 2016, 6, 108668.
doi: 10.1039/C6RA20450C |
12 |
Pakhare D. ; Spivey J. Chem. Soc. Rev. 2014, 43, 7813.
doi: 10.1039/C3CS60395D |
13 |
Jones G. ; Jakobsen J. G. ; Shim S. S. ; Kleis J. ; Andersson M. P. ; Rossmeisl J. ; Abild-Pedersen F. ; Bligaard T. ; Helveg S. ; Hinnemann B. ; et al J. Catal. 2008, 259, 147.
doi: 10.1016/j.jcat.2008.08.003 |
14 |
Hook J. P. V. Catal. Rev. -Sci. Eng. 1980, 21, 1.
doi: 10.1080/03602458008068059 |
15 |
Latimer A. A. ; Kulkarni A. R. ; AljamaH. ; Montoya J. H. ; Yoo J. S. ; Tsai C. ; Abild-Pedersen F. ; Studt F. ; Nørskov J. K. Nat. Mater. 2017, 16, 225.
doi: 10.1038/nmat4760 |
16 |
Liang Z. ; Li T. ; Kim M. ; Asthagiri A. ; Weaver J. F. Science 2017, 356, 299.
doi: 10.1126/science.aam9147 |
17 |
Labinger J. A. ; Bercaw J. E. Nature 2002, 417, 507.
doi: 10.1038/417507a |
18 |
Sushkevich V. L. ; Palagin D. ; Ranocchiari M. ; van Bokhoven J. A. Science 2017, 356, 523.
doi: 10.1126/science.aam9035 |
19 |
Berndt H. ; Martin A. ; Brückner A. ; Schreier E. ; Müller D. ; Kosslick H. ; Wolf G.-U. ; Lücke B. J. Catal. 2000, 191, 384.
doi: 10.1006/jcat.1999.2786 |
20 |
Periana R. A. ; Mironov O. ; Taube D. ; Bhalla G.C.J. J. Science 2003, 301, 814.
doi: 10.1126/science.1086466 |
21 |
Lunsford J. H. Angew. Chem. Int. Ed. 1995, 34, 970.
doi: 10.1002/anie.199509701 |
22 |
Spivey J. J. ; Hutchings G. Chem. Soc. Rev. 2014, 43, 792.
doi: 10.1039/C3CS60259A |
23 |
Zheng H. ; Ma D. ; Bao X. H. ; Hu J. Z. ; Kwak J. H. ; Wang Y. ; Peden C. H. F. J. Am. Chem. Soc. 2008, 130, 3722.
doi: 10.1021/ja7110916 |
24 |
Wang L. ; Tao L. ; Xie M. ; Xu G. Catal. Lett. 1993, 21, 35.
doi: 10.1007/BF00767368 |
25 |
Guo X. G. ; Fang G. Z. ; Li G. ; Ma H. ; Fan H. J. ; Yu L. ; Ma C. ; Wu X. ; Deng D. H. ; Wei M. M. ; et al Science 2014, 344, 616.
doi: 10.1126/science.1253150 |
26 |
Cui X. J. ; Li H. B. ; Wang Y. ; Hu Y. L. ; Hua L. ; Li H. Y. ; Han X. W. ; Liu Q. F. ; Yang F. ; He L. M. ; et al Chem 2018, 4, 1902.
doi: 10.1016/j.chempr.2018.05.006 |
27 |
Xu Y. D. ; Bao X. H. ; Lin L. W. J. Catal. 2003, 216, 386.
doi: 10.1016/S0021-9517(02)00124-0 |
28 |
Kato Y. ; Yoshida H. ; Hattori T. Chem. Commun. 1998, 21, 2389.
doi: 10.1039/A806825I |
29 |
Yuliati L. ; Yoshida H. Chem. Soc. Rev. 2008, 37, 1592.
doi: 10.1039/B710575B |
30 | Yoshida H. ; Matsushita N. ; Kato Y. ; Hattori T. J. Phys. Chem. B 2003, 107, 8355. |
31 |
Li L. ; Li G.-D. ; Yan C. ; Mu X.-Y. ; Pan X.-L. ; Zou X.-X. ; Wang K.-X. ; Chen J.-S. Angew. Chem. Int. Ed. 2011, 50, 8299.
doi: 10.1002/anie.201102320 |
32 |
Dietl N. ; Engeser M. ; Schwarz H. Angew. Chem. Int. Ed. 2009, 48, 4861.
doi: 10.1002/anie.200901596 |
33 |
Copéret C. Chem. Rev. 2010, 110, 656.
doi: 10.1021/cr900122p |
34 |
Yuliati L. ; Hamajima T. ; Hattori T. ; Yoshida H. J. Phys. Chem. C 2008, 112, 7223.
doi: 10.1021/jp712029w |
35 |
Anderson M. W. ; Terasaki O. ; Ohsuna T. ; Philippou A. ; Mackay S. P. ; Ferreira A. ; Rocha J. ; Lidin S. Nature 1994, 367, 347.
doi: 10.1038/367347a0 |
36 |
Li L. ; Cai Y.-Y. ; Li G.-D. ; Mu X.-Y. ; Wang K.-X. ; Chen J.-S. Angew. Chem. Int. Ed. 2012, 51, 4702.
doi: 10.1002/anie.201200045 |
37 |
Li L. ; Fan S. ; Mu X. ; Mi Z. ; Li C.-J. J. Am. Chem. Soc. 2014, 136, 7793.
doi: 10.1021/ja5004119 |
38 |
Li L. ; Mu X. ; Liu W. ; Kong X. ; Fan S. ; Mi Z. ; Li C. J. Angew. Chem. Int. Ed. 2014, 53, 14106.
doi: 10.1002/anie.201408754 |
39 |
Goldberger J. ; He R. R. ; Zhang Y. F. ; Lee S. ; Yan H. Q. ; Choi H. J. ; Yang P. D. Nature 2003, 422, 599.
doi: 10.1038/nature01551 |
40 |
Ibbetson J. P. ; Fini P. T. ; Ness K. D. ; DenBaars S. P. ; Speck J. S. ; Mishra U. K. Appl. Phys. Lett. 2000, 77, 250.
doi: 10.1063/1.126940 |
41 |
Eller B. S. ; Yang J. L. ; Nemanich R. J. J. Electron. Mat. 2014, 43, 4560.
doi: 10.1007/s11664-014-3383-z |
42 |
Meng L. ; Chen Z. ; Ma Z. ; He S. ; Hou Y. ; Li H. ; Yuan R. ; Huang X. ; Wang X. ; Wang X. ;et al Energy Environ. Sci. 2018, 11, 294.
doi: 10.1056/NEJMoa1304459 |
43 |
Yu L. H. ; Shao Y. ; Li D. Z. Appl. Catal. B-Environ. 2017, 204, 216.
doi: 10.1016/j.apcatb.2016.11.039 |
44 |
Kaliaguine S. L. ; Shelimov B. N. ; Kazansky V. B. J. Catal. 1978, 55, 384.
doi: 10.1016/0021-9517(78)90225-7 |
45 |
Chen X. ; Li Y. ; Pan X. ; Cortie D. ; Huang X. ; Yi Z. Nat. Commun. 2016, 7, 12273.
doi: 10.1038/ncomms12273 |
46 |
Wada K. ; Yamada H. ; Watanabe Y. ; Mitsudo T. J. Chem. Soc. Faraday Trans. 1998, 94, 1771.
doi: 10.1007/s10562-008-9491-8 |
47 |
López H. H. ; Martínez A. Catal. Lett. 2002, 83, 37.
doi: 10.1023/A:1020649313699 |
48 |
Thampi K. R. ; Kiwi J. ; Grätzel M. Catal. Lett. 1988, 1, 109.
doi: 10.1007/BF00765891 |
49 |
Ward M. D. ; Brazdil J. F. ; Mehandru S. P. ; Anderson A. B. J. Phys. Chem. 1987, 91, 6515.
doi: 10.1021/j100310a019 |
50 |
Wada K. ; Yoshida K. ; Watanabe Y. J. Chem. Soc. Faraday Trans. 1995, 91, 1647.
doi: 10.1039/FT9959101647 |
51 |
Noceti R. P. ; Taylor C. E. ; D'Este J. R. Catal. Today 1997, 33, 199.
doi: 10.1016/S0920-5861(96)00155-1 |
52 |
Villa K. ; Murcia-López M. ; Andreu T. ; Morante J. R. Appl. Catal. B: Environ. 2015, 163, 150.
doi: 10.1016/j.apcatb.2014.07.055 |
53 |
Murcia-López S. ; Bacariza M. C. ; Villa K. ; Lopes J. M. ; Henriques C. ; Morante J. R. ; Andreu T. ACS Catal. 2017, 7, 2878.
doi: 10.1021/acscatal.6b03535 |
54 |
Hu A. H. ; Guo J. J. ; Pan H. ; Zuo Z. W. Science 2018.
doi: 10.1126/science.aat9750 |
[1] | Zhuang Xiong, Yidong Hou, Rusheng Yuan, Zhengxin Ding, Wee-Jun Ong, Sibo Wang. Hollow NiCo2S4 Nanospheres as a Cocatalyst to Support ZnIn2S4 Nanosheets for Visible-Light-Driven Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2111021-. |
[2] | Liang Zhou, Yunfeng Li, Yongkang Zhang, Liewei Qiu, Yan Xing. A 0D/2D Bi4V2O11/g-C3N4 S-Scheme Heterojunction with Rapid Interfacial Charges Migration for Photocatalytic Antibiotic Degradation [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2112027-. |
[3] | Wenliang Wang, Haochun Zhang, Yigang Chen, Haifeng Shi. Efficient Degradation of Tetracycline via Coupling of Photocatalysis and Photo-Fenton Processes over a 2D/2D α-Fe2O3/g-C3N4 S-Scheme Heterojunction Catalyst [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2201008-. |
[4] | Hongying Li, Haiming Gong, Zhiliang Jin. In2O3-Modified Three-Dimensional Nanoflower MoSx Form S-scheme Heterojunction for Efficient Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2022, 38(12): 2201037-. |
[5] | Kelin He, Rongchen Shen, Lei Hao, Youji Li, Peng Zhang, Jizhou Jiang, Xin Li. Advances in Nanostructured Silicon Carbide Photocatalysts [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2201021-. |
[6] | Han Li, Fang Li, Jiaguo Yu, Shaowen Cao. 2D/2D FeNi-LDH/g-C3N4 Hybrid Photocatalyst for Enhanced CO2 Photoreduction [J]. Acta Phys. -Chim. Sin., 2021, 37(8): 2010073-. |
[7] | Kaining Li, Mengxi Zhang, Xiaoyu Ou, Ruina Li, Qin Li, Jiajie Fan, Kangle Lv. Strategies for the Fabrication of 2D Carbon Nitride Nanosheets [J]. Acta Phys. -Chim. Sin., 2021, 37(8): 2008010-. |
[8] | Wei Wang, Yu Huang, Zhenyu Wang. Defect Engineering in Two-Dimensional Graphitic Carbon Nitride and Application to Photocatalytic Air Purification [J]. Acta Phys. -Chim. Sin., 2021, 37(8): 2011073-. |
[9] | Xingang Fei, Haiyan Tan, Bei Cheng, Bicheng Zhu, Liuyang Zhang. 2D/2D Black Phosphorus/g-C3N4 S-Scheme Heterojunction Photocatalysts for CO2 Reduction Investigated using DFT Calculations [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2010027-. |
[10] | Zejian Wang, Jiajia Hong, Sue-Faye Ng, Wen Liu, Junjie Huang, Pengfei Chen, Wee-Jun Ong. Recent Progress of Perovskite Oxide in Emerging Photocatalysis Landscape: Water Splitting, CO2 Reduction, and N2 Fixation [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2011033-. |
[11] | Xibao Li, Jiyou Liu, Juntong Huang, Chaozheng He, Zhijun Feng, Zhi Chen, Liying Wan, Fang Deng. All Organic S-Scheme Heterojunction PDI-Ala/S-C3N4 Photocatalyst with Enhanced Photocatalytic Performance [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2010030-. |
[12] | Dong Liu, Shengtao Chen, Renjie Li, Tianyou Peng. Review of Z-Scheme Heterojunctions for Photocatalytic Energy Conversion [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2010017-. |
[13] | Yunfeng Li, Min Zhang, Liang Zhou, Sijia Yang, Zhansheng Wu, Ma Yuhua. Recent Advances in Surface-Modified g-C3N4-Based Photocatalysts for H2 Production and CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2009030-. |
[14] | Yiwen Chen, Lingling Li, Quanlong Xu, Düren Tina, Jiajie Fan, Dekun Ma. Controllable Synthesis of g-C3N4 Inverse Opal Photocatalysts for Superior Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2009080-. |
[15] | Xinjiang Cui, Feng Shi. Selective Conversion of CO2 by Single-Site Catalysts [J]. Acta Phys. -Chim. Sin., 2021, 37(5): 2006080-. |
|