Please wait a minute...
Acta Phys. -Chim. Sin.
Special Issue: Two-Dimensional Materials and Devices
Accepted manuscript     
Recent Progress in Two-dimensional-material Membranes for Gas Separation
CHENG Long, LIU Gongping, JIN Wanqin
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
Download:   PDF(1219KB) Export: BibTeX | EndNote (RIS)      

Abstract  Two-dimensional (2D) materials, led by graphene, have emerged as nano-building blocks to develop high-performance membranes. The atom-level thickness of nanosheets makes a membrane as thin as possible, thereby minimizing the transport resistance and maximizing the permeation flux. Meanwhile, the sieving channels can be precisely manipulated within sub-nanometer size for molecular separation, such as gas separation. For instance, graphene oxide (GO) channels with an interlayer height of about 0.4 nm assembled by external forces exhibited excellent H2/CO2 sieving performance compared to commercial membranes. Cross-linking was also employed to fabricate ultrathin (<20 nm) GO-facilitated transport membranes for efficient CO2 capture. A borate-crosslinked membrane exhibited a high CO2 permeance of 650 GPU (gas permeation unit), and a CO2/CH4 selectivity of 75, which is currently the best performance reported for GO-based composite membranes. The CO2-facilitated transport membrane with piperazine as the carrier also exhibited excellent separation performance under simulated flue gas conditions with CO2 permeance of 1020 GPU and CO2/N2 selectivity as high as 680. In addition, metal-organic frameworks (MOFs) with layered structures, if successfully exfoliated, can serve as diverse sources for MOF nanosheets that can be fabricated into high-performance membranes. It is challenging to maintain the structural and morphological integrity of nanosheets. Poly[Zn2(benzimidazole)4] (Zn2(bim)4) was firstly exfoliated into 1-nm-thick nanosheets and assembled into ultrathin membranes possessing both high permeance and excellent molecular sieving properties for H2/CO2 separation. Interestingly, reversed thermo-switchable molecular sieving was also demonstrated in membranes composed of 2D MOF nanosheets. Besides, researchers employed layered double hydroxides (LDHs) to prepare molecular-sieving membranes via in situ growth, and the as-prepared membranes showed a remarkable selectivity of~80 for H2-CH4 mixture. They concluded that the amount of CO2 in the precursor solution contributed to LDH membranes with various preferred orientations and thicknesses. Apart from these 2D materials, MXenes also show great potential in selective gas permeation. Lamellar stacked MXene membranes with aligned and regular sub-nanometer channels exhibited excellent gas separation performance. Moreover, our ultrathin (20 nm) MXene nanofilms showed outstanding molecular sieving property for the preferential transport of H2, with H2 permeance as high as 1584 GPU and H2/CO2 selectivity of 27. The originally H2-selective MXene membranes could be transformed into membranes selectively permeating CO2 by chemical tuning of the MXene nanochannels. This paper briefly reviews the latest groundbreaking studies in 2D-material membranes for gas separation, with a focus on sub-nanometer 2D channels, exfoliation of 2D nanosheets with structural integrity, and tunable gas transport property. Challenges, in terms of the mass production of 2D nanosheets, scale-up of lab-level membranes and a thorough understanding of the transport mechanism, and the potential of 2D-material membranes for wide implementation are briefly discussed.

Key wordsTwo-dimensional material      Gas separation membrane      Sub-nanometer channel      Ultrathin membrane      Tunable gas transport     
Received: 26 October 2018      Published: 28 November 2018
MSC2000:  O647  
Fund:  The project was supported by the National Natural Science Foundation of China (21490585, 21476107, 21776125, 51861135203) and the Innovative Research Team Program of the Ministry of Education of China (IRT17R54).
Corresponding Authors: JIN Wanqin     E-mail:
Cite this article:

CHENG Long, LIU Gongping, JIN Wanqin. Recent Progress in Two-dimensional-material Membranes for Gas Separation. Acta Phys. -Chim. Sin., 0, (): 0-0.

URL:     OR

(1) (a) Huang, C. S.; Li, Y. L. <i>Acta Phys. -Chim. Sin. </i><b>2016, </b><i>32</i>, 1314. [黄长水, 李玉良. 物理化学学报, <b>2016, </b><i>32</i>, 1314.]doi: <a href="" target="_blank">10.3866/PKU.WHXB201605035</a><br /> (b) Liang, J. X.; Xiao, Z. C.; Zhi, L. J. <i>Acta Phys. -Chim. Sin. </i><b>2016, </b><i>32</i>, 2390. [梁家旭, 肖志昌, 智林杰. 物理化学学报, <b>2016, </b><i>32</i>, 2390.] doi: <a href="" target="_blank">10.3866/PKU.WHXB201607132</a><br /> (c) Tan, C.; Cao, X.; Wu, X. J.; He, Q.; Yang, J.; Zhang, X.; Chen, J.; Zhao, W.; Han, S.; Nam, G. H.; <i>et al</i>. <i>Chem. Rev. </i><b>2017, </b><i>117</i>, 6225. doi: <a href="" target="_blank">10.1021/acs.chemrev.6b00558</a><br /> (2) Liu, G. P.; Jin, W. Q.; Xu, N. P. <i>Angew. Chem. Int. Ed. </i><b>2016, </b><i>55</i>, 13384. doi: <a href="" target="_blank">10.1002/anie.201600438</a><br /> (3) Bunch, J. S.; Verbridge, S. S.; Alden, J. S.; van der Zande, A. M.; Parpia, J. M.; Craighead, H. G.; McEuen, P. L. <i>Nano Lett. </i><b>2008, </b><i>8</i>, 2458. doi: <a href="" target="_blank">10.1021/nl801457b</a><br /> (4) Jiang, D. E.; Cooper, V. R.; Dai, S. <i>Nano Lett. </i><b>2009, </b><i>9</i>, 4019. doi: <a href="" target="_blank">10.1021/nl9021946</a><br /> (5) (a) Sun, C.; Bai, B. <i>Acta Phys. -Chim. Sin. </i><b>2018, </b><i>34</i>, 1136. [孙成珍, 白博峰. 物理化学学报, <b>2018, </b><i>34</i>, 1136.]doi: <a href="" target="_blank">10.3866/PKU.WHXB201801301</a><br /> (b) Wen, B. Y.; Sun, C. Z.; Bai, B. F. <i>Acta Phys. -Chim. Sin. </i><b>2015, </b><i>31</i>, 261. [温伯尧, 孙成珍, 白博峰. 物理化学学报, <b>2015, </b><i>31</i>, 261.]doi: <a href="" target="_blank">10.3866/PKU.WHXB201411271</a><br /> (6) Koenig, S. P.; Wang, L.; Pellegrino, J.; Bunch, J. S. <i>Nature Nanotech.</i> <b>2012, </b><i>7</i>, 728. doi: <a href="" target="_blank">10.1038/nnano.2012.162</a><br /> (7) Celebi, K.; Buchheim, J.; Wyss, R. M.; Droudian, A.; Gasser, P.; Shorubalko, I.; Kye, J. I.; Lee, C.; Park, H. G. <i>Science </i><b>2014, </b><i>344</i>, 289. doi: <a href="" target="_blank">10.1126/science.1249097</a><br /> (8) (a) Kim, H. W.; Yoon, H. W.; Yoon, S. M.; Yoo, B. M.; Ahn, B. K.; Cho, Y. H.; Shin, H. J.; Yang, H.; Paik, U.; Kwon, S.; <i>et al</i>. <i>Science</i> <b>2013, </b><i>342</i>, 91. doi: <a href="" target="_blank">10.1126/science.1236098</a><br /> (b) Li, H.; Song, Z.; Zhang, X.; Huang, Y.; Li, S.; Mao, Y.; Ploehn, H.J.; Bao, Y.; Yu, M. <i>Science </i><b>2013, </b><i>342</i>, 95. doi: <a href="" target="_blank">10.1126/science.1236686</a><br /> (9) Shen, J.; Liu, G.; Huang, K.; Chu, Z.; Jin, W.; Xu, N. <i>ACS Nano</i> <b>2016, </b><i>10</i>, 3398. doi: <a href="" target="_blank">10.1021/acsnano.5b07304</a><br /> (10) Chen, L.; Shi, G. S.; Shen, J.; Peng, B. Q.; Zhang, B. W.; Wang, Y. Z.; Bian, F. G.; Wang, J. J.; Li, D. Y.; Qian, Z.; <i>et al</i>. <i>Nature </i><b>2017, </b><i>550</i>, 415. doi: <a href="" target="_blank">10.1038/nature24044</a><br /> (11) Hu, M.; Mi, B. <i>Environ. Sci. Technol. </i><b>2013, </b><i>47</i>, 3715. doi: <a href="" target="_blank">10.1021/es400571g</a><br /> (12) Hung, W. S.; Tsou, C. H.; De Guzman, M.; An, Q. F.; Liu, Y. L.; Zhang, Y. M.; Hu, C. C.; Lee, K. R.; Lai, J. Y. <i>Chem. Mater. </i><b>2014, </b><i>26</i>, 2983. doi: <a href="" target="_blank">10.1021/cm5007873</a><br /> (13) Wang, S.; Wu, Y.; Zhang, N.; He, G.; Xin, Q.; Wu, X.; Wu, H.; Cao, X.; Guiver, M. D.; Jiang, Z. <i>Energ. Environ. Sci. </i><b>2016, </b><i>9</i>, 3107. doi: <a href="" target="_blank">10.1039/c6ee01984f</a><br /> (14) Zhou, F.; Tien, H. N.; Xu, W. L.; Chen, J. T.; Liu, Q.; Hicks, E.; Fathizadeh, M.; Li, S.; Yu, M. <i>Nat. Commun. </i><b>2017, </b><i>8</i>, 2107. doi: <a href="" target="_blank">10.1038/s41467-017-02318-1</a><br /> (15) Peng, Y.; Li, Y.; Ban, Y.; Jin, H.; Jiao, W.; Liu, X.; Yang, W. <i>Science</i> <b>2014, </b><i>346</i>, 1356. doi: <a href="" target="_blank">10.1126/science.1254227</a><br /> (16) Wang, X.; Chi, C.; Zhang, K.; Qian, Y.; Gupta, K. M.; Kang, Z.; Jiang, J.; Zhao, D. <i>Nat. Commun. </i><b>2017, </b><i>8</i>, 14460. doi: <a href="" target="_blank">10.1038/ncomms14460</a><br /> (17) Wang, Q.; O’Hare, D. <i>Chem. Rev. </i><b>2012, </b><i>112</i>, 4124. doi: <a href="" target="_blank">10.1021/cr200434v</a><br /> (18) Liu, Y.; Wang, N.; Cao, Z.; Caro, J. <i>J. Mater. Chem. A </i><b>2014, </b><i>2</i>, 1235. doi: <a href="" target="_blank">10.1039/c3ta13792a</a><br /> (19) Liu, Y.; Wang, N.; Caro, J. <i>J. Mater. Chem. A </i><b>2014, </b><i>2</i>, 5716. doi: <a href="" target="_blank">10.1039/c4ta00108g</a><br /> (20) Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. <i>Adv. Mater. </i><b>2011, </b><i>23</i>, 4248. doi: <a href="" target="_blank">10.1002/adma.201102306</a><br /> (21) Ding, L.; Wei, Y.; Li, L.; Zhang, T.; Wang, H.; Xue, J.; Ding, L. X.; Wang, S.; Caro, J.; Gogotsi, Y. <i>Nat. Commun. </i><b>2018, </b><i>9</i>, 155. doi: <a href="" target="_blank">10.1038/s41467-017-02529-6</a><br /> (22) Shen, J.; Liu, G.; Ji, Y.; Liu, Q.; Cheng, L.; Guan, K.; Zhang, M.; Liu, G.; Xiong, J.; Yang, J.; <i>et al</i>. <i>Adv. Funct. Mater. </i><b>2018, </b><i>28</i>, 1801511. doi: <a href="" target="_blank">10.1002/adfm.201801511</a><br /> (23) Zhang, P.; Li, J.; Lv, L.; Zhao, Y.; Qu, L. <i>ACS Nano </i><b>2017, </b><i>11</i>, 5087. doi: <a href="" target="_blank">10.1021/acsnano.7b01965</a>
[1] Miao TAN,Lei ZHANG,Wanzhen LIANG. Theoretical Study on Intrinsic Structures and Properties of vdW Heterostructures of Transition Metal Dichalcogenides (WX2) and Effect of Strains[J]. Acta Phys. -Chim. Sin., 2019, 35(4): 385-393.
[2] Xi CHEN,Shengli ZHANG. Modulation of Molecular Sensing Properties of Graphdiyne Based on 3d Impurities[J]. Acta Phys. -Chim. Sin., 2018, 34(9): 1061-1073.
[3] Chong-Yi LING,Jin-Lan WANG. Recent Advances in Electrocatalysts for the Hydrogen Evolution Reaction Based on Graphene-Like Two-Dimensional Materials[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 869-885.
[4] Lei HE,Xiang-Qian ZHANG,An-Hui LU. Two-Dimensional Carbon-Based Porous Materials: Synthesis and Applications[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 709-728.
[5] Meng-Qi ZENG,Tao ZHANG,Li-Fang TAN,Lei FU. Liquid Metal Catalyst: Philosopher's Stone of Two-Dimensional Materials[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 464-475.
[6] Shao-Zheng ZHANG,Jia LIU,Yan XIE,Yin-Ji LU,Lin LI,Liang LÜ,Jian-Hui YANG,Shi-Hao WEI. First-Principle Study of Hydrogen Evolution Activity for Two-dimensional M2XO2-2x(OH)2x (M=Ti, V; X=C, N)[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2022-2028.
[7] Nai-En SHI,Chuan-Yuan SONG,Jun ZHANG,Wei HUANG. Preparation and Optoelectronic Applications of Two-Dimensional Nanocrystals Based on Metallo-Porphyrins[J]. Acta Phys. -Chim. Sin., 2016, 32(10): 2447-2461.
[8] YANG Jian-Hui, JI Jia-Lin, LI Lin, WEI Shi-Hao. Hydrogen Chemisorption and Physisorption on the Two-Dimensional TiC Sheet Surface[J]. Acta Phys. -Chim. Sin., 2014, 30(10): 1821-1826.
[9] YUAN Wei-Zhong, ZHANG Feng-Bo, YUAN Jin-Ying, XIE Xu-Ming, HONG Xiao-Yin. Effect ofMolecular Structure on the Surface Morphology of Ultrathin Films by Competing Crystallization and Dewetting Processes[J]. Acta Phys. -Chim. Sin., 2010, 26(04): 1157-1163.
[10] YANG Ya-Jie; JIANG Ya-Dong; XU Jian-Hua. Preparation and Properties of Conducting Polymeric Ultrathin Films[J]. Acta Phys. -Chim. Sin., 2007, 23(04): 484-488.