Acta Physico-Chimica Sinica ›› 2019, Vol. 35 ›› Issue (8): 808-815.doi: 10.3866/PKU.WHXB201901035
• COMMUNICATION • Previous Articles Next Articles
Jiali FANG,Xin CHEN*(),Chang LI,Yulian WU
Received:
2019-01-16
Accepted:
2019-03-01
Published:
2019-03-08
Contact:
Xin CHEN
E-mail:xinchen73@ecust.edu.cn
Supported by:
Jiali FANG, Xin CHEN, Chang LI, Yulian WU. Observation of the Gold Nanorods/Graphene Composite Formation and Motion with in situ Liquid Cell Transmission Electron Microscopy[J].Acta Physico-Chimica Sinica, 2019, 35(8): 808-815.
Fig 1
TEM images of AuNRs and AuNRs/G composites. (a) TEM image of AuNRs. (b) Enlarged TEM image of the area outlined by the white box in (a). (c) TEM image of AuNRs/G composites. Black arrows refer to AuNRs distributed at the edge/fold of graphene, and red arrow refers to AuNR distributed in the sheet. (d) SAED pattern of AuNRs/G composites."
Fig 2
Dynamic in situ liquid cell TEM observation of the tip of AuNRs affixed to the graphene edge. (a) Global images of AuNRs before and after compositing with graphene. (b) Track of AuNRs. (c) In situ TEM images of the relative position changes of AuNRs before and after composite with graphene. AuNRs tend to approach the graphene edges through the tips due to charge attraction."
Fig 3
Dynamics of graphene edges affixed parallel to the edges of AuNRs. (a) The positions of an AuNRs/G composite in the liquid at 0 and 20 s. (b) The complex tracks from 0 to 20 s. The self-assembled structures did not show relative angle changes between the AuNR and the graphene edge with time."
Fig 6
Catalytic performance of AuNRs/G composites. (a) UV-Vis spectrum of 4-NP before and after the addition of NaBH4. (b–e) UV-Vis spectra with the composite mass ratio of 1 : 0, 1 : 1, 1 : 5 and 1 : 10. (f) ln(C/C0) versus reaction time for the reduction of 4-NP over different mass ratios of AuNRs/G composites. The self-assembled catalyst with mass composite 1 : 5 AuNRs/G ratio showed the best performance, with a kapp value of 0.5570 min?1, which is 8 times of bare AuNRs."
1 |
Tian N. ; Zhou Z. Y. ; Sun S. G. ; Ding Y. ; Wang Z. L. Science 2007, 316, 732.
doi: 10.1126/science.1140484 |
2 |
Chu M. ; Zhang Y. ; Yang L. ; Tan Y. ; Deng W. ; Ma M. ; Su X. ; Xie Q. ; Yao S. Energy Environ. Sci. 2013, 6, 3600.
doi: 10.1039/C3EE41904E |
3 |
Orendorff C. J. ; Gole A. ; Sau T. K. ; Murphy C. J. Anal. Chem. 2005, 77, 3261.
doi: 10.1021/ac048176x |
4 |
Ozbay E. Science 2006, 311, 189.
doi: 10.1126/science.1114849 |
5 |
Anker J. N. ; Hall W. P. ; Lyandres O. ; Shah N. C. ; Zhao J. ; Van Duyne R. P. Nat. Mater. 2008, 7, 442.
doi: 10.1038/nmat2162 |
6 |
Lal S. ; Clare S. E. ; Halas N. J. Acc. Chem. Res. 2008, 41, 1842.
doi: 10.1021/ar800150g |
7 |
Zang W. ; Li G. ; Wang L. ; Zhang X. Catal. Sci. Technol. 2015, 5, 2532.
doi: 10.1039/C4CY01619J |
8 |
Song Y. ; Lü J. ; Liu B. ; Lü C. RSC Adv. 2016, 6, 64937.
doi: 10.1039/C6RA11710D |
9 |
Yang Y. ; Luo S. ; Guo S. ; Chao Y. ; Yang H. ; Li Y. Int. J. Hydrog. Energy 2017, 42, 29236.
doi: 10.1016/j.ijhydene.2017.10.086 |
10 |
Zanolli Z. ; Leghrib R. ; Felten A. ; Pireaux J. ; Llobet E. ; Charlier J. ACS Nano 2011, 5, 4592.
doi: 10.1021/nn200294h |
11 |
Jiang H. ; Akita T. ; Ishida T. ; Haruta M. ; Xu Q. J. Am. Chem. Soc. 2011, 133, 1304.
doi: 10.1021/ja1099006 |
12 |
Gu X. ; Lu Z. ; Jiang H. ; Akita T. ; Xu Q. J. Am. Chem. Soc. 2011, 133, 11822.
doi: 10.1021/ja200122f |
13 |
Yang X. ; Chen D. ; Liao S. ; Song H. ; Li Y. ; Fu Z. ; Su Y. J. Catal. 2012, 291, 36.
doi: 10.1016/j.jcat.2012.04.003 |
14 |
Wang S. ; Zhang M. ; Zhang W. ACS Catal. 2011, 1, 207.
doi: 10.1021/cs1000762 |
15 |
Xu Z. ; Luo J. ; Chuang K. T. J. Power Sources 2009, 188, 458.
doi: 10.1016/j.jpowsour.2008.12.008 |
16 |
Shi Y. ; Wang J. ; Wang C. ; Zhai T. ; Bao W. ; Xu J. ; Xia X. ; Chen H. J. Am. Chem. Soc. 2015, 137, 7365.
doi: 10.1021/jacs.5b01732 |
17 |
Chen X. ; Li C. ; Cao H. Nanoscale 2015, 7, 4811.
doi: 10.1039/C4NR07209J |
18 |
Zheng H. ; Smith R. K. ; Jun Y. ; Kisielowski C. ; Dahmen U. ; Alivisatos A. P. Science 2009, 324, 1309.
doi: 10.1126/science.1172104 |
19 |
Zhou X. Q. ; Zhang H. ; Zhang Z. ; Chen X. ; Jin C. H. Acta Phys. -Chim. Sin. 2017, 33, 458.
doi: 10.3866/PKU.WHXB201701041 |
周晓琴; 张辉; 张泽; 陈新; 金传洪. 物理化学学报, 2017, 33, 458.
doi: 10.3866/PKU.WHXB201701041 |
|
20 |
Liu Y. ; Chen. X. ; Noh K. W. N. ; Dillon S. J. Nanotechnology 2012, 23, 385302.
doi: 10.1088/0957-4484/23/38/385302 |
21 |
Jiang Y. ; Zhu G. ; Lin F. ; Zhang H. ; Jin C. ; Yuan J. ; Yang D. ; Zhang Z. Nano Lett. 2014, 14, 3761.
doi: 10.1021/nl500670q |
22 |
Wang J. ; Luo H. ; Liu Y. ; He Y. ; Fan F. ; Zhang Z. ; Mao S. X. ; Wang C. ; Zhu T. Nano Lett. 2016, 16, 5815.
doi: 10.1021/acs.nanolett.6b02581 |
23 |
Nie A. ; Cheng Y. ; Ning S. ; Foroozan T. ; Yasaei P. ; Li W. ; Song B. ; Yuan Y. ; Chen L. ; Salehi-Khojin A. ; et al Nano Lett. 2016, 16, 2240.
doi: 10.1021/acs.nanolett.5b04514 |
24 |
Lin G. ; Zhu X. ; Anand U. ; Liu Q. ; Lu J. ; Aabdin Z. ; Su H. ; Mirsaidov U. Nano Lett. 2016, 16, 1092.
doi: 10.1021/acs.nanolett.5b04323 |
25 |
Sutter E. ; Sutter P. ; Tkachenko A. V. ; Krahne R. ; de Graaf J. ; Arciniegas M. ; Manna L. Nat. Commun. 2016, 7, 11213.
doi: 10.1038/ncomms11213 |
26 |
de Jonge N. ; Peckys D. B. ; Kremers G. J. ; Piston D. W. Proc. Nat. Acad. Sci. 2009, 106, 2159.
doi: 10.1073/pnas.0809567106 |
27 |
Nikoobakht B. ; El-Sayed M. A. Chem. Mater. 2003, 15, 1957.
doi: 10.1021/cm020732l |
28 |
Li C. ; Chen X. ; Liu H. ; Fang J. ; Zhou X. Nano Res. 2018, 11, 4697.
doi: 10.1007/s12274-018-2052-6 |
29 |
Zheng H. Nanoscale 2013, 5, 4070.
doi: 10.1039/C3NR00737E |
30 |
Praharaj S. ; Nath S. ; Ghosh S. K. ; Kundu S. ; Pal T. Langmuir 2004, 20, 9889.
doi: 10.1021/la0486281 |
31 |
Chen X. ; Cai Z. ; Chen X. ; Oyama M. J. Mater. Chem. A 2014, 2, 5668.
doi: 10.1039/C3TA15141G |
32 |
Huang J. ; Vongehr S. ; Tang S. ; Lu H. ; Meng X. J. Phys. Chem. C 2010, 114, 15005.
doi: 10.1021/jp104675d |
33 |
Wang Y. ; Li H. ; Zhang J. ; Yan X. ; Chen Z. Phys. Chem. Chem. Phys. 2016, 18, 615.
doi: 10.1039/C5CP05336F |
34 |
Wang D. ; Duan H. ; Lü J. ; Lü C. J. Mater. Chem. A 2017, 5, 5088.
doi: 10.1039/C6TA09772C |
35 |
Li J. ; Liu C. ; Liu Y. J. Mater. Chem. 2012, 22, 8426.
doi: 10.1039/C2JM16386A |
36 |
Luo J. ; Zhang N. ; Liu R. ; Liu X. RSC Adv. 2014, 4, 64816.
doi: 10.1039/C4RA11950A |
[1] | Ping Wang, Haitao Li, Yanjie Cao, Huogen Yu. Carboxyl-Functionalized Graphene for Highly Efficient H2-Evolution Activity of TiO2 Photocatalyst [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2008047-0. |
[2] | Yanan Zhao, Min He, Xiaofang Liu, Bin Liu, Jianhui Yang. Self-Assembly and Structural Characterization of Au Binary Nanocrystal Superlattices [J]. Acta Physico-Chimica Sinica, 2020, 36(9): 1908041-0. |
[3] | Jing Zhang, Lina Wang, Xiaofei Chen, Yufeng Wang, Chengyan Niu, Lixin Wu, Zhiyong Tang. Redox-Regulated Dynamic Self-Assembly of a Lindqvist-Type Polyoxometalate Complex [J]. Acta Physico-Chimica Sinica, 2020, 36(9): 1912002-0. |
[4] | Huifang An, Li Jiang, Feng Li, Ping Wu, Xiaoshu Zhu, Shaohua Wei, Yiming Zhou. Hydrogel-Derived Three-Dimensional Porous Si-CNT@G Nanocomposite with High-Performance Lithium Storage [J]. Acta Physico-Chimica Sinica, 2020, 36(7): 1905034-0. |
[5] | Ting Zhang,Cuicui Li,Wei Wang,Zhaoqi Guo,Aimin Pang,Haixia Ma. Construction of Three-Dimensional Hematite/Graphene with Effective Catalytic Activity for the Thermal Decomposition of CL-20 [J]. Acta Physico-Chimica Sinica, 2020, 36(6): 1905048-0. |
[6] | Ruijie Chen,Di Li,Zhenyuan Fang,Yuanyong Huang,Bifu Luo,Weidong Shi. Controlling Self-Assembly of 3D In2O3 Nanostructures for Boosting Photocatalytic Hydrogen Production [J]. Acta Physico-Chimica Sinica, 2020, 36(3): 1903047-0. |
[7] | Jiayao Zhu, Yue Dong, Su Zhang, Zhuangjun Fan. Application of Carbon-/Graphene Quantum Dots for Supercapacitors [J]. Acta Physico-Chimica Sinica, 2020, 36(2): 1903052-0. |
[8] | Feng Wei,Honghui Bi,Shuai Jiao,Xiaojun He. Interconnected Graphene-like Nanosheets for Supercapacitors [J]. Acta Physico-Chimica Sinica, 2020, 36(2): 1903043-0. |
[9] | Yao Chen,George Zheng Chen. New Precursors Derived Activated Carbon and Graphene for Aqueous Supercapacitors with Unequal Electrode Capacitances [J]. Acta Physico-Chimica Sinica, 2020, 36(2): 1904025-0. |
[10] | Ke Xu, Jinfen Wang. 1D and 2D Nanomaterials-based Electronics for Neural Interfaces [J]. Acta Phys. -Chim. Sin., 2020, 36(12): 2003050-0. |
[11] | Yang Liu, Xiaojie Duan. Carbon-based Nanomaterials for Neural Electrode Technology [J]. Acta Phys. -Chim. Sin., 2020, 36(12): 2007066-0. |
[12] | Chengzhen Sun, Runfeng Zhou, Bofeng Bai. Electrostatic Effect-based Selective Permeation Characteristics of Graphene Nanopores [J]. Acta Phys. -Chim. Sin., 2020, 36(11): 1911044-0. |
[13] | Feixue Gao, Yongjun Chen, Dongsheng Liu, Minghua Liu, Zhongqun Tian, Xi Zhang. Review of Major Research Plan on "Controlled Self-assembly Systems and Functionalization" [J]. Acta Physico-Chimica Sinica, 2020, 36(11): 2006060-0. |
[14] | Ruirui Xing, Qianli Zou, Xuehai Yan. Peptide-based Supramolecular Colloids [J]. Acta Physico-Chimica Sinica, 2020, 36(10): 1909048-0. |
[15] | Junyan Xiao, Limin Qi. Controllable Self-Assembly of Gold Nanorods via Host–Guest Interaction between Cyclodextrins and Surfactants [J]. Acta Physico-Chimica Sinica, 2020, 36(10): 1910001-0. |
|