Acta Physico-Chimica Sinica ›› 2019, Vol. 35 ›› Issue (8): 808-815.doi: 10.3866/PKU.WHXB201901035
• COMMUNICATION • Previous Articles Next Articles
Jiali FANG,Xin CHEN*(),Chang LI,Yulian WU
Received:
2019-01-16
Accepted:
2019-03-01
Published:
2019-03-08
Contact:
Xin CHEN
E-mail:xinchen73@ecust.edu.cn
Supported by:
Jiali FANG, Xin CHEN, Chang LI, Yulian WU. Observation of the Gold Nanorods/Graphene Composite Formation and Motion with in situ Liquid Cell Transmission Electron Microscopy[J].Acta Physico-Chimica Sinica, 2019, 35(8): 808-815.
Fig 1
TEM images of AuNRs and AuNRs/G composites. (a) TEM image of AuNRs. (b) Enlarged TEM image of the area outlined by the white box in (a). (c) TEM image of AuNRs/G composites. Black arrows refer to AuNRs distributed at the edge/fold of graphene, and red arrow refers to AuNR distributed in the sheet. (d) SAED pattern of AuNRs/G composites."
Fig 2
Dynamic in situ liquid cell TEM observation of the tip of AuNRs affixed to the graphene edge. (a) Global images of AuNRs before and after compositing with graphene. (b) Track of AuNRs. (c) In situ TEM images of the relative position changes of AuNRs before and after composite with graphene. AuNRs tend to approach the graphene edges through the tips due to charge attraction."
Fig 3
Dynamics of graphene edges affixed parallel to the edges of AuNRs. (a) The positions of an AuNRs/G composite in the liquid at 0 and 20 s. (b) The complex tracks from 0 to 20 s. The self-assembled structures did not show relative angle changes between the AuNR and the graphene edge with time."
Fig 6
Catalytic performance of AuNRs/G composites. (a) UV-Vis spectrum of 4-NP before and after the addition of NaBH4. (b–e) UV-Vis spectra with the composite mass ratio of 1 : 0, 1 : 1, 1 : 5 and 1 : 10. (f) ln(C/C0) versus reaction time for the reduction of 4-NP over different mass ratios of AuNRs/G composites. The self-assembled catalyst with mass composite 1 : 5 AuNRs/G ratio showed the best performance, with a kapp value of 0.5570 min?1, which is 8 times of bare AuNRs."
1 |
Tian N. ; Zhou Z. Y. ; Sun S. G. ; Ding Y. ; Wang Z. L. Science 2007, 316, 732.
doi: 10.1126/science.1140484 |
2 |
Chu M. ; Zhang Y. ; Yang L. ; Tan Y. ; Deng W. ; Ma M. ; Su X. ; Xie Q. ; Yao S. Energy Environ. Sci. 2013, 6, 3600.
doi: 10.1039/C3EE41904E |
3 |
Orendorff C. J. ; Gole A. ; Sau T. K. ; Murphy C. J. Anal. Chem. 2005, 77, 3261.
doi: 10.1021/ac048176x |
4 |
Ozbay E. Science 2006, 311, 189.
doi: 10.1126/science.1114849 |
5 |
Anker J. N. ; Hall W. P. ; Lyandres O. ; Shah N. C. ; Zhao J. ; Van Duyne R. P. Nat. Mater. 2008, 7, 442.
doi: 10.1038/nmat2162 |
6 |
Lal S. ; Clare S. E. ; Halas N. J. Acc. Chem. Res. 2008, 41, 1842.
doi: 10.1021/ar800150g |
7 |
Zang W. ; Li G. ; Wang L. ; Zhang X. Catal. Sci. Technol. 2015, 5, 2532.
doi: 10.1039/C4CY01619J |
8 |
Song Y. ; Lü J. ; Liu B. ; Lü C. RSC Adv. 2016, 6, 64937.
doi: 10.1039/C6RA11710D |
9 |
Yang Y. ; Luo S. ; Guo S. ; Chao Y. ; Yang H. ; Li Y. Int. J. Hydrog. Energy 2017, 42, 29236.
doi: 10.1016/j.ijhydene.2017.10.086 |
10 |
Zanolli Z. ; Leghrib R. ; Felten A. ; Pireaux J. ; Llobet E. ; Charlier J. ACS Nano 2011, 5, 4592.
doi: 10.1021/nn200294h |
11 |
Jiang H. ; Akita T. ; Ishida T. ; Haruta M. ; Xu Q. J. Am. Chem. Soc. 2011, 133, 1304.
doi: 10.1021/ja1099006 |
12 |
Gu X. ; Lu Z. ; Jiang H. ; Akita T. ; Xu Q. J. Am. Chem. Soc. 2011, 133, 11822.
doi: 10.1021/ja200122f |
13 |
Yang X. ; Chen D. ; Liao S. ; Song H. ; Li Y. ; Fu Z. ; Su Y. J. Catal. 2012, 291, 36.
doi: 10.1016/j.jcat.2012.04.003 |
14 |
Wang S. ; Zhang M. ; Zhang W. ACS Catal. 2011, 1, 207.
doi: 10.1021/cs1000762 |
15 |
Xu Z. ; Luo J. ; Chuang K. T. J. Power Sources 2009, 188, 458.
doi: 10.1016/j.jpowsour.2008.12.008 |
16 |
Shi Y. ; Wang J. ; Wang C. ; Zhai T. ; Bao W. ; Xu J. ; Xia X. ; Chen H. J. Am. Chem. Soc. 2015, 137, 7365.
doi: 10.1021/jacs.5b01732 |
17 |
Chen X. ; Li C. ; Cao H. Nanoscale 2015, 7, 4811.
doi: 10.1039/C4NR07209J |
18 |
Zheng H. ; Smith R. K. ; Jun Y. ; Kisielowski C. ; Dahmen U. ; Alivisatos A. P. Science 2009, 324, 1309.
doi: 10.1126/science.1172104 |
19 |
Zhou X. Q. ; Zhang H. ; Zhang Z. ; Chen X. ; Jin C. H. Acta Phys. -Chim. Sin. 2017, 33, 458.
doi: 10.3866/PKU.WHXB201701041 |
周晓琴; 张辉; 张泽; 陈新; 金传洪. 物理化学学报, 2017, 33, 458.
doi: 10.3866/PKU.WHXB201701041 |
|
20 |
Liu Y. ; Chen. X. ; Noh K. W. N. ; Dillon S. J. Nanotechnology 2012, 23, 385302.
doi: 10.1088/0957-4484/23/38/385302 |
21 |
Jiang Y. ; Zhu G. ; Lin F. ; Zhang H. ; Jin C. ; Yuan J. ; Yang D. ; Zhang Z. Nano Lett. 2014, 14, 3761.
doi: 10.1021/nl500670q |
22 |
Wang J. ; Luo H. ; Liu Y. ; He Y. ; Fan F. ; Zhang Z. ; Mao S. X. ; Wang C. ; Zhu T. Nano Lett. 2016, 16, 5815.
doi: 10.1021/acs.nanolett.6b02581 |
23 |
Nie A. ; Cheng Y. ; Ning S. ; Foroozan T. ; Yasaei P. ; Li W. ; Song B. ; Yuan Y. ; Chen L. ; Salehi-Khojin A. ; et al Nano Lett. 2016, 16, 2240.
doi: 10.1021/acs.nanolett.5b04514 |
24 |
Lin G. ; Zhu X. ; Anand U. ; Liu Q. ; Lu J. ; Aabdin Z. ; Su H. ; Mirsaidov U. Nano Lett. 2016, 16, 1092.
doi: 10.1021/acs.nanolett.5b04323 |
25 |
Sutter E. ; Sutter P. ; Tkachenko A. V. ; Krahne R. ; de Graaf J. ; Arciniegas M. ; Manna L. Nat. Commun. 2016, 7, 11213.
doi: 10.1038/ncomms11213 |
26 |
de Jonge N. ; Peckys D. B. ; Kremers G. J. ; Piston D. W. Proc. Nat. Acad. Sci. 2009, 106, 2159.
doi: 10.1073/pnas.0809567106 |
27 |
Nikoobakht B. ; El-Sayed M. A. Chem. Mater. 2003, 15, 1957.
doi: 10.1021/cm020732l |
28 |
Li C. ; Chen X. ; Liu H. ; Fang J. ; Zhou X. Nano Res. 2018, 11, 4697.
doi: 10.1007/s12274-018-2052-6 |
29 |
Zheng H. Nanoscale 2013, 5, 4070.
doi: 10.1039/C3NR00737E |
30 |
Praharaj S. ; Nath S. ; Ghosh S. K. ; Kundu S. ; Pal T. Langmuir 2004, 20, 9889.
doi: 10.1021/la0486281 |
31 |
Chen X. ; Cai Z. ; Chen X. ; Oyama M. J. Mater. Chem. A 2014, 2, 5668.
doi: 10.1039/C3TA15141G |
32 |
Huang J. ; Vongehr S. ; Tang S. ; Lu H. ; Meng X. J. Phys. Chem. C 2010, 114, 15005.
doi: 10.1021/jp104675d |
33 |
Wang Y. ; Li H. ; Zhang J. ; Yan X. ; Chen Z. Phys. Chem. Chem. Phys. 2016, 18, 615.
doi: 10.1039/C5CP05336F |
34 |
Wang D. ; Duan H. ; Lü J. ; Lü C. J. Mater. Chem. A 2017, 5, 5088.
doi: 10.1039/C6TA09772C |
35 |
Li J. ; Liu C. ; Liu Y. J. Mater. Chem. 2012, 22, 8426.
doi: 10.1039/C2JM16386A |
36 |
Luo J. ; Zhang N. ; Liu R. ; Liu X. RSC Adv. 2014, 4, 64816.
doi: 10.1039/C4RA11950A |
[1] | Ruojuan Liu, Bingzhi Liu, Jingyu Sun, Zhongfan Liu. Gaseous-Promotor-Assisted Direct Growth of Graphene on Insulating Substrates: Progress and Prospects [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2111011-0. |
[2] | Hanqing Liu, Feng Zhou, Xiaoyu Shi, Quan Shi, Zhong-Shuai Wu. Recent Advances and Prospects of Graphene-Based Fibers for Application in Energy Storage Devices [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2204017-. |
[3] | Zhou Xia, Yuanlong Shao. Wet Spinning Assembled Graphene Fiber: Processing, Structure, Property, and Smart Applications [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2103046-. |
[4] | Wenya He, Huhu Cheng, Liangti Qu. Progress on Carbonene Fibers for Energy Devices [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2203004-. |
[5] | Wenqian He, Ya Di, Nan Jiang, Zunfeng Liu, Yongsheng Chen. Graphene-Oxide Seeds Nucleate Strong and Tough Hydrogel-Based Artificial Spider Silk [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2204059-. |
[6] | Jingsong Peng, Qunfeng Cheng. Nacre-Inspired Graphene-based Multifunctional Nanocomposites [J]. Acta Phys. -Chim. Sin., 2022, 38(5): 2005006-. |
[7] | Henan Mao, Xiaogong Wang. Key Factors Affecting Rheological Behavior of High-Concentration Graphene Oxide Dispersions and Population Balance Equation Model Analysis [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2004025-. |
[8] | Yishun Yang, Min Zhou, Yanxia Xing. Symmetry-Dependent Transport Properties of γ-Graphyne-based Molecular Magnetic Tunnel Junctions [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2003004-. |
[9] | Zheng Bo, Jing Kong, Huachao Yang, Zhouwei Zheng, Pengpeng Chen, Jianhua Yan, Kefa Cen. Ultra-Low-Temperature Supercapacitor Based on Holey Graphene and Mixed-Solvent Organic Electrolyte [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2005054-. |
[10] | Ye Fan, Chongmei Cao, Yun Fang, Yongmei Xia. Fabrication of Fluorescent Nanodots by Self-Crosslinking Ufasomes of Conjugated Linoleic Acid and Their Unique Fluorescence Properties [J]. Acta Phys. -Chim. Sin., 2022, 38(3): 2002032-. |
[11] | Shiyi Tang, Gaotian Lu, Yi Su, Guang Wang, Xuanzhang Li, Guangqi Zhang, Yang Wei, Yuegang Zhang. Raman Mapping of Lithiation Process on Graphene [J]. Acta Phys. -Chim. Sin., 2022, 38(3): 2001007-. |
[12] | Meihui Jiang, Lizhi Sheng, Chao Wang, Lili Jiang, Zhuangjun Fan. Graphene Film for Supercapacitors: Preparation, Foundational Unit Structure and Surface Regulation [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2012085-. |
[13] | Jian Wang, Bo Yin, Tian Gao, Xingyi Wang, Wang Li, Xingxing Hong, Zhuqing Wang, Haiyong He. Reduced Graphene Oxide Modified Few-Layer Exfoliated Graphite to Enhance the Stability of the Negative Electrode of a Graphite-Based Potassium Ion Battery [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2012088-. |
[14] | Yi Cheng, Kun Wang, Yue Qi, Zhongfan Liu. Chemical Vapor Deposition Method for Graphene Fiber Materials [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2006046-. |
[15] | Bei Jiang, Jingyu Sun, Zhongfan Liu. Synthesis of Graphene Wafers: from Lab to Fab [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2007068-. |
|