Acta Physico-Chimica Sinica ›› 2020, Vol. 36 ›› Issue (1): 1904026.doi: 10.3866/PKU.WHXB201904026
Special Issue: Special Issue in Honor of Academician Youqi Tang on the Occasion of His 100th Birthday
• Article • Previous Articles Next Articles
Yi Ren1,2,3,4,Qing-Yu Liu1,3,4,*(),Yan-Xia Zhao1,3,4,Qi Yang1,3,4,Sheng-Gui He1,2,3,4,*(
)
Received:
2019-04-08
Accepted:
2019-04-25
Published:
2019-04-29
Contact:
Qing-Yu Liu,Sheng-Gui He
E-mail:liuqingyu12@iccas.ac.cn;shengguihe@iccas.ac.cn
Supported by:
MSC2000:
Yi Ren,Qing-Yu Liu,Yan-Xia Zhao,Qi Yang,Sheng-Gui He. C―C Coupling of Methane Mediated by Atomic Gold Cations under Multiple-Collision Conditions[J].Acta Physico-Chimica Sinica, 2020, 36(1): 1904026.
1 |
Lunsford J. H. Catal. Today 2000, 63, 165.
doi: 10.1016/s0920-5861(00)00456-9 |
2 |
Caballero A. ; Pérez P. J. Chem. Soc. Rev. 2013, 42, 8809.
doi: 10.1039/c3cs60120j |
3 |
Saha D. ; Grappe H. A. ; Chakraborty A. ; Orkoulas G. Chem. Rev. 2016, 116, 11436.
doi: 10.1021/acs.chemrev.5b00745 |
4 |
Ismagilov Z. R. ; Matus E. V. ; Tsikoza L. T. Energy Environ. Sci. 2008, 1, 526.
doi: 10.1039/b810981h |
5 |
Spivey J. J. ; Hutchings G. Chem. Soc. Rev. 2014, 43, 792.
doi: 10.1039/c3cs60259a |
6 |
Schwach P. ; Pan X. ; Bao X. Chem. Rev. 2017, 117, 8497.
doi: 10.1021/acs.chemrev.6b00715 |
7 |
Schwarz H. ; González-Navarrete P. ; Li J. ; Schlangen M. ; Sun X. ; Weiske T. ; Zhou S. Organometallics 2017, 36, 8.
doi: 10.1021/acs.organomet.6b00372 |
8 |
Ding X.-L. ; Wu X.-N. ; Zhao Y.-X. ; He S.-G. Acc. Chem. Res. 2012, 45, 382.
doi: 10.1021/ar2001364 |
9 |
Feyel S. ; Döbler J. ; Schröder D. ; Sauer J. ; Schwarz H. Angew. Chem. Int. Ed. 2006, 45, 4681.
doi: 10.1002/anie.200600188 |
10 |
Harding D. J. ; Kerpal C. ; Meijer G. ; Fielicke A. Angew. Chem. Int. Ed. 2012, 51, 817.
doi: 10.1002/anie.201107042 |
11 |
Lang S. M. ; Frank A. ; Bernhardt T. M. J. Phys. Chem. C 2013, 117, 9791.
doi: 10.1021/jp312852r |
12 |
Canale V. ; Zavras A. ; Khairallah G. N. ; d'Alessandro N. ; O'Hair R. A. J. Eur. J. Mass Spectrom. 2015, 21, 557.
doi: 10.1255/ejms.1332 |
13 |
Lang S. M. ; Bernhardt T. M. ; Chernyy V. ; Bakker J. M. ; Barnett R. N. ; Landman U. Angew. Chem. Int. Ed. 2017, 56, 13406.
doi: 10.1002/anie.201706009 |
14 |
Caballero A. ; Despagnet-Ayoub E. ; Díaz-Requejo M. M. ; Díaz-Rodríguez A. ; González-Núñez M. E. ; Mello R. ; Muñoz B. K. ; Ojo W. S. ; Asensio G. ; Etienne M. ; et al Science 2011, 332, 835.
doi: 10.1126/science.1204131 |
15 |
Guo X. ; Fang G. ; Li G. ; Ma H. ; Fan H. ; Yu L. ; Ma C. ; Wu X. ; Deng D. ; Wei M. ; et al Science 2014, 344, 616.
doi: 10.1126/science.1253150 |
16 |
Sushkevich V. L. ; Palagin D. ; Ranocchiari M. ; van Bokhoven J. A. Science 2017, 356, 523.
doi: 10.1126/science.aam9035 |
17 |
Tonkyn R. ; Ronan M. ; Weisshaar J. C. J. Phys. Chem. 1988, 92, 92.
doi: 10.1021/j100312a022 |
18 |
Irikura K. K. ; Beauchamp J. L. J. Phys. Chem. 1991, 95, 8344.
doi: 10.1021/j100174a057 |
19 |
Irikura K. K. ; Beauchamp J. L. J. Am. Chem. Soc. 1991, 113, 2769.
doi: 10.1021/ja00007a070 |
20 |
Cornehl H. H. ; Heinemann C. ; Schröder D. ; Schwarz H. Organometallics 1995, 14, 992.
doi: 10.1021/om00002a053 |
21 |
Schwarz H. ; Schröder D. Pure Appl. Chem. 2000, 72, 2319.
doi: 10.1351/pac200072122319 |
22 |
Shayesteh A. ; Lavrov V. V. ; Koyanagi G. K. ; Bohme D. K. J. Phys. Chem. A 2009, 113, 5602.
doi: 10.1021/jp900671c |
23 |
van Koppen P. A. M. ; Kemper P. R. ; Bushnell J. E. ; Bowers M. T. J. Am. Chem. Soc. 1995, 117, 2098.
doi: 10.1021/ja00112a026 |
24 |
Sunderlin L. S. ; Armentrout P. B. J. Am. Chem. Soc. 1989, 111, 3845.
doi: 10.1021/ja00193a015 |
25 |
Haynes C. L. ; Chen Y.-M. ; Armentrout P. B. J. Phys. Chem. 1995, 99, 9110.
doi: 10.1021/j100022a024 |
26 |
Armentrout P. B. ; Chen Y.-M. Int. J. Mass Spectrom. 2017, 413, 135.
doi: 10.1016/j.ijms.2016.05.003 |
27 |
Li F.-X. ; Armentrout P. B. J. Chem. Phys. 2006, 125, 133114.
doi: 10.1063/1.2220038 |
28 |
Zhou S. ; Li J. ; Wu X.-N. ; Schlangen M. ; Schwarz H. Angew. Chem. Int. Ed. 2016, 55, 441.
doi: 10.1002/anie.201509320 |
29 |
Karakaya C. ; Kee R. J. Prog. Energy Combust. Sci. 2016, 55, 60.
doi: 10.1016/j.pecs.2016.04.003 |
30 |
Tomkins P. ; Ranocchiari M. ; van Bokhoven J. A. Acc. Chem. Res. 2017, 50, 418.
doi: 10.1021/acs.accounts.6b00534 |
31 |
Sun K. ; Ginosar D. M. ; He T. ; Zhang Y. ; Fan M. ; Chen R. Ind. Eng. Chem. Res. 2018, 57, 1768.
doi: 10.1021/acs.iecr.7b04707 |
32 |
Geusic M. E. ; Morse M. D. ; O'Brien S. C. ; Smalley R. E. Rev. Sci. Instrum. 1985, 56, 2123.
doi: 10.1063/1.1138381 |
33 |
Smith D. ; Španěl P. Mass Spectrom. Rev. 2005, 24, 661.
doi: 10.1002/mas.20033 |
34 |
Melko J. J. ; Ard S. G. ; Shuman N. S. ; Pedder R. E. ; Taormina C. R. ; Viggiano A. A. Rev. Sci. Instrum. 2015, 86, 084101.
doi: 10.1063/1.4927716 |
35 |
McDonald D. C. ; Sweeny B. C. ; Ard S. G. ; Melko J. J. ; Ruliffson J. E. ; White M. C. ; Viggiano A. A. ; Shuman N. S. J. Phys. Chem. A 2018, 122, 6655.
doi: 10.1021/acs.jpca.8b02513 |
36 |
Gronert S. Mass Spectrom. Rev. 2005, 24, 100.
doi: 10.1002/mas.20008 |
37 |
Douglas D. J. ; Frank A. J. ; Mao D. Mass Spectrom. Rev. 2005, 24, 1.
doi: 10.1002/mas.20004 |
38 |
Nibbering N. M. M. Acc. Chem. Res. 1990, 23, 279.
doi: 10.1021/ar00177a003 |
39 |
Teloy E. ; Gerlich D. Chem. Phys. 1974, 4, 417.
doi: 10.1016/0301-0104(74)85008-1 |
40 |
Armentrout P. B. ; Beauchamp J. L. Acc. Chem. Res. 1989, 22, 315.
doi: 10.1021/ar00165a004 |
41 |
May J. C. ; McLean J. A. Anal. Chem. 2015, 87, 1422.
doi: 10.1021/ac504720m |
42 |
Lanucara F. ; Holman S. W. ; Gray C. J. ; Eyers C. E. Nat. Chem. 2014, 6, 281.
doi: 10.1038/nchem.1889 |
43 |
Zhan X. ; Duan J. ; Duan Y. Mass Spectrom. Rev. 2013, 32, 143.
doi: 10.1002/mas.21357 |
44 |
Yuan B. ; Koss A. R. ; Warneke C. ; Coggon M. ; Sekimoto K. ; de Gouw J. A. Chem. Rev. 2017, 117, 13187.
doi: 10.1021/acs.chemrev.7b00325 |
45 |
Kučera M. ; Stano M. ; Wnorowska J. ; Barszczewska W. ; Loffhagen D. ; Matejčík Š. Eur. Phys. J. D 2013, 37, 234.
doi: 10.1140/epjd/e2013-40401-2 |
46 |
Gao H. ; Niu W. ; Huang C. ; Hong Y. ; Shen C. ; Wang H. ; Lu Y. ; Chen X. ; Xia L. ; Jiang H. ; Chu Y. Int. J. Mass spectrom. 2015, 376, 1.
doi: 10.1016/j.ijms.2014.11.001 |
47 |
Kemper P. R. ; Bowers M. T. J. Am. Soc. Mass. Spectrom. 1990, 1, 197.
doi: 10.1016/1044-0305(90)85036-l |
48 |
Backe H. ; Dretzke A. ; Horn R. ; Kolb T. ; Lauth W. ; Repnow R. ; Sewtz M. ; Trautmann N. Hyperfine Interact. 2006, 162, 77.
doi: 10.1007/s10751-005-9210-4 |
49 |
Wyttenbach T. ; Kemper P. R. ; Bowers M. T. Int. J. Mass Spectrom. 2001, 212, 13.
doi: 10.1016/s1387-3806(01)00517-6 |
50 |
Tang K. ; Shvartsburg A. A. ; Lee H. N. ; Prior D. C. ; Buschbach M. A. ; Li F. ; Tolmachev A. V. ; Anderson G. A. ; Smith R. D. Anal. Chem. 2005, 77, 3330.
doi: 10.1021/ac048315a |
51 |
Koeniger S. L. ; Merenbloom S. I. ; Valentine S. J. ; Jarrold M. F. ; Udseth H. R. ; Smith R. D. ; Clemmer D. E. Anal. Chem. 2006, 78, 4161.
doi: 10.1021/ac051060w |
52 |
Kelly R. T. ; Tolmachev A. V. ; Page J. S. ; Tang K. ; Smith R. D. Mass Spectrom. Rev. 2010, 29, 294.
doi: 10.1002/mas.20232 |
53 |
Shi L. ; Holliday A. E. ; Bohrer B. C. ; Kim D. ; Servage K. A. ; Russell D. H. ; Clemmer D. E. J. Am. Soc. Mass. Spectrom. 2016, 27, 1037.
doi: 10.1007/s13361-016-1372-6 |
54 |
Wagner N. D. ; Clemmer D. E. ; Russell D. H. Anal. Chem. 2017, 89, 10094.
doi: 10.1021/acs.analchem.7b02932 |
55 |
Yuan Z. ; Liu Q.-Y. ; Li X.-N. ; He S.-G. Int. J. Mass Spectrom. 2016, 407, 62.
doi: 10.1016/j.ijms.2016.07.004 |
56 |
Li F.-X. ; Gorham K. ; Armentrout P. B. J. Phys. Chem. A 2010, 114, 11043.
doi: 10.1021/jp100566t |
57 |
Zhao Y. X. ; Li Z. Y. ; Yuan Z. ; Li X. N. ; He S. G. Angew. Chem. Int. Ed. 2014, 53, 9482.
doi: 10.1002/anie.201403953 |
58 |
Yuan Z. ; Li Z.-Y. ; Zhou Z.-X. ; Liu Q.-Y. ; Zhao Y.-X. ; He S.-G. J. Phys. Chem. C 2014, 118, 14967.
doi: 10.1021/jp5040344 |
59 | SIMION® Version 8.1. Scientific Instrument Services, Inc.TM 2011. |
60 | Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; et al. Gaussian 09, Revision A.01; Gaussian Inc.: Wallingford, CT, USA, 2009. |
61 |
Tao J. ; Perdew J. P. ; Staroverov V. N. ; Scuseria G. E. Phys. Rev. Lett. 2003, 91, 146401.
doi: 10.1103/PhysRevLett.91.146401 |
62 |
Li Z.-Y. ; Li H.-F. ; Zhao Y.-X. ; He S.-G. J. Am. Chem. Soc. 2016, 138, 9437.
doi: 10.1021/jacs.6b03940 |
63 |
Meng J.-H. ; He S.-G. J. Phys. Chem. Lett. 2014, 5, 3890.
doi: 10.1021/jz502057n |
64 |
Kanai Y. ; Wang X. ; Selloni A. ; Car R. J. Chem. Phys. 2006, 125, 234104.
doi: 10.1063/1.2403861 |
65 |
Krishnan R. ; Binkley J. S. ; Seeger R. ; Pople J. A. J. Chem. Phys. 1980, 72, 650.
doi: 10.1063/1.438955 |
66 |
Andrae D. ; Häuϐermann U. ; Dolg M. ; Stoll H. ; Preuϐ H. Theor. Chim. Acta 1990, 77, 123.
doi: 10.1007/bf01114537 |
67 |
Schlegel H. B. J. Comput. Chem. 1982, 3, 214.
doi: 10.1002/jcc.540030212 |
68 |
Berente I. ; Náray-Szabó G. J. Phys. Chem. A 2006, 110, 772.
doi: 10.1021/jp054116z |
69 |
Gonzalez C. ; Schlegel H. B. J. Chem. Phys. 1989, 90, 2154.
doi: 10.1063/1.456010 |
70 |
Gonzalez C. ; Schlegel H. B. J. Phys. Chem. 1990, 94, 5523.
doi: 10.1021/j100377a021 |
71 |
Zhang T. ; Li Z.-Y. ; Zhang M.-Q. ; He S.-G. J. Phys. Chem. A 2016, 120, 4285.
doi: 10.1021/acs.jpca.6b03836 |
72 |
Lang S. M. ; Bernhardt T. M. ; Barnett R. N. ; Landman U. Angew. Chem. Int. Ed. 2010, 49, 980.
doi: 10.1002/anie.200905643 |
[1] | Yue Lu, Yang Ge, Manling Sui. Degradation Mechanism of CH3NH3PbI3-based Perovskite Solar Cells under Ultraviolet Illumination [J]. Acta Phys. -Chim. Sin., 2022, 38(5): 2007088-. |
[2] | Yuan Liu, Zenghui Duan, Jun Li, Chunran Chang. Gas-Phase Mechanism Study of Methane Nonoxidative Conversion by ReaxFF Method [J]. Acta Phys. -Chim. Sin., 2021, 37(11): 2011012-. |
[3] | Yunyun Ling, Yunsheng Xia. Gold Based Nanocomposites: Fabrication Strategies, Properties, and Tumor Theranostic Applications [J]. Acta Physico-Chimica Sinica, 2020, 36(9): 1912006-. |
[4] | Zhenmin Xu, Zhenfeng Bian. Photocatalytic Methane Conversion [J]. Acta Phys. -Chim. Sin., 2020, 36(3): 1907013-. |
[5] | Junyan Xiao, Limin Qi. Controllable Self-Assembly of Gold Nanorods via Host–Guest Interaction between Cyclodextrins and Surfactants [J]. Acta Physico-Chimica Sinica, 2020, 36(10): 1910001-. |
[6] | Aoneng Cao. "Confined Lowest Energy Structure Fragments (CLESFs)" Hypothesis for Protein Structure and the "Stone Age" of Protein Prebiotic Evolution [J]. Acta Physico-Chimica Sinica, 2020, 36(1): 1907002-. |
[7] | Qiang CHEN,Li-Xue JIANG,Hai-Fang LI,Jiao-Jiao CHEN,Yan-Xia ZHAO,Sheng-Gui HE. Thermal Activation of Methane by Diatomic Vanadium Boride Cations [J]. Acta Physico-Chimica Sinica, 2019, 35(9): 1014-1020. |
[8] | Dan WANG,Xunlei DING,Henglu LIAO,Jiayu DAI. Methane Activation on (Au/Ag)1-Doped Vanadium Oxide Clusters [J]. Acta Physico-Chimica Sinica, 2019, 35(9): 1005-1013. |
[9] | Shuyi ZHANG,Jingxian BAO,Bo WU,Liangshu ZHONG,Yuhan SUN. Research Progress on the Photocatalytic Conversion of Methane and Methanol [J]. Acta Physico-Chimica Sinica, 2019, 35(9): 923-939. |
[10] | Xiaoyue MU,Lu LI. Photo-Induced Activation of Methane at Room Temperature [J]. Acta Physico-Chimica Sinica, 2019, 35(9): 968-976. |
[11] | Jiali FANG, Xin CHEN, Chang LI, Yulian WU. Observation of the Gold Nanorods/Graphene Composite Formation and Motion with in situ Liquid Cell Transmission Electron Microscopy [J]. Acta Physico-Chimica Sinica, 2019, 35(8): 808-815. |
[12] | Mengshui LIAN,Yali WANG,Mingquan ZHAO,Qianqian LI,Weizheng WENG,Wensheng XIA,Huilin WAN. Stability of Ni/SiO2 in Partial Oxidation of Methane: Effects of W Modification [J]. Acta Physico-Chimica Sinica, 2019, 35(6): 607-615. |
[13] | Shuang LIANG,Ran GAO,Mengying ZHANG,Ning XUE,Zhimei QI. Gold-Silver Alloy Film Based Spectral Surface Plasmon Resonance Imaging Sensor with High Sensitivity [J]. Acta Physico-Chimica Sinica, 2019, 35(6): 630-636. |
[14] | Fang LIU,Lufeng ZHANG,Qian DONG,Zhuo CHEN. Synthesis and Characterization of Small Size Gold-Graphitic Nanocapsules [J]. Acta Physico-Chimica Sinica, 2019, 35(6): 651-656. |
[15] | Yue ZHAO,Jiatong CUI,Jichuang HU,Jiabi MA. Reactivities of VO1–4+ Toward n-CmH2m+2 (m = 3, 5, 7) as Functions of Oxygen Content and Carbon Chain Length [J]. Acta Phys. -Chim. Sin., 2019, 35(5): 531-538. |
|