Acta Physico-Chimica Sinica ›› 2020, Vol. 36 ›› Issue (5): 1905003.doi: 10.3866/PKU.WHXB201905003
Special Issue: Sodium Ion Energy Storage Materials and Devices
• Review • Previous Articles Next Articles
Received:
2019-05-02
Accepted:
2019-07-31
Published:
2019-08-09
Contact:
Xifei Li
E-mail:xfli2011@hotmail.com
Supported by:
MSC2000:
Bin Cao,Xifei Li. Recent Progress on Carbon-based Anode Materials for Na-ion Batteries[J].Acta Physico-Chimica Sinica, 2020, 36(5): 1905003.
Fig 4
In situ X-ray scattering scans for sodium insertion into soft carbon (a) 30, Scanning electron microscopy (SEM) image of MCMB (b) 40, high-resolution transmission electron microscopy (HRTEM) image of mesoporous soft carbon (c) 41. Schematic representation of Na-ion storage mechanism in PTCDA derived soft carbon (d) 42."
Fig 5
The voltage profile of anthracite derived hard carbon (a), rate (b) and cycling performance (c) of the Na0.9Cu0.22Fe0.30Mn0.48O2//PA1200 2Ah prototype pouch cells 66. The traditional sodium storage model of interlayer insertion during the sloping voltage region and micropore filling during the low voltage plateau (d) 69, 71. Correctional sodium storage model of adsorption at defect sites, insertion and last via pore-filling (e) 71. Adsorption - insertion mechanisms (f) 72. Revised sodium storage model of adsorption on defect/edge sites, adsorption in the micropores, insertion and partial micropore filling (g) 73. Adsorption-pore filling mechanism (h 57 and i 74)."
Fig 7
Transmission electron microscopy (TEM) image of reduced graphene oxide (a) 78, schematic illustration of the structure (b), TEM (c) and HRTEM (d) of sandwich-like hierarchically porous carbon/graphene composite 79, the cross section SEM images (e and f) and voltage profile (g) of randomly oriented graphene paper 82."
Fig 8
SEM image of the macroporous interconnected pore structure (a) 84, TEM image (b), voltage profiles (c) and cycle performances (d) of hollow carbon nanospheres 51, TEM image of mesoporous soft carbon (e) 41, HRTEM image (f), voltage profiles (g), cycle performances (h) and schematic illustration for sodium storage mechanism (i) of nitrogen-rich mesoporous carbon 85, TEM image of ultra-thin hollow carbon nanospheres (j) 86, TEM image of 3D Porous Carbon Frameworks (k) 87, operando solid state 23Na NMR experiment highlighting an important and reversible chemical shift of 23Na from near Na+ during the sloping region toward near Na-metal during the low voltage plateau (l) 92."
Table 1
Sodium storage performances of carbon materials."
Materials | Electrolyte | Reversible capacity/(mAh g-1) | Sodium storage potential | Initial Coulombic efficiency | Cyclability | Rate performances | Ref. |
Graphite | 1 mol·L-1 NaPF6 EC/DEMC | ~0 | - | - | - | - | |
Graphite | Ether-based Electrolyte | 90-150 | medium | ~54% | 2500 cycles at 0.5 A·g-1 | 100 mAh·g-1 at 5 A·g-1 | |
Soft carbon | 1 mol·L-1 NaClO4 EC/DEC | 243 | medium | 71% | 200 cycles at 0.05 A·g-1 | 30 mAh·g-1 at 0.5 A·g-1 | |
Soft carbon | 1 mol·L-1 NaPF6 EC/DEC | 90-250 | medium | ~60% | 240 cycles at 1 A·g-1 | 50-140 mAh·g-1 at 1 A·g-1 | |
Hard carbon | 0.8 mol·L-1 NaPF6 EC/DMC | 190-222 | low | 81% | 600 cycles at 0.06 A·g-1 | 100-135 mAh·g-1 at 0.3 A·g-1 | |
Hard carbon | 1 mol·L-1 NaPF6 EC/DMC | 300.6 | low | 89% | 200 cycles at 0.03 A·g-1 | ~50 mAh·g-1 at 1.2 A·g-1 | |
Hard carbon | 1 mol·L-1 NaClO4 EC/DEC | 430.5 | low | 63%-70% | 300 cycles at 0.2 A·g-1 | ~100 mAh·g-1 at 2 A·g-1 | |
rGO | 1 mol·L-1 NaClO4 PC | 217.2 | high | ~23% | 1000 cycles at 0.04 A·g-1 | 95.6 mAh·g-1 at 1 A·g-1 | |
Porous carbon/Graphene | 1 mol·L-1 NaPF6 PC/EC | 670 | high | ~25% | 1000 cycles at 1 A·g-1 | 250 mAh·g-1 at 1 A·g-1 | |
Porous carbon | 1 mol·L-1 NaClO4 EC/DEC | 331 | high | 45% | 3000 cycles at 0.5 A·g-1 | 53 mAh·g-1 at 10 A·g-1 | |
Porous carbon | 1 mol·L-1 NaClO4 PC + 5% FEC | 255.5 | high | 35% | 10000 cycles at 5 A·g-1 | 90 mAh·g-1 at 20 A·g-1 | |
Carbon nanofiber | 1 mol·L-1 NaOTf Diglyme | 303 | low | 93% | 10000 cycles at 10 A·g-1 | 128 mAh·g-1 at 20 A·g-1 | |
Nitrogen-rich porous carbon | 1 mol·L-1 NaClO4 EC/DEC + 5% FEC | 434.6 | high | 36.8%-41.6% | 300 cycles at 0.05 A·g-1 | ~100 mAh·g-1 at 2 A·g-1 | |
Nitrogen-doped carbon/graphene | 1 mol·L-1 NaClO4 EC/DEC | 336 | high | ~50% | 200 cycles at 0.05 A·g-1 | 94 mAh·g-1 at 5 A·g-1 | |
Sulfur-doped disorderedcarbon | 1 mol·L-1 NaClO4 EC/DEC + 5% FEC | 516 | high | 63.2% | 1000 cycles at 1 A·g-1 | 158 mAh·g-1 at 4 A·g-1 |
1 |
Goodenough J. B. Nat. Electron. 2018, 1, 204.
doi: 10.1038/s41928-018-0048-6 |
2 |
Zhang S. ; Zheng Y. ; Huang X. ; Hong J. ; Cao B. ; Hao J. ; Fan Q. ; Zhou T. ; Guo Z. Adv. Energy Mater. 2019, 9, 1900081.
doi: 10.1002/aenm.201900081 |
3 |
Liu H. ; Zhang S. ; Zhu Q. ; Cao B. ; Zhang P. ; Sun N. ; Xu B. ; Wu F. ; Chen R. J. Mater. Chem. A 2019, 7, 11205.
doi: 10.1039/c9ta02030f |
4 |
Yang Y. ; Ni C. ; Gao M. ; Wang J. ; Liu Y. ; Pan H. Energy Storage Mater. 2018, 14, 279.
doi: 10.1016/j.ensm.2018.04.008 |
5 |
Yang Y. ; Qu X. ; Zhang L. ; Gao M. ; Liu Y. ; Pan H. ACS Appl. Mater. Inter. 2018, 10, 20591.
doi: 10.1021/acsami.8b05609 |
6 |
Wang X. ; Chen K. ; Wang G. ; Liu X. ; Wang H. ACS Nano 2017, 11, 11602.
doi: 10.1021/acsnano.7b06625 |
7 |
Cao B. ; Liu H. ; Xing Z. ; Lei Y. ; Song H. ; Chen X. ; Zhou J. ; Ma Z. ACS Sustain. Chem. Eng. 2015, 3, 1786.
doi: 10.1021/acssuschemeng.5b00359 |
8 |
Tarascon J. Nat. Chem. 2010, 2, 510.
doi: 10.1038/nchem.680 |
9 |
Qin J. ; Kheimeh Sari H. M. ; He C. ; Li X. J. Mater. Chem. A 2019, 7, 3673.
doi: 10.1039/c8ta12040d |
10 |
Cao B. ; Zhang Q. ; Liu H. ; Xu B. ; Zhang S. ; Zhou T. ; Mao J. ; Pang W. K. ; Guo Z. ; Li A. ; et al Adv. Energy Mater. 2018, 8, 1801149.
doi: 10.1002/aenm.201801149 |
11 |
Zhang Q. ; Mao J. ; Pang W. K. ; Zheng T. ; Sencadas V. ; Chen Y. ; Liu Y. ; Guo Z. Adv. Energy Mater. 2018, 8, 1703288.
doi: 10.1002/aenm.201703288 |
12 |
Wu X. ; Leonard D. P. ; Ji X. Chem. Mater. 2017, 29, 5031.
doi: 10.1021/acs.chemmater.7b01764 |
13 |
Yabuuchi N. ; Kubota K. ; Dahbi M. ; Komaba S. Chem. Rev. 2014, 114, 11636.
doi: 10.1021/cr500192f |
14 |
Saurel D. ; Orayech B. ; Xiao B. ; Carriazo D. ; Li X. ; Rojo T. Adv. Energy Mater. 2018, 8, 1703268.
doi: 10.1002/aenm.201703268 |
15 |
Pan H. ; Hu Y. ; Chen L. Energy Environ. Sci. 2013, 6, 2338.
doi: 10.1039/c3ee40847g |
16 |
Li L. ; Zheng Y. ; Zhang S. ; Yang J. ; Shao Z. ; Guo Z. Energy Environ. Sci. 2018, 11, 2310.
doi: 10.1039/c8ee01023d |
17 |
Mao J. ; Zhou T. ; Zheng Y. ; Gao H. ; Liu H. K. ; Guo Z. J. Mater. Chem. A 2018, 6, 3284.
doi: 10.1039/c7ta10500b |
18 |
Qiu S. ; Cao Y. ; Ai X. ; Yang H. Sci. Sin. Chim. 2017, 47, 573.
doi: 10.1360/n032016-00236 |
邱珅; 曹余良; 艾新平; 杨汉西. 中国科学:化学, 2017, 47, 573.
doi: 10.1360/n032016-00236 |
|
19 |
He H. ; Wang H. ; Tang Y. ; Liu Y. Prog. Chem. 2014, 26, 572.
doi: 10.7536/pc130919 |
何菡娜; 王海燕; 唐有根; 刘又年. 化学进展, 2014, 26, 572.
doi: 10.7536/pc130919 |
|
20 |
Jin Y. ; Sun X. ; Yu Y. ; Ding C. ; Chen C. ; Guan Y. Prog. Chem. 2014, 26, 582.
doi: 10.7536/pc130914 |
金翼; 孙信; 余彦; 丁楚雄; 陈春华; 官亦标. 化学进展, 2014, 26, 582.
doi: 10.7536/pc130914 |
|
21 |
Fang Z. ; Cao Y. ; Hu Y. ; Chen L. ; Huang X. Energ. Stor. Sci. Technol. 2016, 5, 149.
doi: 10.3969/j.issn.2095-4239.2016.02.005 |
方铮; 曹余良; 胡勇胜; 陈立泉; 黄学杰. 储能科学与技术, 2016, 5, 149.
doi: 10.3969/j.issn.2095-4239.2016.02.005 |
|
22 |
Delmas C. ; Braconnier J. ; Fouassier C. ; Hagenmuller P. Solid State Ionics. 1981, 3, 165.
doi: 10.1016/0167-2738(81)90076-x |
23 |
Liu T. ; Zhang Y. ; Jiang Z. ; Zeng X. ; Ji J. ; Li Z. ; Gao X. ; Sun M. ; Lin Z. ; Ling M. ; et al Energy Environ. Sci. 2019, 12, 1512.
doi: 10.1039/c8ee03727b |
24 |
Zhu Q. ; Chang X. ; Sun N. ; Liu H. ; Chen R. ; Wu F. ; Xu B. J. Mater. Chem. A 2017, 5, 9982.
doi: 10.1039/c7ta02165h |
25 |
Fang Y. ; Chen Z. ; Ai X. ; Yang H. ; Cao Y. Acta Phys. -Chim. Sin. 2017, 33, 211.
doi: 10.3866/PKU.WHXB201610111 |
方永进; 陈重学; 艾新平; 杨汉西; 曹余良. 物理化学学报, 2017, 33, 211.
doi: 10.3866/PKU.WHXB201610111 |
|
26 |
Cao Y. ; Xiao L. ; Sushko M. L. ; Wang W. ; Schwenzer B. ; Xiao J. ; Nie Z. ; Saraf L. V. ; Yang Z. ; Liu J. Nano Lett. 2012, 12, 3783.
doi: 10.1021/nl3016957 |
27 |
Wen Y. ; He K. ; Zhu Y. ; Han F. ; Xu Y. ; Matsuda I. ; Ishii Y. ; Cumings J. ; Wang C. Nat. Commun. 2014, 5
doi: 10.1038/ncomms5033 |
28 |
Jache B. ; Adelhelm P. Angew. Chem. Int. Ed. 2014, 53, 10169.
doi: 10.1002/anie.201403734 |
29 |
Jian Z. ; Luo W. ; Ji X. J. Am. Chem. Soc. 2015, 137, 11566.
doi: 10.1021/jacs.5b06809 |
30 |
Stevens D. A. ; Dahn J. R. J. Electrochem. Soc. 2001, 148, A803.
doi: 10.1149/1.1379565 |
31 |
Moriwake H. ; Kuwabara A. ; Fisher C. A. J. ; Ikuhara Y. RSC Adv. 2017, 7, 36550.
doi: 10.1039/c7ra06777a |
32 |
Liu Y. ; Merinov B. V. ; Goddard W. A. Proc. Natl. Acad. Sci. 2016, 113, 3735.
doi: 10.1073/pnas.1602473113 |
33 |
Dresselhaus M. S. ; Dresselhaus G. Adv. Phys. 2006, 30, 139.
doi: 10.1080/00018738100101367 |
34 |
Sangster J. J. Phase Equilib. Diff. 2007, 28, 571.
doi: 10.1007/s11669-007-9194-7 |
35 |
Kim H. ; Hong J. ; Park Y. ; Kim J. ; Hwang I. ; Kang K. Adv. Funct. Mater. 2015, 25, 534.
doi: 10.1002/adfm.201402984 |
36 |
Yoon G. ; Kim H. ; Park I. ; Kang K. Adv. Energy Mater. 2016, 7, 1601519.
doi: 10.1002/aenm.201601519 |
37 |
Doeff M. M. ; Ma Y. ; Visco S. J. ; Jonghe L. C. D. J. Electrochem. Soc. 1993, 140, L169.
doi: 10.1149/1.2221153 |
38 |
Alcántara R. ; Fernández Madrigal F. J. ; Lavela P. ; Tirado J. L. ; Jiménez Mateos J. M. ; Gómez De Salazar C. ; Stoyanova R. ; Zhecheva E. Carbon 2000, 38, 1031.
doi: 10.1016/S0008-6223(99)00215-8 |
39 |
Alcántara R. ; Lavela P. ; Ortiz G. F. ; Tirado J. L. ; Menéndez R. ; Santamaría R. ; Jiménez-Mateos J. M. Carbon 2003, 41, 3003.
doi: 10.1016/S0008-6223(03)00432-9 |
40 |
Song L. ; Liu S. ; Yu B. ; Wang C. ; Li M. Carbon 2015, 95, 972.
doi: 10.1016/j.carbon.2015.09.032 |
41 |
Cao B. ; Liu H. ; Xu B. ; Lei Y. ; Chen X. ; Song H. J. Mater. Chem. A 2016, 4, 6472.
doi: 10.1039/C6TA00950F |
42 |
Luo W. ; Jian Z. ; Xing Z. ; Wang W. ; Bommier C. ; Lerner M. M. ; Ji X. ACS Cent. Sci. 2015, 1, 516.
doi: 10.1021/acscentsci.5b00329 |
43 |
Jian Z. ; Bommier C. ; Luo L. ; Li Z. ; Wang W. ; Wang C. ; Greaney P. A. ; Ji X. Chem. Mater. 2017, 29, 2314.
doi: 10.1021/acs.chemmater.6b05474 |
44 |
Thomas P. ; Billaud D. Electrochim. Acta 2002, 47, 3303.
doi: 10.1016/S0013-4686(02)00250-5 |
45 |
Irisarri E. ; Ponrouch A. ; Palacin M. R. J. Electrochem. Soc. 2015, 162, A2476.
doi: 10.1149/2.0091514jes |
46 |
Sun N. ; Guan Y. ; Liu Y. ; Zhu Q. ; Shen J. ; Liu H. ; Zhou S. ; Xu B. Carbon 2018, 137, 475.
doi: 10.1016/j.carbon.2018.05.056 |
47 |
Wang Y. ; Xiao N. ; Wang Z. ; Li H. ; Yu M. ; Tang Y. ; Hao M. ; Liu C. ; Zhou Y. ; Qiu J. Chem. Eng. J. 2018, 342, 52.
doi: 10.1016/j.cej.2018.01.098 |
48 |
Li Y. ; Hu Y. ; Li H. ; Chen L. ; Huang X. J. Mater. Chem. A 2016, 4, 96.
doi: 10.1039/c5ta08601a |
49 |
Jin J. ; Yu B. ; Shi Z. ; Wang C. ; Chong C. J. Power Sources 2014, 272, 800.
doi: 10.1016/j.jpowsour.2014.08.119 |
50 |
Li Y. ; Xu S. ; Wu X. ; Yu J. ; Wang Y. ; Hu Y. ; Li H. ; Chen L. ; Huang X. J. Mater. Chem. A 2015, 3, 71.
doi: 10.1039/c4ta05451b |
51 |
Tang K. ; Fu L. ; White R. J. ; Yu L. ; Titirici M. ; Antonietti M. ; Maier J. Adv. Energy Mater. 2012, 2, 873.
doi: 10.1002/aenm.201100691 |
52 |
Xiao L. ; Cao Y. ; Henderson W. A. ; Sushko M. L. ; Shao Y. ; Xiao J. ; Wang W. ; Engelhard M. H. ; Nie Z. ; Liu J. Nano Energy 2016, 19, 279.
doi: 10.1016/j.nanoen.2015.10.034 |
53 |
Rybarczyk M. K. ; Li Y. ; Qiao M. ; Hu Y. ; Titirici M. ; Lieder M. J. Energy Chem. 2019, 29, 17.
doi: 10.1016/j.jechem.2018.01.025 |
54 |
Luo W. ; Schardt J. ; Bommier C. ; Wang B. ; Razink J. ; Simonsen J. ; Ji X. J. Mater. Chem. A 2013, 1, 10662.
doi: 10.1039/c3ta12389h |
55 |
Luo W. ; Wang B. ; Heron C. G. ; Allen M. J. ; Morre J. ; Maier C. S. ; Stickle W. F. ; Ji X. Nano Lett. 2014, 14, 2225.
doi: 10.1021/nl500859p |
56 |
Zhu X. ; Li Q. ; Qiu S. ; Liu X. ; Xiao L. ; Ai X. ; Yang H. ; Cao Y. JOM 2016, 68, 2579.
doi: 10.1007/s11837-016-2064-1 |
57 |
Li Y. ; Hu Y. ; Titirici M. ; Chen L. ; Huang X. Adv. Energy Mater. 2016, 6, 1600659.
doi: 10.1002/aenm.201600659 |
58 |
Li Y. ; Mu L. ; Hu Y. ; Li H. ; Chen L. ; Huang X. Energy Storage Mater. 2016, 2, 139.
doi: 10.1016/j.ensm.2015.10.003 |
59 |
Ding J. ; Wang H. ; Li Z. ; Cui K. ; Karpuzov D. ; Tan X. ; Kohandehghan A. ; Mitlin D. Energy Environ. Sci. 2015, 8, 941.
doi: 10.1039/c4ee02986k |
60 |
Lotfabad E. M. ; Ding J. ; Cui K. ; Kohandehghan A. ; Kalisvaart W. P. ; Hazelton M. ; Mitlin D. ACS Nano 2014, 8, 7115.
doi: 10.1021/nn502045y |
61 |
Hong K. ; Qie L. ; Zeng R. ; Yi Z. ; Zhang W. ; Wang D. ; Yin W. ; Wu C. ; Fan Q. ; Zhang W. ; et al J. Mater. Chem. A 2014, 2, 12733.
doi: 10.1039/c4ta02068e |
62 |
Ding J. ; Wang H. ; Li Z. ; Kohandehghan A. ; Cui K. ; Xu Z. ; Zahiri B. ; Tan X. ; Lotfabad E. M. ; Olsen B. C. ; Mitlin D. ACS Nano 2013, 7, 11004.
doi: 10.1021/nn404640c |
63 |
Zheng Y. ; Wang Y. ; Lu Y. ; Hu Y. ; Li J. Nano Energy 2017, 39, 489.
doi: 10.1016/j.nanoen.2017.07.018 |
64 |
Zheng Y. ; Lu Y. ; Qi X. ; Wang Y. ; Mu L. ; Li Y. ; Ma Q. ; Li J. ; Hu Y. Energy Storage Mater. 2019, 18, 269.
doi: 10.1016/j.ensm.2018.09.002 |
65 |
Zhao C. ; Wang Q. ; Lu Y. ; Li B. ; Chen L. ; Hu Y. Sci. Bull. 2018, 63, 1125.
doi: 10.1016/j.scib.2018.07.018 |
66 |
Li Y. ; Hu Y. ; Qi X. ; Rong X. ; Li H. ; Huang X. ; Chen L. Energy Storage Mater. 2016, 5, 191.
doi: 10.1016/j.ensm.2016.07.006 |
67 |
Lu Y. ; Zhao C. ; Qi X. ; Qi Y. ; Li H. ; Huang X. ; Chen L. ; Hu Y. Adv. Energy Mater. 2018, 8, 1800108.
doi: 10.1002/aenm.201800108 |
68 |
Sun N. ; Liu H. ; Xu B. J. Mater. Chem. A 2015, 3, 20560.
doi: 10.1039/c5ta05118e |
69 |
Stevens D. A. ; Dahn J. R. J. Electrochem. Soc. 2000, 147, 4428.
doi: 10.1149/1.1394081 |
70 |
Komaba S. ; Murata W. ; Ishikawa T. ; Yabuuchi N. ; Ozeki T. ; Nakayama T. ; Ogata A. ; Gotoh K. ; Fujiwara K. Adv. Funct. Mater. 2011, 21, 3859.
doi: 10.1002/adfm.201100854 |
71 |
Bommier C. ; Surta T. W. ; Dolgos M. ; Ji X. Nano Lett. 2015, 15, 5888.
doi: 10.1021/acs.nanolett.5b01969 |
72 |
Qiu S. ; Xiao L. ; Sushko M. L. ; Han K. ; Shao Y. ; Yan M. ; Liang X. ; Mai L. ; Feng J. ; Cao Y. ;et al Adv. Energy Mater. 2017, 7, 1700403.
doi: 10.1002/aenm.201700403 |
73 |
Alvin S. ; Yoon D. ; Chandra C. ; Cahyadi H. S. ; Park J. ; Chang W. ; Chung K. Y. ; Kim J. Carbon 2019, 145, 67.
doi: 10.1016/j.carbon.2018.12.112 |
74 |
Bai P. ; He Y. ; Zou X. ; Zhao X. ; Xiong P. ; Xu Y. Adv. Energy Mater. 2018, 8, 1703217.
doi: 10.1002/aenm.201703217 |
75 |
Xu B. ; Wang H. ; Zhu Q. ; Sun N. ; Anasori B. ; Hu L. ; Wang F. ; Guan Y. ; Gogotsi Y. Energy Storage Mater. 2018, 12, 128.
doi: 10.1016/j.ensm.2017.12.006 |
76 |
Guo P. ; Song H. ; Chen X. Electrochem. Commun. 2009, 11, 1320.
doi: 10.1016/j.elecom.2009.04.036 |
77 |
Liu H. ; Jia M. ; Zhu Q. ; Cao B. ; Chen R. ; Wang Y. ; Wu F. ; Xu B. ACS Appl. Mater. Inter. 2016, 8, 26878.
doi: 10.1021/acsami.6b09496 |
78 |
Wang Y. ; Chou S. ; Liu H. ; Dou S. Carbon 2013, 57, 202.
doi: 10.1016/j.carbon.2013.01.064 |
79 |
Yan Y. ; Yin Y. ; Guo Y. ; Wan L. Adv. Energy Mater. 2014, 4, 1301584.
doi: 10.1002/aenm.201301584 |
80 |
Zhou X. ; Zhu X. ; Liu X. ; Xu Y. ; Liu Y. ; Dai Z. ; Bao J. J. Phys. Chem. C 2014, 118, 22426.
doi: 10.1021/jp5064403 |
81 |
Xu J. ; Wang M. ; Wickramaratne N. P. ; Jaroniec M. ; Dou S. ; Dai L. Adv. Mater. 2015, 27, 2042.
doi: 10.1002/adma.201405370 |
82 |
Yun Y. S. ; Park Y. ; Chang S. ; Kim B. H. ; Choi J. ; Wang J. ; Zhang D. ; Braun P. V. ; Jin H. ; Kang K. Carbon 2016, 99, 658.
doi: 10.1016/j.carbon.2015.12.047 |
83 |
Yang Y. ; Tang D. ; Zhang C. ; Zhang Y. ; Liang Q. ; Chen S. ; Weng Q. ; Zhou M. ; Xue Y. ; Liu J. ; et al Energy Environ. Sci. 2017.
doi: 10.1039/c7ee00329c |
84 |
Wenzel S. ; Hara T. ; Janek J. ; Adelhelm P. Energy Environ. Sci. 2011, 4, 3342.
doi: 10.1039/c1ee01744f |
85 |
Liu H. ; Jia M. ; Yue S. ; Cao B. ; Zhu Q. ; Sun N. ; Xu B. J. Mater. Chem. A 2017, 5, 9572.
doi: 10.1039/c7ta01891f |
86 |
Yun Y. S. ; Cho S. Y. ; Kim H. ; Jin H. ; Kang K. ChemElectroChem 2015, 2, 359.
doi: 10.1002/celc.201402359 |
87 |
Hou H. ; Banks C. E. ; Jing M. ; Zhang Y. ; Ji X. Adv. Mater. 2015, 27, 7861.
doi: 10.1002/adma.201503816 |
88 |
Kado Y. ; Soneda Y. ; Yoshizawa N. ECS Electrochem. Lett. 2014, 4, A22.
doi: 10.1149/2.0051502eel |
89 |
Qu Q. ; Yun J. ; Wan Z. ; Zheng H. ; Gao T. ; Shen M. ; Shao J. ; Zheng H. RSC Adv. 2014, 4, 64692.
doi: 10.1039/c4ra11009a |
90 |
Zhou D. ; Peer M. ; Yang Z. ; Pol V. G. ; Key F. D. ; Jorne J. ; Foley H. C. ; Johnson C. S. J. Mater. Chem. A 2016, 4, 6271.
doi: 10.1039/c6ta00242k |
91 |
Prabakar S. J. R. ; Jeong J. ; Pyo M. Electrochim. Acta 2015, 161, 23.
doi: 10.1016/j.electacta.2015.02.086 |
92 |
Stratford J. M. ; Allan P. K. ; Pecher O. ; Chater P. A. ; Grey C. P. Chem. Commun. 2016, 52, 12430.
doi: 10.1039/c6cc06990h |
93 |
Wang X. ; Liu X. ; Wang G. ; Xia Y. ; Wang H. J. Mater. Chem. A 2016, 4, 18532.
doi: 10.1039/c6ta07452a |
94 |
Zhu J. ; Chen C. ; Lu Y. ; Ge Y. ; Jiang H. ; Fu K. ; Zhang X. Carbon 2015, 94, 189.
doi: 10.1016/j.carbon.2015.06.076 |
95 |
Yang H. ; Xu R. ; Yu Y. Energy Storage Mater. 2019.
doi: 10.1016/j.ensm.2019.01.003 |
96 |
Sun X. ; Wang C. ; Gong Y. ; Gu L. ; Chen Q. ; Yu Y. Small 2018, 14, 1802218.
doi: 10.1002/smll.201802218 |
97 |
Yuan B. ; Zeng L. ; Sun X. ; Yu Y. ; Wang Q. Nano Res. 2018, 11, 2256.
doi: 10.1007/s12274-017-1847-1 |
98 |
Wang M. ; Yang Z. ; Li W. ; Gu L. ; Yu Y. Small 2016, 12, 2559.
doi: 10.1002/smll.201600101 |
99 |
Li W. ; Zeng L. ; Yang Z. ; Gu L. ; Wang J. ; Liu X. ; Cheng J. ; Yu Y. Nanoscale 2014, 6, 693.
doi: 10.1039/c3nr05022j |
100 |
Fu L. ; Tang K. ; Song K. ; A Van Aken P. ; Yu Y. ; Maier J. Nanoscale 2014, 6, 1384.
doi: 10.1039/c3nr05374a |
101 |
Xu B. ; Hou S. ; Cao G. ; Wu F. ; Yang Y. J. Mater. Chem. 2012, 22, 19088.
doi: 10.1039/c2jm32759g |
102 |
Mao Y. ; Duan H. ; Xu B. ; Zhang L. ; Hu Y. ; Zhao C. ; Wang Z. ; Chen L. ; Yang Y. Energy Environ. Sci. 2012, 5, 7950.
doi: 10.1039/c2ee21817h |
103 |
Guan Z. ; Liu H. ; Xu B. ; Hao X. ; Wang Z. ; Chen L. J. Mater. Chem. A 2015, 3, 7849.
doi: 10.1039/c5ta01446h |
104 |
Xu B. ; Yue S. ; Sui Z. ; Zhang X. ; Hou S. ; Cao G. ; Yang Y. Energy Environ. Sci. 2011, 4, 2826.
doi: 10.1039/c1ee01198g |
105 |
Shen W. ; Wang C. ; Xu Q. ; Liu H. ; Wang Y. Adv. Energy Mater. 2015, 5, 1400982.
doi: 10.1002/aenm.201400982 |
106 |
Liu H. ; Jia M. ; Sun N. ; Cao B. ; Chen R. ; Zhu Q. ; Wu F. ; Qiao N. ; Xu B. ACS Appl. Mater. Inter. 2015, 7, 27124.
doi: 10.1021/acsami.5b06898 |
107 |
Liu H. ; Jia M. ; Cao B. ; Chen R. ; Lv X. ; Tang R. ; Wu F. ; Xu B. J. Power Sources 2016, 319, 195.
doi: 10.1016/j.jpowsour.2016.04.040 |
108 |
Zhou C. ; Li A. ; Cao B. ; Chen X. ; Jia M. ; Song H. J. Electrochem. Soc. 2018, 165, A1447.
doi: 10.1149/2.1061807jes |
109 |
Wang H. ; Wu Z. ; Meng F. ; Ma D. ; Huang X. ; Wang L. ; Zhang X. ChemSusChem 2013, 6, 56.
doi: 10.1002/cssc.201200680 |
110 |
Fan Q. ; Zhang W. ; Duan J. ; Hong K. ; Xue L. ; Huang Y. Electrochim. Acta 2015, 174, 970.
doi: 10.1016/j.electacta.2015.06.039 |
111 |
Lin Z. ; Xiong X. ; Zheng J. ; Wang G. ; Yang C. Mater. Lett. 2017, 202, 123.
doi: 10.1016/j.matlet.2017.05.046 |
112 |
Liu Y. ; Gao Z. ChemElectroChem 2017, 4, 1059.
doi: 10.1002/celc.201600834 |
113 |
Xu D. ; Chen C. ; Xie J. ; Zhang B. ; Miao L. ; Cai J. ; Huang Y. ; Zhang L. Adv. Energy Mater. 2016, 6, 1501929.
doi: 10.1002/aenm.201501929 |
114 |
Wang S. ; Xia L. ; Yu L. ; Zhang L. ; Wang H. ; Lou X. W. D. Adv. Energy Mater. 2016, 6
doi: 10.1002/aenm.201502217 |
115 |
Yang F. ; Zhang Z. ; Du K. ; Zhao X. ; Chen W. ; Lai Y. ; Li J. Carbon 2015, 91, 88.
doi: 10.1016/j.carbon.2015.04.049 |
116 |
Li W. ; Zhou M. ; Li H. ; Wang K. ; Cheng S. ; Jiang K. Energy Environ. Sci. 2015, 8, 2916.
doi: 10.1039/c5ee01985k |
117 |
Zhang S. ; Yao F. ; Yang L. ; Zhang F. ; Xu S. Carbon 2015, 93, 143.
doi: 10.1016/j.carbon.2015.04.091 |
118 |
Deng X. ; Xie K. ; Li L. ; Zhou W. ; Sunarso J. ; Shao Z. Carbon 2016, 107, 67.
doi: 10.1016/j.carbon.2016.05.052 |
119 |
Qie L. ; Chen W. ; Xiong X. ; Hu C. ; Zou F. ; Hu P. ; Huang Y. Adv. Sci. 2015, 2, 1500195.
doi: 10.1002/advs.201500195 |
120 |
Sun N. ; Guan Z. ; Liu Y. ; Cao Y. ; Zhu Q. ; Liu H. ; Wang Z. ; Zhang P. ; Xu B. Adv. Energy Mater. 2019.
doi: 10.1002/aenm.201901351 |
121 |
Yang H. ; Zhang X. ; Hong Y. ; Maleki Kheimeh Sari H. ; Zhou Z. ; Sun S. ; Li X. ChemSusChem 2019.
doi: 10.1002/cssc.201901330 |
122 |
Guo N. ; Zhang S. ; Wang L. ; Jia D. Acta Phys. -Chim. Sin. 2020, 36, 1903055.
doi: 10.3866/PKU.WHXB201903055 |
郭楠楠; 张苏; 王鲁香; 贾殿赠. 物理化学学报, 2020, 36, 1903055.
doi: 10.3866/PKU.WHXB201903055 |
|
123 |
Liu H. ; Zhang X. ; Zhu Y. ; Cao B. ; Zhu Q. ; Zhang P. ; Xu B. ; Wu F. ; Chen R. Nano-Micro Lett. 2019.
doi: 10.1007/s40820-019-0296-7 |
124 |
Wang D. ; Zhou C. ; Cao B. ; Xu Y. ; Zhang D. ; Li A. ; Zhou J. ; Ma Z. ; Chen X. ; Song H. Energy Storage Mater. 2019.
doi: 10.1016/j.ensm.2019.07.045 |
[1] | Huifang An, Li Jiang, Feng Li, Ping Wu, Xiaoshu Zhu, Shaohua Wei, Yiming Zhou. Hydrogel-Derived Three-Dimensional Porous Si-CNT@G Nanocomposite with High-Performance Lithium Storage [J]. Acta Physico-Chimica Sinica, 2020, 36(7): 1905034-0. |
[2] | Peng Zhou,Jinzhi Sheng,Chongwei Gao,Jun Dong,Qinyou An,Liqiang Mai. Synthesis of V2O5/Fe2V4O13 Nanocomposite Materials using In situ Phase Separation and the Electrochemical Performance for Sodium Storage [J]. Acta Physico-Chimica Sinica, 2020, 36(5): 1906046-0. |
[3] | Haixia Li,Jiwei Wang,Lifang Jiao,Zhanliang Tao,Jing Liang. Spherical Nano-SnSb/C Composite as a High-Performance Anode Material for Sodium Ion Batteries [J]. Acta Physico-Chimica Sinica, 2020, 36(5): 1904017-0. |
[4] | Feixiang Ding,Fei Gao,Xiaohui Rong,Kai Yang,Yaxiang Lu,Yong-Sheng Hu. Mixed-Phase Na0.65Li0.13Mg0.13Ti0.74O2 as a High-Performance Na-Ion Battery Layered Anode [J]. Acta Physico-Chimica Sinica, 2020, 36(5): 1904022-0. |
[5] | Xiaoxia Lu,Shengyang Dong,Zhijie Chen,Langyuan Wu,Xiaogang Zhang. Preparation of Carbon Coated Ti2Nb2O9 Nanosheets and Its Sodium Ion Storage Properties [J]. Acta Physico-Chimica Sinica, 2020, 36(5): 1906024-0. |
[6] | Jiayao Zhu, Yue Dong, Su Zhang, Zhuangjun Fan. Application of Carbon-/Graphene Quantum Dots for Supercapacitors [J]. Acta Physico-Chimica Sinica, 2020, 36(2): 1903052-0. |
[7] | Kun Liu, Yao Liu, Haifeng Zhu, Xiaoli Dong, Yonggang Wang, Congxiao Wang, Yongyao Xia. NaTiSi2O6/C Composite as a Novel Anode Material for Lithium-Ion Batteries [J]. Acta Physico-Chimica Sinica, 2020, 36(11): 1912030-0. |
[8] | Mingyu ZHAO,Lin ZHU,Bowen FU,Suhua JIANG,Yongning ZHOU,Yun SONG. Sodium Ion Storage Performance of NiCo2S4 Hexagonal Nanosheets [J]. Acta Phys. -Chim. Sin., 2019, 35(2): 193-199. |
[9] | Shuang LIU,Lianyi SHAO,Xuejing ZHANG,Zhanliang TAO,Jun CHEN. Advances in Electrode Materials for Aqueous Rechargeable Sodium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2018, 34(6): 581-597. |
[10] | Ying-Jie ZHANG,Zi-Yi ZHU,Peng DONG,Zhen-Ping QIU,Hui-Xin LIANG,Xue LI. New Research Progress of the Electrochemical Reaction Mechanism, Preparation and Modification for LiFePO4 [J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1085-1107. |
[11] | Xu ZHEN,Xue-Jing GUO. Synthesis and Lithium Storage Performance of Three-Dimensional Mesostructured ZnCo2O4 Cubes [J]. Acta Phys. -Chim. Sin., 2017, 33(4): 845-852. |
[12] | Rui XIA,Shi-Mao WANG,Wei-Wei DONG,Xiao-Dong FANG. Research Progress of Counter Electrodes for Quantum Dot-Sensitized Solar Cells [J]. Acta Phys. -Chim. Sin., 2017, 33(4): 670-690. |
[13] | Xiao-Ye NIU,Xiao-Qin DU,Qin-Chao WANG,Xiao-Jing WU,Xin ZHANG,Yong-Ning ZHOU. AlN-Fe Nanocomposite Thin Film:A New Anode Material for Lithium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2517-2522. |
[14] | Bo PENG,Yao-Lin XU,Fokko M. MULDER. Improving the Performance of Si-Based Li-Ion Battery Anodes by Utilizing Phosphorene Encapsulation [J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2127-2132. |
[15] | Xue-Qin LI,Lin CHANG,Shen-Long ZHAO,Chang-Long HAO,Chen-Guang LU,Yi-Hua ZHU,Zhi-Yong TANG. Research on Carbon-Based Electrode Materials for Supercapacitors [J]. Acta Phys. -Chim. Sin., 2017, 33(1): 130-148. |
|