Acta Physico-Chimica Sinica ›› 2020, Vol. 36 ›› Issue (3): 1905025.doi: 10.3866/PKU.WHXB201905025
Special Issue: Photocatalyst
• Review • Previous Articles Next Articles
Wanjun Sun1,3,Junqi Lin1,Xiangming Liang1,Junyi Yang1,Baochun Ma1,Yong Ding1,2,*()
Received:
2019-05-06
Accepted:
2019-06-20
Published:
2019-06-24
Contact:
Yong Ding
E-mail:dingyong1@lzu.edu.cn
Supported by:
MSC2000:
Wanjun Sun,Junqi Lin,Xiangming Liang,Junyi Yang,Baochun Ma,Yong Ding. Recent Advances in Catalysts Based on Molecular Cubanes for Visible Light-Driven Water Oxidation[J].Acta Physico-Chimica Sinica, 2020, 36(3): 1905025.
Fig 1
Structures of the native OEC (A, C) and the synthetic Mn4Ca complex (B, D) 12. (A) Mn4CaO5 core of the native OEC. (B) Mn4CaO4 core of the synthetic Mn4Ca complex. (C) Structure of the native OEC, including ligating protein side-chains and water molecules. (D) Structure of Mn4Ca complex, including all ligand groups. Adapted from Nature publisher. "
Table 1
The summary of catalytic effects of various molecule cubanes WOCs."
Molecule Cubanes WOCs | Reaction conditions | O2 yield/% | TON | TOF/s−1 | QE/% | Ref. |
Co4O4(OAc)4(py)4, 1 | [Ru(bpy)3]2+/Na2S2O8, 250 W Arc lamp, λ > 395 nm, 100 mmol∙L−1 NaHCO3 buffer, pH 7 | n.d. | 40 | 0.02 | n.d. | 22 |
Co4Ⅲ(μ-O)4(μ-CH3COO)4(p-NC5H5)4, 1 | [Ru(bpy)3]2+/Na2S2O8, 50 W halogen lamp, λ > 400 nm, 10 mmol∙L−1 borate buffer, pH 8 | n.d. | n.d. | n.d. | 26 | 28 |
Co4Ⅲ(μ-O)4(μ-CH3COO)4(p-NC5-t-Bu)4, 1b | n.d. | n.d. | n.d. | 10 | ||
Co4Ⅲ(μ-O)4(μ-CH3COO)4(p-NC5-CN)4, 1c | n.d. | n.d. | n.d. | 26 | ||
Co4Ⅲ(μ-O)4(μ-CH3COO)4(p-NC5-Me)4, 1d | n.d. | n.d. | n.d. | 30 | ||
Co4Ⅲ(μ-O)4(μ-CH3COO)4(p-NC5-Br)4, 1e | n.d. | n.d. | n.d. | 32 | ||
Co4Ⅲ(μ-O)4(μ-CH3COO)4(p-NC5-COOMe)4, 1f | n.d. | n.d. | n.d. | 46 | ||
Co4Ⅲ(μ-O)4(μ-CH3COO)4(p-NC5-OMe)4, 1g | n.d. | 140 | ~0.04 | 80 | ||
{Co4O4(OAc)3(Py)4}{(L)Ru(bpy)2}, 4 | Na2S2O8, 300 W Xe lamp, λ > 400 nm, 100 mmol∙L−1 NaHCO3 buffer, pH 7 | n.d. | 5 | 7 × 10−3 | n.d. | 29 |
{Co4O4(OAc)2(Py)4}2{(L)Ru(bpy)2}2, 5 | n.d. | 24 | 0.02 | n.d. | ||
Co4Ⅱ(hmp)4(μ-OAc)2(μ2-OAc)2(H2O)2, 6 | [Ru(bpy)3]2+/Na2S2O8, λ = 470 nm, 80 mmol∙L−1 borate buffer, pH 7 | n.d. | 40 | 7 | n.d. | 36 |
Co3ⅡHo(hmp)4(OAc)5H2O, 7a | [Ru(bpy)3]2+/Na2S2O8, λLED = 470 nm, pH 8 | 43 | 163 | 5.8 | n.d. | 34 |
Co3ⅡEr (hmp)4(OAc)5H2O, 7b | 91 | 211 | 5.7 | n.d. | ||
Co3ⅡTm (hmp)4(OAc)5H2O, 7c | 24 | 92 | 5.3 | n.d. | ||
Co3ⅡYb (hmp)4(OAc)5H2O, 7d | 42 | 160 | 6.8 | n.d. | ||
[Co4Ⅱ(dpy{OH}O)4(OAc)2(H2O)2](ClO4)2, 8a | [Ru(bpy)3]2+/Na2S2O8, λLED = 470 nm, 80 mmol∙L−1 borate buffer, pH 8.5 | 80 | 20 | 0.24 | n.d. | 37 |
[Co5Ⅱ Co2Ⅲ (mdea)4(N3)2(CH3CN)6(OH)2(H2O)2](ClO4)4, 10 | [Ru(bpy)3]2+/K2S2O8, λLED = 450 nm, 200 mmol∙L−1 borate buffer, pH 9 | n.d. | 210 | 0.23 | n.d. | 39 |
Co4Ⅲ(CO3)2(μ3-O)4(bpy)4, 11 | [Ru(bpy)3]Cl2/Na2S2O8, λLED ≥ 420 nm, 200 mmol∙L−1 borate buffer, pH 9 | 19.2 | 96 | 0.41 | n.d. | 40 |
Na[NaCo3Ⅱ{(C5H4N)2(SO3)C(O)}4], 12 | 23.4 | 117 | 0.51 | n.d. | ||
Cu8(dpk·OH)8(OAc)4](ClO4)4, 13 | [Ru(bpy)3]2+/Na2S2O8, λLED = 460 nm, 80 mmol∙L−1 borate buffer, pH 9 | 35.6 | 178 | 3.6 | n.d. | 42 |
[{Ru4O4(OH)2(H2O)4}(γ-SiW10O36)2]10−, 14 | [Ru(bpy)3]2+/Na2S2O8, Xe lamp, 420–520 nm, pH 7.2 | n.d. | 350 | 0.08 | 26 | 53 |
[{Co4(OH)3(PO4)}4(SiW9O34)4]n−, 15a | [Ru(bpy)3]2+/Na2S2O8, 300 W Xe lamp, λ > 420 nm, pH 9 | 18.1 | 22.5 | 0.053 | n.d. | 54 |
[{Co4(OH)3(PO4)}4(GeW9O34)4]n−, 15b | 31.0 | 38.75 | 0.105 | n.d. | ||
[{Co4(OH)3(PO4)}4(PW9O34)4]n−, 15c | 17.5 | 20.25 | n.d. | n.d. | ||
[{Co4(OH)3(PO4)}4(SeW9O34)4]n−, 15d | 26.4 | 33.0 | n.d. | n.d. | ||
[(A-a-SiW9O34)2Co8(OH)6(H2O)2(CO3)3]16−, 16 | [Ru(bpy)3]2+/Na2S2O8, λ > 420 nm, 80 mmol∙L−1 borate buffer, pH 9 | 43.6 | 1436 | 10 | ~36 | 56 |
Na12[{Co7ⅡAs6Ⅲ O9(OH)6}(A-a-SiW9O34)2]·8H2O, 17 | [Ru(bpy)3]2+/Na2S2O8, λ > 420 nm, 80 mmol∙L−1 borate buffer, pH 8 | 38.4 | 115.2 | 0.14 | n.d. | 57 |
[Mn3Ⅲ MnⅣO3(CH3COO)3(A-a-SiW9O34)]6−, 18 | [Ru(bpy)3]2+/Na2S2O8, NaHCO3/Na2SiF6 buffer, pH 5.2 | 1.2-3.7 | n.d. | n.d. | 1.7 | 58 |
[Ni12(OH)9(CO3)3(PO4)(SiW9O34)3]24−, 20a | [Ru(bpy)3]2+/Na2S2O8, λ > 420 nm, 80 mmol∙L−1 borate buffer, pH 9 | 15.1 | 128.2 | 0.13 | n.d. | 60 |
[Ni13(H2O)3(OH)9(PO4)4(SiW9O34)3]25−, 20b | 15.5 | 147.6 | 0.15 | n.d. | ||
[Ni25(H2O)2OH)18(CO3)2(PO4)6(SiW9O34)6]25−, 20c | 17.6 | 204.5 | 0.21 | n.d. | ||
[Co4O4(O2CMe)4(py)4, 1 | BiVO4/AgNO3, 300 W Xe lamp, λ > 420 nm | 100 | n.d. | n.d. | n.d. | 68 |
Co4O4(O2CMe)4L4, 1d | BiVO4/NaIO3, 300 W Xe lamp, λ > 420 nm, pH 4 | n.d. | n.d. | 2.0 | 4.5 | 69 |
Co4O4(O2CMe)4(py)4, 1 | PCN/AgNO3/La2O3 300 W Xe lamp | n.d. | n.d. | n.d. | n.d. | 70 |
PS Ⅱ | – | n.d. | 107 | 500 | n.d. | 61 |
1 |
Berardi S. ; Drouet S. ; Francàs L. ; Gimbert-Suriñach C. ; Guttentag M. ; Richmond C. ; Stoll T. ; Llobet A. Chem. Soc. Rev. 2014, 43, 7501.
doi: 10.1039/c3cs60405e |
2 |
Song F. ; Ding Y. ; Ma B. ; Wang C. ; Wang Q. ; Du X. ; Fu S. ; Song J. Energy Environ. Sci. 2013, 6, 1170.
doi: 10.1039/C3EE24433D |
3 |
Gong J. ; Li C. ; Wasielewski M. R. Chem. Soc. Rev. 2019, 48, 1862.
doi: 10.1039/c9cs90020al |
4 |
Wang J.-W. ; Zhong D.-C. ; Lu T.-B. Coord. Chem. Rev. 2018, 377, 225.
doi: 10.1016/j.ccr.2018.09.003 |
5 |
Xiao A. ; Lu H. ; Zhao Y. ; Luo G. G. Acta Phys. -Chim. Sin. 2016, 32 (12), 2968.
doi: 10.3866/PKU.WHXB201609194 |
肖岸; 卢辉; 赵阳; 骆耿耿. 物理化学学报, 2016, 32 (12), 2968.
doi: 10.3866/PKU.WHXB201609194 |
|
6 |
Yu L. ; Ding Y. ; Zheng M. ; Chen H. ; Zhao J. Chem. Commun. 2016, 52, 14494.
doi: 10.1039/C6CC02728h |
7 |
Dismukes G. C. ; Brimblecombe R. ; Felton G. A. ; Pryadun R. S. ; Sheats J. E. ; Spiccia L. ; Swiegers G. F. Acc. Chem. Res. 2009, 42, 1935.
doi: 10.1021/ar900249x |
8 |
Tian T. ; Gao H. ; Zhou X. ; Zheng L. ; Wu J. ; Li K. ; Ding Y. ACS Energy Lett. 2018, 3, 2150.
doi: 10.1021/acsenergylett.8b01206 |
9 |
Zhang B. ; Sun L. Chem. Soc. Rev. 2019, 48, 2216.
doi: 10.1039/c8cs00897c |
10 |
Gersten S. W. ; Samuels G. J. ; Meyer T. J. J. Am. Chem. Soc. 1982, 104, 4029.
doi: 10.1021/ja00378a053 |
11 |
Umena Y. ; Kawakami K. ; Shen J.-R. ; Kamiya N. Nature 2011, 473, 55.
doi: 10.1038/nature09913 |
12 |
Zhang C. X. ; Chen C. H. ; Dong H. X. ; Shen J. R. ; Dau H. ; Zhao J. Q. Science 2015, 348, 690.
doi: 10.1126/science.aaa6550 |
13 |
Kok B. ; Forbush B. ; McGloin M. Photochem. Photobiol. 1970, 11, 457.
doi: 10.1111/j.1751-1097.1970.tb06017.x |
14 |
Suga M. ; Akita F. ; Sugahara M. ; Kubo M. ; Nakajima Y. ; Nakane T. ; Yamashita K. ; Umena Y. ; Nakabayashi M. ; Yamane T. ; et al Nature 2017, 543, 131.
doi: 10.1038/nature21400 |
15 |
Suga M. ; Akita F. ; Hirata K. ; Ueno G. ; Murakami H. ; Nakajima Y. ; Shimizu T. ; Yamashita K. ; Yamamoto M. ; Ago H. ; et al Nature 2015, 517, 99.
doi: 10.1038/nature13991 |
16 |
Chen C. ; Chen Y. ; Yao R. ; Li Y. ; Zhang C. Angew. Chem. Int. Ed. 2019, 58, 3939.
doi: 10.1002/anie.201814440 |
17 |
Lin J. ; Han Q. ; Ding Y. Chem. Rec. 2018, 18, 1531.
doi: 10.1002/tcr.201800029 |
18 |
Buriak J. M. ; Kamat P. V. ; Schanze K. S. ACS Appl. Mater. Interfaces 2014, 6, 11815.
doi: 10.1021/am504389z |
19 |
Lin J. ; Meng X. ; Zheng M. ; Ma B. ; Ding Y. Appl Catal B: Environ 2019, 241, 351.
doi: 10.1016/j.apcatb.2018.09.052 |
20 |
Parent A. R. ; Crabtree R. H. ; Brudvig G. W. Chem. Soc. Rev. 2013, 42, 2247.
doi: 10.1039/C2CS35225G |
21 |
Yamada Y. ; Yano K. ; Hong D. ; Fukuzumi S. Phys. Chem. Chem. Phys. 2012, 14, 5753.
doi: 10.1039/c2cp00022a |
22 |
McCool N. S. ; Robinson D. M. ; Sheats J. E. ; Dismukes G. C. J. Am. Chem. Soc. 2011, 133, 11446.
doi: 10.1021/ja203877y |
23 |
Dismukes G. C. ; Brimblecombe R. ; Felton G. A. N. ; Pryadun R. S. ; Sheats J. E. ; Spiccia L. ; Swiegers G. F. Acc. Chem. Res. 2009, 42, 1935.
doi: 10.1021/ar900249x |
24 |
Smith P. F. ; Kaplan C. ; Sheats J. E. ; Robinson D. M. ; McCool N. S. ; Mezle N. ; Dismukes G. C. Inorg. Chem. 2014, 53, 2113.
doi: 10.1021/ic402720p |
25 |
Dimitrou K. ; Folting K. ; Streib W. E. ; Christou G. J. Am. Chem. Soc. 1993, 115, 6432.
doi: 10.1021/ja00067a077 |
26 |
Sumner E. C. Inorg. Chem. 1988, 27, 1320.
doi: 10.1021/ic00281a004 |
27 |
La Ganga G. ; Puntoriero F. ; Campagna S. ; Bazzan I. ; Berardi S. ; Bonchio M. ; Sartorel A. ; Natali M. ; Scandola F. Faraday Discuss. 2012, 155, 177.
doi: 10.1039/c1fd00093d |
28 |
Berardi S. ; La Ganga G. ; Natali M. ; Bazzan I. ; Puntoriero F. ; Sartorel A. ; Scandola F. ; Campagna S. ; Bonchio M. J. Am. Chem. Soc. 2012, 134, 11104.
doi: 10.1021/ja303951z |
29 |
Zhou X. ; Li F. ; Li H. ; Zhang B. ; Yu F. ; Sun L. ChemSusChem 2014, 7, 2453.
doi: 10.1002/cssc.201402195 |
30 |
Ullman A. M. ; Liu Y. ; Huynh M. ; Bediako D. K. ; Wang H. ; Anderson B. L. ; Powers D. C. ; Breen J. J. ; Abruña H. D. ; Nocera D. G. J. Am. Chem. Soc. 2014, 136, 17681.
doi: 10.1021/ja5110393 |
31 |
Nguyen A. I. ; Ziegler M. S. ; Oña-Burgos P. ; Sturzbecher-Hohne M. ; Kim W. ; Bellone D. E. ; Tilley T. D. J. Am. Chem. Soc. 2015, 137, 12865.
doi: 10.1021/jacs.5b08396 |
32 |
Wang H. -Y. ; Mijangos E. ; Ott S. ; Thapper A. Angew. Chem. Int. Ed. 2014, 53, 14499.
doi: 10.1002/anie.201406540 |
33 |
Wang J.-W. ; Sahoo P. ; Lu T.-B. ACS Catal. 2016, 6, 5062.
doi: 10.1021/acscatal.6b00798 |
34 |
Evangelisti F. ; More R. ; Hodel F. ; Luber S. ; Patzke G. R. J. Am. Chem. Soc. 2015, 137, 11076.
doi: 10.1021/jacs.5b05831 |
35 |
Folkman S. J. ; Soriano-Lopez J. ; Galan-Mascaros J. R. ; Finke R. G. J. Am. Chem. Soc. 2018, 140, 12040.
doi: 10.1021/jacs.8b06303 |
36 |
Evangelisti F. ; Guttinger R. ; More R. ; Luber S. ; Patzke G. R. J. Am. Chem. Soc. 2013, 135, 18734.
doi: 10.1021/ja4098302 |
37 |
Song F. ; Moré R. ; Schilling M. ; Smolentsev G. ; Azzaroli N. ; Fox T. ; Luber S. ; Patzke G. R. J. Am. Chem. Soc. 2017, 139, 14198.
doi: 10.1021/jacs.7b07361 |
38 | Xie, W. -F.; Guo, L. -Y.; Xu, J. -H.; Jagodič, M.; Jagličić, Z.; Wang, W. -G.; Zhuang, G. -L.; Wang, Z.; Tung, C. -H.; Sun, D. Eur. J. Inorg. Chem. 2016, 2016, 3253. doi.10.1002/ejic.201600510 |
39 | Xu, J. -H.; Guo, L. -Y.; Su, H.-F.; Gao, X.; Wu, X. -F.; Wang, W. -G.; Tung, C. -H.; Sun, D. Inorg. Chem. 2017, 56, 1591. doi: 10.1021/acs.inorgchem.6b02698 |
40 |
Zhao Y. ; Lin J. ; Liu Y. ; Ma B. ; Ding Y. ; Chen M. Chem. Commun. 2015, 51, 17309.
doi: 10.1039/C5CC07448g |
41 |
Jiang X. ; Li J. ; Yang B. ; Wei X. Z. ; Dong B. W. ; Kao Y. ; Huang M. ; Tung C. ; Wu L. Angew. Chem. Int. Ed. 2018, 57, 7850.
doi: 10.1002/anie.201803944 |
42 |
Lin J. ; Liang X. ; Cao X. ; Wei N. ; Ding Y. Chem. Commun. 2018, 54, 12515.
doi: 10.1039/c8cc06362a |
43 |
Song F. ; Ding Y. ; Zhao C. Acta Chim Sinica 2014, 72, 133.
doi: 10.6023/a13101052 |
宋芳源; 丁勇; 赵崇超. 化学学报, 2014, 72, 133.
doi: 10.6023/a13101052 |
|
44 |
Lv H. ; Geletii Y. V. ; Zhao C. ; Vickers J. W. ; Zhu G. ; Luo Z. ; Song J. ; Lian T. ; Musaev D. G. ; Hill C. L. Chem. Soc. Rev. 2012, 41, 7572.
doi: 10.1039/C2CS35292C |
45 |
Du X. ; Zhao J. ; Mi J. ; Ding Y. ; Zhou P. ; Ma B. ; Zhao J. ; Song J. Nano Energy 2015, 16, 247.
doi: 10.1016/j.nanoen.2015.06.025 |
46 |
Yu L. ; Ding Y. ; Zheng M. Appl. Catal. B: Environ. 2017, 209, 45.
doi: 10.1016/j.apcatb.2017.02.061 |
47 |
Yu L. ; Lin J. ; Zheng M. ; Chen M. ; Ding Y. Chem. Commun. 2018, 54, 354.
doi: 10.1039/C7CC08301G |
48 |
Du X. ; Ding Y. ; Song F. ; Ma B. ; Zhao J. ; Song J. Chem. Commun. 2015, 51, 13925.
doi: 10.1039/c5cc04551g |
49 |
Yin Q. ; Tan J. M. ; Besson C. ; Geletii Y. V. ; Musaev D. G. ; Kuznetsov A. E. ; Luo Z. ; Hardcastle K. I. ; Hill C. L. Science 2010, 328, 342.
doi: 10.1126/science.1185372 |
50 |
Han Z. ; Bond A. M. ; Zhao C. Sci. China Chem. 2011, 54, 1877.
doi: 10.1007/s11426-011-4442-4 |
51 |
Sartorel A. ; Carraro M. ; Scorrano G. ; Zorzi R. D. ; Geremia S. ; McDaniel N. D. ; Bernhard S. ; Bonchio M. J. Am. Chem. Soc. 2008, 130, 5006.
doi: 10.1021/ja077837f |
52 |
Geletii Y. V. ; Botar B. ; Kögerler P. ; Hillesheim D. A. ; Musaev D. G. ; Hill C. L. Angew. Chem. Int. Ed. 2008, 47, 3896.
doi: 10.1002/anie.200705652 |
53 |
Geletii Y. V. ; Huang Z. ; Hou Y. ; Musaev D. G. ; Lian T. ; Hill C. L. J. Am. Chem. Soc. 2009, 131, 7522.
doi: 10.1021/ja901373m |
54 | Han, X. -B.; Zhang, Z. -M.; Zhang, T.; Li, Y. -G.; Lin, W.; You, W.; Su, Z. -M.; Wang, E.-B. J. Am. Chem. Soc. 2014, 136, 5359. doi: 10.1021/ja412886e |
55 |
Du P. ; Kokhan O. ; Chapman K. W. ; Chupas P. J. ; Tiede D. M. J. Am. Chem. Soc. 2012, 134, 11096.
doi: 10.1021/ja303826a |
56 |
Wei J. ; Feng Y. ; Zhou P. ; Liu Y. ; Xu J. ; Xiang R. ; Ding Y. ; Zhao C. ; Fan L. ; Hu C. ChemSusChem 2015, 8, 2630.
doi: 10.1002/cssc.201500490 |
57 |
Chen W. C. ; Wang X. L. ; Qin C. ; Shao K. Z. ; Su Z. M. ; Wang E. B. Chem. Commun. 2016, 52, 9514.
doi: 10.1039/c6cc03763a |
58 |
Al-Oweini R. ; Sartorel A. ; Bassil B. S. ; Natali M. ; Berardi S. ; Scandola F. ; Kortz U. ; Bonchio M. Angew. Chem. Int. Ed. 2014, 53, 11182.
doi: 10.1002/anie.201404664 |
59 |
Schwarz B. ; Forster J. ; Goetz M. K. ; Yücel D. ; Berger C. ; Jacob T. ; Streb C. Angew. Chem. Int. Ed. 2016, 55, 6329.
doi: 10.1002/anie.201601799 |
60 | Han, X. -B.; Li, Y. -G.; Zhang, Z. -M.; Tan, H. -Q.; Lu, Y.; Wang, E. -B. J. Am. Chem. Soc. 2015, 137, 5486. doi: 10.1021/jacs.5b01329 |
61 |
Stewart A. C. ; Bendall D. S. Biochem. J. 1980, 188, 351.
doi: 10.1042/bj1880351 |
62 |
Xiang R. ; Ding Y. ; Zhao J. Chem. Asian J. 2014, 9, 3228.
doi: 10.1002/asia.201402483 |
63 |
Probs B. ; Kolano C. ; Hamm P. ; Alberto R. Inorg. Chem. 2009, 48, 1836.
doi: 10.1021/ic8013255 |
64 |
Liang X. ; Lin J. ; Cao X. ; Sun W. ; Yang J. ; Ma B. ; Ding Y. Chem. Commun. 2019, 55, 2529.
doi: 10.1039/c8cc09807g |
65 | Ye, C.; Wang, X. -Z.; Li, J. -X.; Li, Z. -J.; Li, X. -B.; Zhang, L. -P.; Chen, B.; Tung, C. -H.; Wu, L. -Z. ACS Catal. 2016, 6, 8336. doi: 10.1021/acscatal.6b02664 |
66 |
Li Y. ; Kong T. ; Shen S. Small 2019, 1900772.
doi: 10.1002/smll.201900772 |
67 |
Chang X. X. ; Gong J. L. Acta Phys. -Chim. Sin. 2016, 32 (1), 2.
doi: 10.3866/PKU.WHXB201510192 |
常晓侠; 巩金龙. 物理化学学报, 2016, 32 (1), 2.
doi: 10.3866/PKU.WHXB201510192 |
|
68 |
Wang Y. ; Li F. ; Li H. ; Bai L. ; Sun L. Chem. Commun. 2016, 52, 3050.
doi: 10.1039/c5cc09588c |
69 |
Ye S. ; Chen R. ; Xu Y. ; Fan F. ; Du P. ; Zhang F. ; Zong X. ; Chen T. ; Qi Y. ; Chen P. ; et al J. Catal. 2016, 338, 168.
doi: 10.1016/j.jcat.2016.02.024 |
70 |
Luo Z. S. ; Zhou M. ; Wang X. C. Appl. Catal. B: Environ. 2018, 238, 664.
doi: 10.1016/j.apcatb.2018.07.056 |
[1] | Zhuang Xiong, Yidong Hou, Rusheng Yuan, Zhengxin Ding, Wee-Jun Ong, Sibo Wang. Hollow NiCo2S4 Nanospheres as a Cocatalyst to Support ZnIn2S4 Nanosheets for Visible-Light-Driven Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2111021-. |
[2] | Liang Zhou, Yunfeng Li, Yongkang Zhang, Liewei Qiu, Yan Xing. A 0D/2D Bi4V2O11/g-C3N4 S-Scheme Heterojunction with Rapid Interfacial Charges Migration for Photocatalytic Antibiotic Degradation [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2112027-. |
[3] | Wenliang Wang, Haochun Zhang, Yigang Chen, Haifeng Shi. Efficient Degradation of Tetracycline via Coupling of Photocatalysis and Photo-Fenton Processes over a 2D/2D α-Fe2O3/g-C3N4 S-Scheme Heterojunction Catalyst [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2201008-. |
[4] | Hongying Li, Haiming Gong, Zhiliang Jin. In2O3-Modified Three-Dimensional Nanoflower MoSx Form S-scheme Heterojunction for Efficient Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2022, 38(12): 2201037-. |
[5] | Kelin He, Rongchen Shen, Lei Hao, Youji Li, Peng Zhang, Jizhou Jiang, Xin Li. Advances in Nanostructured Silicon Carbide Photocatalysts [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2201021-. |
[6] | Wei Wang, Yu Huang, Zhenyu Wang. Defect Engineering in Two-Dimensional Graphitic Carbon Nitride and Application to Photocatalytic Air Purification [J]. Acta Phys. -Chim. Sin., 2021, 37(8): 2011073-. |
[7] | Kaining Li, Mengxi Zhang, Xiaoyu Ou, Ruina Li, Qin Li, Jiajie Fan, Kangle Lv. Strategies for the Fabrication of 2D Carbon Nitride Nanosheets [J]. Acta Phys. -Chim. Sin., 2021, 37(8): 2008010-. |
[8] | Han Li, Fang Li, Jiaguo Yu, Shaowen Cao. 2D/2D FeNi-LDH/g-C3N4 Hybrid Photocatalyst for Enhanced CO2 Photoreduction [J]. Acta Phys. -Chim. Sin., 2021, 37(8): 2010073-. |
[9] | Xingang Fei, Haiyan Tan, Bei Cheng, Bicheng Zhu, Liuyang Zhang. 2D/2D Black Phosphorus/g-C3N4 S-Scheme Heterojunction Photocatalysts for CO2 Reduction Investigated using DFT Calculations [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2010027-. |
[10] | Yunfeng Li, Min Zhang, Liang Zhou, Sijia Yang, Zhansheng Wu, Ma Yuhua. Recent Advances in Surface-Modified g-C3N4-Based Photocatalysts for H2 Production and CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2009030-. |
[11] | Xibao Li, Jiyou Liu, Juntong Huang, Chaozheng He, Zhijun Feng, Zhi Chen, Liying Wan, Fang Deng. All Organic S-Scheme Heterojunction PDI-Ala/S-C3N4 Photocatalyst with Enhanced Photocatalytic Performance [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2010030-. |
[12] | Dong Liu, Shengtao Chen, Renjie Li, Tianyou Peng. Review of Z-Scheme Heterojunctions for Photocatalytic Energy Conversion [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2010017-. |
[13] | Zejian Wang, Jiajia Hong, Sue-Faye Ng, Wen Liu, Junjie Huang, Pengfei Chen, Wee-Jun Ong. Recent Progress of Perovskite Oxide in Emerging Photocatalysis Landscape: Water Splitting, CO2 Reduction, and N2 Fixation [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2011033-. |
[14] | Yiwen Chen, Lingling Li, Quanlong Xu, Düren Tina, Jiajie Fan, Dekun Ma. Controllable Synthesis of g-C3N4 Inverse Opal Photocatalysts for Superior Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2009080-. |
[15] | Xinjiang Cui, Feng Shi. Selective Conversion of CO2 by Single-Site Catalysts [J]. Acta Phys. -Chim. Sin., 2021, 37(5): 2006080-. |
|