Acta Physico-Chimica Sinica ›› 2020, Vol. 36 ›› Issue (3): 1905025.doi: 10.3866/PKU.WHXB201905025
Special Issue: Photocatalyst
• Review • Previous Articles Next Articles
Wanjun Sun1,3,Junqi Lin1,Xiangming Liang1,Junyi Yang1,Baochun Ma1,Yong Ding1,2,*()
Received:
2019-05-06
Accepted:
2019-06-20
Published:
2019-06-24
Contact:
Yong Ding
E-mail:dingyong1@lzu.edu.cn
Supported by:
MSC2000:
Wanjun Sun,Junqi Lin,Xiangming Liang,Junyi Yang,Baochun Ma,Yong Ding. Recent Advances in Catalysts Based on Molecular Cubanes for Visible Light-Driven Water Oxidation[J].Acta Physico-Chimica Sinica, 2020, 36(3): 1905025.
Fig 1
Structures of the native OEC (A, C) and the synthetic Mn4Ca complex (B, D) 12. (A) Mn4CaO5 core of the native OEC. (B) Mn4CaO4 core of the synthetic Mn4Ca complex. (C) Structure of the native OEC, including ligating protein side-chains and water molecules. (D) Structure of Mn4Ca complex, including all ligand groups. Adapted from Nature publisher. "
Table 1
The summary of catalytic effects of various molecule cubanes WOCs."
Molecule Cubanes WOCs | Reaction conditions | O2 yield/% | TON | TOF/s−1 | QE/% | Ref. |
Co4O4(OAc)4(py)4, 1 | [Ru(bpy)3]2+/Na2S2O8, 250 W Arc lamp, λ > 395 nm, 100 mmol∙L−1 NaHCO3 buffer, pH 7 | n.d. | 40 | 0.02 | n.d. | 22 |
Co4Ⅲ(μ-O)4(μ-CH3COO)4(p-NC5H5)4, 1 | [Ru(bpy)3]2+/Na2S2O8, 50 W halogen lamp, λ > 400 nm, 10 mmol∙L−1 borate buffer, pH 8 | n.d. | n.d. | n.d. | 26 | 28 |
Co4Ⅲ(μ-O)4(μ-CH3COO)4(p-NC5-t-Bu)4, 1b | n.d. | n.d. | n.d. | 10 | ||
Co4Ⅲ(μ-O)4(μ-CH3COO)4(p-NC5-CN)4, 1c | n.d. | n.d. | n.d. | 26 | ||
Co4Ⅲ(μ-O)4(μ-CH3COO)4(p-NC5-Me)4, 1d | n.d. | n.d. | n.d. | 30 | ||
Co4Ⅲ(μ-O)4(μ-CH3COO)4(p-NC5-Br)4, 1e | n.d. | n.d. | n.d. | 32 | ||
Co4Ⅲ(μ-O)4(μ-CH3COO)4(p-NC5-COOMe)4, 1f | n.d. | n.d. | n.d. | 46 | ||
Co4Ⅲ(μ-O)4(μ-CH3COO)4(p-NC5-OMe)4, 1g | n.d. | 140 | ~0.04 | 80 | ||
{Co4O4(OAc)3(Py)4}{(L)Ru(bpy)2}, 4 | Na2S2O8, 300 W Xe lamp, λ > 400 nm, 100 mmol∙L−1 NaHCO3 buffer, pH 7 | n.d. | 5 | 7 × 10−3 | n.d. | 29 |
{Co4O4(OAc)2(Py)4}2{(L)Ru(bpy)2}2, 5 | n.d. | 24 | 0.02 | n.d. | ||
Co4Ⅱ(hmp)4(μ-OAc)2(μ2-OAc)2(H2O)2, 6 | [Ru(bpy)3]2+/Na2S2O8, λ = 470 nm, 80 mmol∙L−1 borate buffer, pH 7 | n.d. | 40 | 7 | n.d. | 36 |
Co3ⅡHo(hmp)4(OAc)5H2O, 7a | [Ru(bpy)3]2+/Na2S2O8, λLED = 470 nm, pH 8 | 43 | 163 | 5.8 | n.d. | 34 |
Co3ⅡEr (hmp)4(OAc)5H2O, 7b | 91 | 211 | 5.7 | n.d. | ||
Co3ⅡTm (hmp)4(OAc)5H2O, 7c | 24 | 92 | 5.3 | n.d. | ||
Co3ⅡYb (hmp)4(OAc)5H2O, 7d | 42 | 160 | 6.8 | n.d. | ||
[Co4Ⅱ(dpy{OH}O)4(OAc)2(H2O)2](ClO4)2, 8a | [Ru(bpy)3]2+/Na2S2O8, λLED = 470 nm, 80 mmol∙L−1 borate buffer, pH 8.5 | 80 | 20 | 0.24 | n.d. | 37 |
[Co5Ⅱ Co2Ⅲ (mdea)4(N3)2(CH3CN)6(OH)2(H2O)2](ClO4)4, 10 | [Ru(bpy)3]2+/K2S2O8, λLED = 450 nm, 200 mmol∙L−1 borate buffer, pH 9 | n.d. | 210 | 0.23 | n.d. | 39 |
Co4Ⅲ(CO3)2(μ3-O)4(bpy)4, 11 | [Ru(bpy)3]Cl2/Na2S2O8, λLED ≥ 420 nm, 200 mmol∙L−1 borate buffer, pH 9 | 19.2 | 96 | 0.41 | n.d. | 40 |
Na[NaCo3Ⅱ{(C5H4N)2(SO3)C(O)}4], 12 | 23.4 | 117 | 0.51 | n.d. | ||
Cu8(dpk·OH)8(OAc)4](ClO4)4, 13 | [Ru(bpy)3]2+/Na2S2O8, λLED = 460 nm, 80 mmol∙L−1 borate buffer, pH 9 | 35.6 | 178 | 3.6 | n.d. | 42 |
[{Ru4O4(OH)2(H2O)4}(γ-SiW10O36)2]10−, 14 | [Ru(bpy)3]2+/Na2S2O8, Xe lamp, 420–520 nm, pH 7.2 | n.d. | 350 | 0.08 | 26 | 53 |
[{Co4(OH)3(PO4)}4(SiW9O34)4]n−, 15a | [Ru(bpy)3]2+/Na2S2O8, 300 W Xe lamp, λ > 420 nm, pH 9 | 18.1 | 22.5 | 0.053 | n.d. | 54 |
[{Co4(OH)3(PO4)}4(GeW9O34)4]n−, 15b | 31.0 | 38.75 | 0.105 | n.d. | ||
[{Co4(OH)3(PO4)}4(PW9O34)4]n−, 15c | 17.5 | 20.25 | n.d. | n.d. | ||
[{Co4(OH)3(PO4)}4(SeW9O34)4]n−, 15d | 26.4 | 33.0 | n.d. | n.d. | ||
[(A-a-SiW9O34)2Co8(OH)6(H2O)2(CO3)3]16−, 16 | [Ru(bpy)3]2+/Na2S2O8, λ > 420 nm, 80 mmol∙L−1 borate buffer, pH 9 | 43.6 | 1436 | 10 | ~36 | 56 |
Na12[{Co7ⅡAs6Ⅲ O9(OH)6}(A-a-SiW9O34)2]·8H2O, 17 | [Ru(bpy)3]2+/Na2S2O8, λ > 420 nm, 80 mmol∙L−1 borate buffer, pH 8 | 38.4 | 115.2 | 0.14 | n.d. | 57 |
[Mn3Ⅲ MnⅣO3(CH3COO)3(A-a-SiW9O34)]6−, 18 | [Ru(bpy)3]2+/Na2S2O8, NaHCO3/Na2SiF6 buffer, pH 5.2 | 1.2-3.7 | n.d. | n.d. | 1.7 | 58 |
[Ni12(OH)9(CO3)3(PO4)(SiW9O34)3]24−, 20a | [Ru(bpy)3]2+/Na2S2O8, λ > 420 nm, 80 mmol∙L−1 borate buffer, pH 9 | 15.1 | 128.2 | 0.13 | n.d. | 60 |
[Ni13(H2O)3(OH)9(PO4)4(SiW9O34)3]25−, 20b | 15.5 | 147.6 | 0.15 | n.d. | ||
[Ni25(H2O)2OH)18(CO3)2(PO4)6(SiW9O34)6]25−, 20c | 17.6 | 204.5 | 0.21 | n.d. | ||
[Co4O4(O2CMe)4(py)4, 1 | BiVO4/AgNO3, 300 W Xe lamp, λ > 420 nm | 100 | n.d. | n.d. | n.d. | 68 |
Co4O4(O2CMe)4L4, 1d | BiVO4/NaIO3, 300 W Xe lamp, λ > 420 nm, pH 4 | n.d. | n.d. | 2.0 | 4.5 | 69 |
Co4O4(O2CMe)4(py)4, 1 | PCN/AgNO3/La2O3 300 W Xe lamp | n.d. | n.d. | n.d. | n.d. | 70 |
PS Ⅱ | – | n.d. | 107 | 500 | n.d. | 61 |
1 |
Berardi S. ; Drouet S. ; Francàs L. ; Gimbert-Suriñach C. ; Guttentag M. ; Richmond C. ; Stoll T. ; Llobet A. Chem. Soc. Rev. 2014, 43, 7501.
doi: 10.1039/c3cs60405e |
2 |
Song F. ; Ding Y. ; Ma B. ; Wang C. ; Wang Q. ; Du X. ; Fu S. ; Song J. Energy Environ. Sci. 2013, 6, 1170.
doi: 10.1039/C3EE24433D |
3 |
Gong J. ; Li C. ; Wasielewski M. R. Chem. Soc. Rev. 2019, 48, 1862.
doi: 10.1039/c9cs90020al |
4 |
Wang J.-W. ; Zhong D.-C. ; Lu T.-B. Coord. Chem. Rev. 2018, 377, 225.
doi: 10.1016/j.ccr.2018.09.003 |
5 |
Xiao A. ; Lu H. ; Zhao Y. ; Luo G. G. Acta Phys. -Chim. Sin. 2016, 32 (12), 2968.
doi: 10.3866/PKU.WHXB201609194 |
肖岸; 卢辉; 赵阳; 骆耿耿. 物理化学学报, 2016, 32 (12), 2968.
doi: 10.3866/PKU.WHXB201609194 |
|
6 |
Yu L. ; Ding Y. ; Zheng M. ; Chen H. ; Zhao J. Chem. Commun. 2016, 52, 14494.
doi: 10.1039/C6CC02728h |
7 |
Dismukes G. C. ; Brimblecombe R. ; Felton G. A. ; Pryadun R. S. ; Sheats J. E. ; Spiccia L. ; Swiegers G. F. Acc. Chem. Res. 2009, 42, 1935.
doi: 10.1021/ar900249x |
8 |
Tian T. ; Gao H. ; Zhou X. ; Zheng L. ; Wu J. ; Li K. ; Ding Y. ACS Energy Lett. 2018, 3, 2150.
doi: 10.1021/acsenergylett.8b01206 |
9 |
Zhang B. ; Sun L. Chem. Soc. Rev. 2019, 48, 2216.
doi: 10.1039/c8cs00897c |
10 |
Gersten S. W. ; Samuels G. J. ; Meyer T. J. J. Am. Chem. Soc. 1982, 104, 4029.
doi: 10.1021/ja00378a053 |
11 |
Umena Y. ; Kawakami K. ; Shen J.-R. ; Kamiya N. Nature 2011, 473, 55.
doi: 10.1038/nature09913 |
12 |
Zhang C. X. ; Chen C. H. ; Dong H. X. ; Shen J. R. ; Dau H. ; Zhao J. Q. Science 2015, 348, 690.
doi: 10.1126/science.aaa6550 |
13 |
Kok B. ; Forbush B. ; McGloin M. Photochem. Photobiol. 1970, 11, 457.
doi: 10.1111/j.1751-1097.1970.tb06017.x |
14 |
Suga M. ; Akita F. ; Sugahara M. ; Kubo M. ; Nakajima Y. ; Nakane T. ; Yamashita K. ; Umena Y. ; Nakabayashi M. ; Yamane T. ; et al Nature 2017, 543, 131.
doi: 10.1038/nature21400 |
15 |
Suga M. ; Akita F. ; Hirata K. ; Ueno G. ; Murakami H. ; Nakajima Y. ; Shimizu T. ; Yamashita K. ; Yamamoto M. ; Ago H. ; et al Nature 2015, 517, 99.
doi: 10.1038/nature13991 |
16 |
Chen C. ; Chen Y. ; Yao R. ; Li Y. ; Zhang C. Angew. Chem. Int. Ed. 2019, 58, 3939.
doi: 10.1002/anie.201814440 |
17 |
Lin J. ; Han Q. ; Ding Y. Chem. Rec. 2018, 18, 1531.
doi: 10.1002/tcr.201800029 |
18 |
Buriak J. M. ; Kamat P. V. ; Schanze K. S. ACS Appl. Mater. Interfaces 2014, 6, 11815.
doi: 10.1021/am504389z |
19 |
Lin J. ; Meng X. ; Zheng M. ; Ma B. ; Ding Y. Appl Catal B: Environ 2019, 241, 351.
doi: 10.1016/j.apcatb.2018.09.052 |
20 |
Parent A. R. ; Crabtree R. H. ; Brudvig G. W. Chem. Soc. Rev. 2013, 42, 2247.
doi: 10.1039/C2CS35225G |
21 |
Yamada Y. ; Yano K. ; Hong D. ; Fukuzumi S. Phys. Chem. Chem. Phys. 2012, 14, 5753.
doi: 10.1039/c2cp00022a |
22 |
McCool N. S. ; Robinson D. M. ; Sheats J. E. ; Dismukes G. C. J. Am. Chem. Soc. 2011, 133, 11446.
doi: 10.1021/ja203877y |
23 |
Dismukes G. C. ; Brimblecombe R. ; Felton G. A. N. ; Pryadun R. S. ; Sheats J. E. ; Spiccia L. ; Swiegers G. F. Acc. Chem. Res. 2009, 42, 1935.
doi: 10.1021/ar900249x |
24 |
Smith P. F. ; Kaplan C. ; Sheats J. E. ; Robinson D. M. ; McCool N. S. ; Mezle N. ; Dismukes G. C. Inorg. Chem. 2014, 53, 2113.
doi: 10.1021/ic402720p |
25 |
Dimitrou K. ; Folting K. ; Streib W. E. ; Christou G. J. Am. Chem. Soc. 1993, 115, 6432.
doi: 10.1021/ja00067a077 |
26 |
Sumner E. C. Inorg. Chem. 1988, 27, 1320.
doi: 10.1021/ic00281a004 |
27 |
La Ganga G. ; Puntoriero F. ; Campagna S. ; Bazzan I. ; Berardi S. ; Bonchio M. ; Sartorel A. ; Natali M. ; Scandola F. Faraday Discuss. 2012, 155, 177.
doi: 10.1039/c1fd00093d |
28 |
Berardi S. ; La Ganga G. ; Natali M. ; Bazzan I. ; Puntoriero F. ; Sartorel A. ; Scandola F. ; Campagna S. ; Bonchio M. J. Am. Chem. Soc. 2012, 134, 11104.
doi: 10.1021/ja303951z |
29 |
Zhou X. ; Li F. ; Li H. ; Zhang B. ; Yu F. ; Sun L. ChemSusChem 2014, 7, 2453.
doi: 10.1002/cssc.201402195 |
30 |
Ullman A. M. ; Liu Y. ; Huynh M. ; Bediako D. K. ; Wang H. ; Anderson B. L. ; Powers D. C. ; Breen J. J. ; Abruña H. D. ; Nocera D. G. J. Am. Chem. Soc. 2014, 136, 17681.
doi: 10.1021/ja5110393 |
31 |
Nguyen A. I. ; Ziegler M. S. ; Oña-Burgos P. ; Sturzbecher-Hohne M. ; Kim W. ; Bellone D. E. ; Tilley T. D. J. Am. Chem. Soc. 2015, 137, 12865.
doi: 10.1021/jacs.5b08396 |
32 |
Wang H. -Y. ; Mijangos E. ; Ott S. ; Thapper A. Angew. Chem. Int. Ed. 2014, 53, 14499.
doi: 10.1002/anie.201406540 |
33 |
Wang J.-W. ; Sahoo P. ; Lu T.-B. ACS Catal. 2016, 6, 5062.
doi: 10.1021/acscatal.6b00798 |
34 |
Evangelisti F. ; More R. ; Hodel F. ; Luber S. ; Patzke G. R. J. Am. Chem. Soc. 2015, 137, 11076.
doi: 10.1021/jacs.5b05831 |
35 |
Folkman S. J. ; Soriano-Lopez J. ; Galan-Mascaros J. R. ; Finke R. G. J. Am. Chem. Soc. 2018, 140, 12040.
doi: 10.1021/jacs.8b06303 |
36 |
Evangelisti F. ; Guttinger R. ; More R. ; Luber S. ; Patzke G. R. J. Am. Chem. Soc. 2013, 135, 18734.
doi: 10.1021/ja4098302 |
37 |
Song F. ; Moré R. ; Schilling M. ; Smolentsev G. ; Azzaroli N. ; Fox T. ; Luber S. ; Patzke G. R. J. Am. Chem. Soc. 2017, 139, 14198.
doi: 10.1021/jacs.7b07361 |
38 | Xie, W. -F.; Guo, L. -Y.; Xu, J. -H.; Jagodič, M.; Jagličić, Z.; Wang, W. -G.; Zhuang, G. -L.; Wang, Z.; Tung, C. -H.; Sun, D. Eur. J. Inorg. Chem. 2016, 2016, 3253. doi.10.1002/ejic.201600510 |
39 | Xu, J. -H.; Guo, L. -Y.; Su, H.-F.; Gao, X.; Wu, X. -F.; Wang, W. -G.; Tung, C. -H.; Sun, D. Inorg. Chem. 2017, 56, 1591. doi: 10.1021/acs.inorgchem.6b02698 |
40 |
Zhao Y. ; Lin J. ; Liu Y. ; Ma B. ; Ding Y. ; Chen M. Chem. Commun. 2015, 51, 17309.
doi: 10.1039/C5CC07448g |
41 |
Jiang X. ; Li J. ; Yang B. ; Wei X. Z. ; Dong B. W. ; Kao Y. ; Huang M. ; Tung C. ; Wu L. Angew. Chem. Int. Ed. 2018, 57, 7850.
doi: 10.1002/anie.201803944 |
42 |
Lin J. ; Liang X. ; Cao X. ; Wei N. ; Ding Y. Chem. Commun. 2018, 54, 12515.
doi: 10.1039/c8cc06362a |
43 |
Song F. ; Ding Y. ; Zhao C. Acta Chim Sinica 2014, 72, 133.
doi: 10.6023/a13101052 |
宋芳源; 丁勇; 赵崇超. 化学学报, 2014, 72, 133.
doi: 10.6023/a13101052 |
|
44 |
Lv H. ; Geletii Y. V. ; Zhao C. ; Vickers J. W. ; Zhu G. ; Luo Z. ; Song J. ; Lian T. ; Musaev D. G. ; Hill C. L. Chem. Soc. Rev. 2012, 41, 7572.
doi: 10.1039/C2CS35292C |
45 |
Du X. ; Zhao J. ; Mi J. ; Ding Y. ; Zhou P. ; Ma B. ; Zhao J. ; Song J. Nano Energy 2015, 16, 247.
doi: 10.1016/j.nanoen.2015.06.025 |
46 |
Yu L. ; Ding Y. ; Zheng M. Appl. Catal. B: Environ. 2017, 209, 45.
doi: 10.1016/j.apcatb.2017.02.061 |
47 |
Yu L. ; Lin J. ; Zheng M. ; Chen M. ; Ding Y. Chem. Commun. 2018, 54, 354.
doi: 10.1039/C7CC08301G |
48 |
Du X. ; Ding Y. ; Song F. ; Ma B. ; Zhao J. ; Song J. Chem. Commun. 2015, 51, 13925.
doi: 10.1039/c5cc04551g |
49 |
Yin Q. ; Tan J. M. ; Besson C. ; Geletii Y. V. ; Musaev D. G. ; Kuznetsov A. E. ; Luo Z. ; Hardcastle K. I. ; Hill C. L. Science 2010, 328, 342.
doi: 10.1126/science.1185372 |
50 |
Han Z. ; Bond A. M. ; Zhao C. Sci. China Chem. 2011, 54, 1877.
doi: 10.1007/s11426-011-4442-4 |
51 |
Sartorel A. ; Carraro M. ; Scorrano G. ; Zorzi R. D. ; Geremia S. ; McDaniel N. D. ; Bernhard S. ; Bonchio M. J. Am. Chem. Soc. 2008, 130, 5006.
doi: 10.1021/ja077837f |
52 |
Geletii Y. V. ; Botar B. ; Kögerler P. ; Hillesheim D. A. ; Musaev D. G. ; Hill C. L. Angew. Chem. Int. Ed. 2008, 47, 3896.
doi: 10.1002/anie.200705652 |
53 |
Geletii Y. V. ; Huang Z. ; Hou Y. ; Musaev D. G. ; Lian T. ; Hill C. L. J. Am. Chem. Soc. 2009, 131, 7522.
doi: 10.1021/ja901373m |
54 | Han, X. -B.; Zhang, Z. -M.; Zhang, T.; Li, Y. -G.; Lin, W.; You, W.; Su, Z. -M.; Wang, E.-B. J. Am. Chem. Soc. 2014, 136, 5359. doi: 10.1021/ja412886e |
55 |
Du P. ; Kokhan O. ; Chapman K. W. ; Chupas P. J. ; Tiede D. M. J. Am. Chem. Soc. 2012, 134, 11096.
doi: 10.1021/ja303826a |
56 |
Wei J. ; Feng Y. ; Zhou P. ; Liu Y. ; Xu J. ; Xiang R. ; Ding Y. ; Zhao C. ; Fan L. ; Hu C. ChemSusChem 2015, 8, 2630.
doi: 10.1002/cssc.201500490 |
57 |
Chen W. C. ; Wang X. L. ; Qin C. ; Shao K. Z. ; Su Z. M. ; Wang E. B. Chem. Commun. 2016, 52, 9514.
doi: 10.1039/c6cc03763a |
58 |
Al-Oweini R. ; Sartorel A. ; Bassil B. S. ; Natali M. ; Berardi S. ; Scandola F. ; Kortz U. ; Bonchio M. Angew. Chem. Int. Ed. 2014, 53, 11182.
doi: 10.1002/anie.201404664 |
59 |
Schwarz B. ; Forster J. ; Goetz M. K. ; Yücel D. ; Berger C. ; Jacob T. ; Streb C. Angew. Chem. Int. Ed. 2016, 55, 6329.
doi: 10.1002/anie.201601799 |
60 | Han, X. -B.; Li, Y. -G.; Zhang, Z. -M.; Tan, H. -Q.; Lu, Y.; Wang, E. -B. J. Am. Chem. Soc. 2015, 137, 5486. doi: 10.1021/jacs.5b01329 |
61 |
Stewart A. C. ; Bendall D. S. Biochem. J. 1980, 188, 351.
doi: 10.1042/bj1880351 |
62 |
Xiang R. ; Ding Y. ; Zhao J. Chem. Asian J. 2014, 9, 3228.
doi: 10.1002/asia.201402483 |
63 |
Probs B. ; Kolano C. ; Hamm P. ; Alberto R. Inorg. Chem. 2009, 48, 1836.
doi: 10.1021/ic8013255 |
64 |
Liang X. ; Lin J. ; Cao X. ; Sun W. ; Yang J. ; Ma B. ; Ding Y. Chem. Commun. 2019, 55, 2529.
doi: 10.1039/c8cc09807g |
65 | Ye, C.; Wang, X. -Z.; Li, J. -X.; Li, Z. -J.; Li, X. -B.; Zhang, L. -P.; Chen, B.; Tung, C. -H.; Wu, L. -Z. ACS Catal. 2016, 6, 8336. doi: 10.1021/acscatal.6b02664 |
66 |
Li Y. ; Kong T. ; Shen S. Small 2019, 1900772.
doi: 10.1002/smll.201900772 |
67 |
Chang X. X. ; Gong J. L. Acta Phys. -Chim. Sin. 2016, 32 (1), 2.
doi: 10.3866/PKU.WHXB201510192 |
常晓侠; 巩金龙. 物理化学学报, 2016, 32 (1), 2.
doi: 10.3866/PKU.WHXB201510192 |
|
68 |
Wang Y. ; Li F. ; Li H. ; Bai L. ; Sun L. Chem. Commun. 2016, 52, 3050.
doi: 10.1039/c5cc09588c |
69 |
Ye S. ; Chen R. ; Xu Y. ; Fan F. ; Du P. ; Zhang F. ; Zong X. ; Chen T. ; Qi Y. ; Chen P. ; et al J. Catal. 2016, 338, 168.
doi: 10.1016/j.jcat.2016.02.024 |
70 |
Luo Z. S. ; Zhou M. ; Wang X. C. Appl. Catal. B: Environ. 2018, 238, 664.
doi: 10.1016/j.apcatb.2018.07.056 |
[1] | Xingang Fei, Haiyan Tan, Bei Cheng, Bicheng Zhu, Liuyang Zhang. 2D/2D Black Phosphorus/g-C3N4 S-Scheme Heterojunction Photocatalysts for CO2 Reduction Investigated using DFT Calculations [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2010027-0. |
[2] | Xibao Li, Jiyou Liu, Juntong Huang, Chaozheng He, Zhijun Feng, Zhi Chen, Liying Wan, Fang Deng. All Organic S-Scheme Heterojunction PDI-Ala/S-C3N4 Photocatalyst with Enhanced Photocatalytic Performance [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2010030-0. |
[3] | Dong Liu, Shengtao Chen, Renjie Li, Tianyou Peng. Review of Z-Scheme Heterojunctions for Photocatalytic Energy Conversion [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2010017-0. |
[4] | Zejian Wang, Jiajia Hong, Sue-Faye Ng, Wen Liu, Junjie Huang, Pengfei Chen, Wee-Jun Ong. Recent Progress of Perovskite Oxide in Emerging Photocatalysis Landscape: Water Splitting, CO2 Reduction, and N2 Fixation [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2011033-0. |
[5] | Yunfeng Li, Min Zhang, Liang Zhou, Sijia Yang, Zhansheng Wu, Ma Yuhua. Recent Advances in Surface-Modified g-C3N4-Based Photocatalysts for H2 Production and CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2009030-0. |
[6] | Yiwen Chen, Lingling Li, Quanlong Xu, Düren Tina, Jiajie Fan, Dekun Ma. Controllable Synthesis of g-C3N4 Inverse Opal Photocatalysts for Superior Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2009080-0. |
[7] | Zuzeng Qin, Jing Wu, Bin Li, Tongming Su, Hongbing Ji. Ultrathin Layered Catalyst for Photocatalytic Reduction of CO2 [J]. Acta Phys. -Chim. Sin., 2021, 37(5): 2005027-0. |
[8] | Jihong Zhang, Dichang Zhong, Tongbu Lu. Co(Ⅱ)-Based Molecular Complexes for Photochemical CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2021, 37(5): 2008068-0. |
[9] | Xinjiang Cui, Feng Shi. Selective Conversion of CO2 by Single-Site Catalysts [J]. Acta Phys. -Chim. Sin., 2021, 37(5): 2006080-0. |
[10] | Fanghong Qin, Ting Wan, Jiangyuan Qiu, Yihui Wang, Biyuan Xiao, Zaiyin Huang. Temperature Effects on Photocatalytic Heat Changes and Kinetics via In Situ Photocalorimetry-Fluorescence Spectroscopy [J]. Acta Physico-Chimica Sinica, 2020, 36(6): 1905087-0. |
[11] | Yiqing Wang,Shaohua Shen. Progress and Prospects of Non-Metal Doped Graphitic Carbon Nitride for Improved Photocatalytic Performances [J]. Acta Physico-Chimica Sinica, 2020, 36(3): 1905080-0. |
[12] | Jinbo Pan,Sheng Shen,Wei Zhou,Jie Tang,Hongzhi Ding,Jinbo Wang,Lang Chen,Chak-Tong Au,Shuang-Feng Yin. Recent Progress in Photocatalytic Hydrogen Evolution [J]. Acta Physico-Chimica Sinica, 2020, 36(3): 1905068-0. |
[13] | Zhenmin Xu, Zhenfeng Bian. Photocatalytic Methane Conversion [J]. Acta Phys. -Chim. Sin., 2020, 36(3): 1907013-0. |
[14] | Zhiming Pan,Minghui Liu,Pingping Niu,Fangsong Guo,Xianzhi Fu,Xinchen Wang. Photocatalytic CO2 Reduction Using Ni2P Nanosheets [J]. Acta Physico-Chimica Sinica, 2020, 36(1): 1906014-0. |
[15] | Xiaoyue MU,Lu LI. Photo-Induced Activation of Methane at Room Temperature [J]. Acta Physico-Chimica Sinica, 2019, 35(9): 968-976. |
|