Acta Physico-Chimica Sinica ›› 2020, Vol. 36 ›› Issue (6): 1905081.doi: 10.3866/PKU.WHXB201905081
Special Issue: Thermal Analysis Kinetics and Thermokinetics
Previous Articles Next Articles
Yucheng He,Kefeng Xie,Youhao Wang,Dongshan Zhou,Wenbing Hu*()
Received:
2019-05-29
Accepted:
2019-08-02
Published:
2019-12-18
Contact:
Wenbing Hu
E-mail:wbhu@nju.edu.cn
Supported by:
MSC2000:
Yucheng He, Kefeng Xie, Youhao Wang, Dongshan Zhou, Wenbing Hu. Characterization of Polymer Crystallization Kinetics via Fast-Scanning Chip-Calorimetry[J].Acta Physico-Chimica Sinica, 2020, 36(6): 1905081.
Fig 4
Melting curves of crystallization on cooling of Nylon-6 (PA) after various erasing history temperatures. Reproduced with permission from Macromol. Chem. Phys., Wiley 42.PA were heatedat 6000 K∙s−1 after cooling at −40 K∙s−1 from a stay of 0.2 s at various high temperatures between 180 and 250 ℃. "
Fig 10
(a) Heating curves of annealed iPB-1; (b) enthalpy of relaxation and enthalpy of cold-crystallization as a function ofthe time of annealing the glass (right). Reprinted with permission from Ref. 73. Copyright (2013)American Chemistry Society.Apparent heat capacity of iPB-1 as a function of temperature, measuredon heating at 1000 K∙s−1 after annealing initiallyglassy samples for different time between0 s (bold black curves) and 10000 s (bold blue curves) at 243 K. Enthalpy of relaxation (upper data sets, triangles)and enthalpy of cold-crystallization(lower data sets, squares) as a function of the time of annealing the glass (right)."
Fig 11
POM morphology of PLLA crystallized at 120 ℃ for 10 min after annealing at low temperature with different condition. Reproduced with permission from Macromol. Chem. Phys., Wiley 81. The melt annealed at low temperature ranging from 50 to 70 ℃ (left to right column) for staying time between 2 and 1000 min (top to bottom row). The temperature program of FSC at bottom left shows Tammann's nuclei development method. The scaling bar corresponds a distance of 100 µm."
Fig 12
(a) Melting curves of PLLA crystals after annealed at 152 ℃ for various periods. AFM height images of the nascent crystals (b) and their morphologies annealed at 152 ℃ for 1000 s (c). Reproduced with permission from polymer, Elsevier80. The semi-crystalline samples were prepared isothermally crystallized at 90 ℃ for 600 s."
1 | Hu W. Principles of Polymer Crystallization Beijing, China: Chemical Industry Press, 2013. |
胡文兵. 高分子结晶学原理, 北京: 化学工业出版社, 2013. | |
2 | Wunderlich B. Thermal Analysis of Polymeric Materials Berlin, Germany: Springer, 2005. |
3 |
Wunderlich B. Prog. in Polym. Sci. 2003, 28 (3), 383.
doi: 10.1016/S0079-6700(02)00085-0 |
4 |
Schick C. Anal. Bioanal. Chem. 2009, 395 (6), 1589.
doi: 10.1007/s00216-009-3169-y |
5 |
Kamal M. R. ; Chu E. Polym. Eng. Sci. 1983, 23 (1), 27.
doi: 10.1002/pen.760230107 |
6 |
Toda A. ; Androsch R. ; Schick C. Polymer 2016, 91, 239.
doi: 10.1016/j.polymer.2016.03.038 |
7 |
Li Z. ; Zhou D. ; Hu W. Acta Polym. Sin. 2016, 9, 1179.
doi: 10.11777/j.issn1000-3304.2016.16058 |
李照磊; 周东山; 胡文兵. 高分子学报, 2016, 9, 1179.
doi: 10.11777/j.issn1000-3304.2016.16058 |
|
8 | Di Lorenzo M. L., Androsch R., Rhoades A. M., Righetti M. C., Analysis of Polymer Crystallization by Calorimetry. In Handbook of Thermal Analysis and Calorimetry, Vyazovkin S., Koga N., Schick C., Eds.; Elsevier Science B.V.: Amsterdam, Netherlands, 2018; Vol. 6, p. 253. |
9 |
Gao Y. ; Zhao B. ; Vlassak J. J. ; Schick C. Prog. Mater. Sci. 2019, 104, 53.
doi: 10.1016/j.pmatsci.2019.04.001 |
10 |
Mathot V. B. F. Polym. Int. 2019, 68 (2), 179.
doi: 10.1002/pi.5671 |
11 |
Santos de Souza F. ; Gomes Barreto A. P. ; Macêdo R. O. J. Therm. Anal. Calorim. 2001, 64 (2), 739.
doi: 10.1023/A:1011548512655 |
12 |
Becker R. ; Döring W. Ann. Phys. 1935, 416 (8), 719.
doi: 10.1002/andp.19354160806 |
13 |
Umemoto S. ; Kobayashi N. ; Okui N. J. Macromol. Sci. Phys. 2002, B41 (4–6), 923.
doi: 10.1081/mb-120013074 |
14 |
Denlinger D. W. ; Abarra E. N. ; Allen K. ; Rooney P. W. ; Messer M. T. ; Watson S. K. ; Hellman F. Rev.Sci. Instrum. 1994, 65 (4), 946.
doi: 10.1063/1.1144925 |
15 |
Allen L. H. ; Ramanath G. ; Lai S. L. ; Ma Z. ; Lee S. ; Allman D. D. J. ; Fuchs K. P. Appl. Phys. Lett. 1994, 64 (4), 417.
doi: 10.1063/1.111116 |
16 |
Lai S. L. ; Ramanath G. ; Allen L. H. ; Infante P. ; Ma Z. Appl. Phys. Lett. 1995, 67 (9), 1229.
doi: 10.1063/1.115016 |
17 |
Lai S. L. ; Guo J. Y. ; Petrova V. ; Ramanath G. ; Allen L. H. Phys. Rev. Lett. 1996, 77 (1), 99.
doi: 10.1103/PhysRevLett.77.99 |
18 |
Efremov M. Y. ; Schiettekatte F. ; Zhang M. ; Olson E. A. ; Kwan A. T. ; Berry R. S. ; Allen L. H. Phys. Rev. Lett. 2000, 85 (17), 3560.
doi: 10.1103/PhysRevLett.85.3560 |
19 |
Efremov M. Y. ; Olson E. A. ; Zhang M. ; Lai S. L. ; Schiettekatte F. ; Zhang Z. S. ; Allen L. H. Thermochim. Acta 2004, 412 (1), 13.
doi: 10.1016/j.tca.2003.08.019 |
20 |
Efremov M. Y. ; Olson E. A. ; Zhang M. ; Schiettekatte F. ; Zhang Z. ; Allen L. H. Rev. Sci. Instrum. 2004, 75 (1), 179.
doi: 10.1063/1.1633000 |
21 |
de la Rama L. P. ; Hu L. ; Ye Z. ; Efremov M. Y. ; Allen L. H. J. Am. Chem. Soc. 2013, 135 (38), 14286.
doi: 10.1021/ja4059958 |
22 |
Lopeandia A. F. ; Cerdo L. I. ; Clavaguera-Mora M. T. ; Arana L. R. ; Jensen K. F. ; Munoz F. J. ; Rodriguez-Viejo J. Rev. Sci. Instru. 2005, 76 (6), 3959.
doi: 10.1063/1.1921567 |
23 |
Adamovsky S. A. ; Minakov A. A. ; Schick C. Thermochim. Acta 2003, 403 (1), 55.
doi: 10.1016/S0040-6031(03)00182-5 |
24 |
Adamovsky S. ; Schick C. Thermochim. Acta 2004, 415 (1), 1.
doi: 10.1016/j.tca.2003.07.015 |
25 |
Yu J. ; Tang Z. ; Zhang F. ; Wei G. ; Wang L. Chin. Phy. Lett. 2005, 22 (9), 2429.
doi: 10.1088/0256-307X/22/9/080 |
26 | Chen M. ; Du M. ; Jiang J. ; Li D. ; Jiang W. ; Zhuravlev E. ; Zhou D. ; Schick C. ; Xue G. Thermochim. Acta 2011, 526 (1), 58. |
27 |
Jiang J. ; Zhuravlev E. ; Huang Z. ; Wei L. ; Xu Q. ; Shan M. ; Xue G. ; Zhou D. ; Schick C. ; Jiang W. Soft Matter 2013, 9 (5), 1488.
doi: 10.1039/C2SM27012A |
28 |
Wei L. ; Jiang J. ; Shan M. ; Chen W. ; Deng Y. ; Xue G. ; Zhou D. Rev. Sci. Instrum. 2014, 85 (7), 074901.
doi: 10.1063/1.4889882 |
29 | Jiang J., Wei L., Zhou D., Integration of Fast Scanning Calorimetry(FSC) with Microstructural Analysis Techniques. In Fast Scanning Calorimetry, Schick C., Mathot V., Eds.; Springer International Publishing: Cham, Switzerland, 2016; p. 361. |
30 |
van Herwaardena S. Procedia Eng. 2010, 5, 464.
doi: 10.1016/j.proeng.2010.09.147 |
31 |
Iervolino E. ; van Herwaarden A. W. ; van Herwaarden F. G. ; van de Kerkhof E. ; van Grinsven P. P. W. ; Leenaers A. C. H. I. ; Mathot V. B. F. ; Sarro P. M. Thermochim. Acta 2011, 522 (1), 53.
doi: 10.1016/j.tca.2011.01.023 |
32 |
Mathot V. ; Pyda M. ; Pijpers T. ; Vanden Poel G. ; van de Kerkhof E. ; van Herwaarden S. ; van Herwaarden F. ; Leenaers A. Thermochim. Acta 2011, 522 (1), 36.
doi: 10.1016/j.tca.2011.02.031 |
33 |
van Herwaarden S. ; Iervolino E. ; van Herwaarden F. ; Wijffels T. ; Leenaers A. ; Mathot V. Thermochim. Acta 2011, 522 (1), 46.
doi: 10.1016/j.tca.2011.05.025 |
34 |
De Santis F. ; Adamovsky S. ; Titomanlio G. ; Schick C. Macromolecules 2006, 39 (7), 2562.
doi: 10.1021/ma052525n |
35 |
De Santis F. ; Adamovsky S. ; Titomanlio G. ; Schick C. Macromolecules 2007, 40 (25), 9026.
doi: 10.1021/ma071491b |
36 |
Kalapat D. ; Tang Q. ; Zhang X. ; Hu W. J. Therm. Anal. Calorim. 2017, 128 (3), 1859.
doi: 10.1007/s10973-017-6095-9 |
37 |
Zhuravlev E. ; Schmelzer J. W. P. ; Wunderlich B. ; Schick C. Polymer 2011, 52 (9), 1983.
doi: 10.1016/j.polymer.2011.03.013 |
38 |
Wang J. ; Li Z. ; Perez R. A. ; Mueller A. J. ; Zhang B. ; Grayson S. M. ; Hu W. Polymer 2015, 63, 34.
doi: 10.1016/j.polymer.2015.02.039 |
39 | Androsch R., Schick C., Di Lorenzo M. L., Kinetics of Nucleation and Growth of Crystals of Poly(L-lactic acid). In Advances in Polymer Science, Springer: New York, USA, 2017; Vol. 279, p. 235. |
40 | Schawe J. E. K., Pogatscher S., Material Characterization by Fast Scanning Calorimetry: Practice and Applications. In Fast Scanning Calorimetry; Schick C., Mathot V., Eds.; Springer International Publishing: Cham, Switzerland, 2016; p. 3. |
41 | Gaur U., Wunderlich B., Advanced Thermal Analysis System(ATHAS) Polymer Heat Capacity Data Bank. In Computer Applications in Applied Polymer Science, American Chemical Society: New York, USA, 1982; Vol. 197, p. 355. |
42 |
He Y. ; Luo R. ; Li Z. ; Lv R. ; Zhou D. ; Lim S. ; Ren X. ; Gao H. ; Hu W. Macromol. Chem. Phys. 2018, 219 (3), 1700385.
doi: 10.1002/macp.201700385 |
43 |
Androsch R. ; Schick C. Adv. Polym. Sci. 2015, 276, 257.
doi: 10.1007/12_2015_325 |
44 |
Jiang X. ; Reiter G. ; Hu W. J. Phys. Chem. B 2016, 120 (3), 566.
doi: 10.1021/acs.jpcb.5b09324 |
45 | Schick C., Androsch R., New Insights into Polymer Crystallization by Fast Scanning Chip Calorimetry. In Fast Scanning Calorimetry, Springer International Publishing: Cham, Switzerland, 2016; pp. 463–535. |
46 | Androsch R., Schick C., Crystal Nucleation of Polymers at High Supercooling of the Melt. In Advances in Polymer Science, Springer: New York, USA, 2017; Vol. 276, p. 257. |
47 |
Schick C. ; Androsch R. ; Schmelzer J. W. P. J. Phys. Condens. Matter 2017, 29 (35), 453002.
doi: 10.1088/1361-648X/aa7fe0 |
48 |
Pyda M. ; Nowak-Pyda E. ; Heeg J. ; Huth H. ; Minakov A. A. ; Di Lorenzo M. L. ; Schick C. ; Wunderlich B. J. Polym. Sci. Part B: Polym. Phys. 2006, 44 (9), 1364.
doi: 10.1002/polb.20789 |
49 |
Schawe J. E. K. J. Therm. Anal. Calorim. 2014, 116 (3), 1165.
doi: 10.1007/s10973-013-3563-8 |
50 |
Androsch R. ; Rhoades A. M. ; Stolte I. ; Schick C. Eur. Polym. J. 2015, 66, 180.
doi: 10.1016/j.eurpolymj.2015.02.013 |
51 |
Van Drongelen M. ; Meijer-Vissers T. ; Cavallo D. ; Portale G. ; Poel G. V. ; Androsch R. Thermochim. Acta 2013, 563, 33.
doi: 10.1016/j.tca.2013.04.007 |
52 |
Rhoades A. M. ; Williams J. L. ; Androsch R. Thermochim. Acta 2015, 603, 103.
doi: 10.1016/j.tca.2014.10.020 |
53 |
Cavallo D. ; Gardella L. ; Alfonso G. C. ; Mileva D. ; Androsch R. Polymer 2012, 53 (20), 4429.
doi: 10.1016/j.polymer.2012.08.001 |
54 |
Mileva D. ; Androsch R. ; Cavallo D. ; Alfonso G. C. Eur. Polym. J. 2012, 48 (6), 1082.
doi: 10.1016/j.eurpolymj.2012.03.009 |
55 |
Cai J. ; Luo R. ; Lv R. ; He Y. ; Zhou D. ; Hu W. Eur. Polym. J. 2017, 96, 79.
doi: 10.1016/j.eurpolymj.2017.09.003 |
56 |
Chen Y. ; Chen X. ; Zhou D. ; Shen Q.-D. ; Hu W. Polymer 2016, 84, 319.
doi: 10.1016/j.polymer.2016.01.003 |
57 |
Gradys A. ; Sajkiewicz P. ; Zhuravlev E. ; Schick C. Polymer 2016, 82, 40.
doi: 10.1016/j.polymer.2015.11.020 |
58 |
Chen Y. ; Shen Q.-D. ; Hu W. Polym. Int. 2016, 65 (4), 387.
doi: 10.1002/pi.5066 |
59 | Wunderlich B., Crystal Nucleation, Growth, Annealing. in Macromolecular Physics. Academic Press: New York, NY, USA, 1976; Vol. 2. |
60 |
Long Y. ; Shanks R. A. ; Stachurski Z. H. Prog. Polym. Sci. 1995, 20 (4), 651.
doi: 10.1016/0079-6700(95)00002-W |
61 | Tammann G. Z. Phys. Chem. 1898, 25 (3), 441. |
62 |
Zhuravlev E. ; Schmelzer J. W. P. ; Abyzov A. S. ; Fokin V. M. ; Androsch R. ; Schick C. Cryst. Growth Des. 2015, 15 (2), 786.
doi: 10.1021/cg501600s |
63 |
Androsch R. ; Schick C. ; Rhoades A. M. Macromolecules 2015, 48 (22), 8082.
doi: 10.1021/acs.macromol.5b01912 |
64 |
Okamoto N. ; Oguni M. Solid State Commun. 1996, 99 (1), 53.
doi: 10.1016/0038-1098(96)00139-1 |
65 |
Wurm A. ; Zhuravlev E. ; Eckstein K. ; Jehnichen D. ; Pospiech D. ; Androsch R. ; Wunderlich B. ; Schick C. Macromolecules 2012, 45 (9), 3816.
doi: 10.1021/ma300363b |
66 |
Sánchez M. S. ; Mathot V. B. F. ; Poel G. V. ; Ribelles J. L. G. Macromolecules 2007, 40 (22), 7989.
doi: 10.1021/ma0712706 |
67 |
Androsch R. ; Zhuravlev E. ; Schmelzer J. W. P. ; Schick C. Eur. Polym. J. 2018, 102, 195.
doi: 10.1016/j.eurpolymj.2018.03.026 |
68 | Schmelzer J. W. P. Glass: Selected Properties and Crystallization. Berlin, Germany: Walter de Gruyter, 2014, p. 1. |
69 |
Androsch R. ; Schick C. ; Schmelzer J. W. P. Eur.Polym. J. 2014, 53 (1), 100.
doi: 10.1016/j.eurpolymj.2014.01.012 |
70 |
Stolte I. ; Androsch R. ; Di Lorenzo M. L. ; Schick C. J. Phys. Chem. B 2013, 117 (48), 15196.
doi: 10.1021/jp4093404 |
71 | Hoffman J. D., Davis G. T., Lauritzen J. I., The Rate of Crystallization of Linear Polymers with Chain Folding. In Treatise on Solid State Chemistry: Volume 3 Crystalline and Noncrystalline Solids, Hannay N. B., Ed.; Springer US: Boston, MA, USA, 1976; p. 497. |
72 |
Donth E. J. Non. Cryst. Solids 1982, 53 (3), 325.
doi: 10.1016/0022-3093(82)90089-8 |
73 | Donth E. The Glass Transition: Relaxation Dynamics in Liquids and Disordered Materials Berlin, Germany: Springer Science & Business Media, 2013, 48 |
74 |
Chua Y. Z. ; Zorn R. ; Holderer O. ; Schmelzer J. W. P. ; Schick C. ; Donth E. J. Chem. Phys. 2017, 146 (10), 104501.
doi: 10.1063/1.4977737 |
75 |
Rhoades A. M. ; Williams J. L. ; Wonderling N. ; Androsch R. ; Guo J. J. Therm. Anal. Calorim. 2017, 127 (1), 939.
doi: 10.1007/s10973-016-5793-z |
76 |
Rhoades A. M. ; Wonderling N. ; Schick C. ; Androsch R. Polymer 2016, 106, 29.
doi: 10.1016/j.polymer.2016.10.050 |
77 | Baeten D., Cavallo D., Portale G., Androsch R., Mathot V., Goderis B., Combining Fast Scanning Chip Calorimetry with Structural and Morphological Characterization Techniques. In Fast Scanning Calorimetry, Schick C., Mathot V., Eds.; Springer International Publishing: Cham, Switzerland, 2016; p. 327. |
78 |
Mollova A. ; Androsch R. ; Mileva D. ; Schick C. ; Benhamida A. Macromolecules 2013, 46 (3), 828.
doi: 10.1021/ma302238r |
79 |
Mileva D. ; Androsch R. ; Zhuravlev E. ; Schick C. Polymer 2012, 53 (18), 3994.
doi: 10.1016/j.polymer.2012.06.045 |
80 |
Lv R. ; He Y. ; Wang J. ; Wang J. ; Hu J. ; Zhang J. ; Hu W. Polymer 2019, 174, 123.
doi: 10.1016/j.polymer.2019.04.061 |
81 |
Androsch R. ; Di Lorenzo M. L. ; Schick C. Macromol. Chem. Phys. 2017, 219 (3), 1700479.
doi: 10.1002/macp.201700479 |
82 |
Schick C. ; Androsch R. Polym. Cryst. 2018, 1 (4), e10036.
doi: 10.1002/pcr2.10036 |
83 |
Janssens V. ; Block C. ; Van Assche G. ; Van Mele B. ; Van Puyvelde P. J. Therm. Anal. Calorim. 2009, 98 (3), 675.
doi: 10.1007/s10973-009-0518-1 |
84 |
Roozemond P. C. ; van Drongelen M. ; Verbelen L. ; Van Puyvelde P. ; Peters G. W. M. Rheol. Acta 2015, 54 (1), 1.
doi: 10.1007/s00397-014-0820-0 |
85 |
Rhoades A. M. ; Gohn A. M. ; Seo J. ; Androsch R. ; Colby R. H. Macromolecules 2018, 51 (8), 2785.
doi: 10.1021/acs.macromol.8b00195 |
86 |
Cebe P. ; Hu X. ; Kaplan D. L. ; Zhuravlev E. ; Wurm A. ; Arbeiter D. ; Schick C. Sci. Rep. 2013, 3, 1130.
doi: 10.1038/srep01130 |
87 |
Gao H. ; Wang J. ; Schick C. ; Toda A. ; Zhou D. ; Hu W. Polymer 2014, 55 (16), 4307.
doi: 10.1016/j.polymer.2014.06.048 |
88 |
Jiang X. ; Li Z. ; Wang J. ; Gao H. ; Zhou D. ; Tang Y. ; Hu W. Thermochim. Acta 2015, 603, 79.
doi: 10.1016/j.tca.2014.04.002 |
89 | Jiang X., Li Z., Gao H., Hu W., Combining Fast-Scan Chip Calorimetry with Molecular Simulations to Investigate Polymer Crystal Melting. In Fast Scanning Calorimetry, Schick C., Mathot V., Eds.; Springer International Publishing: Cham, Switzerland, 2016; p. 379. |
[1] | Ya Liu, Lei Zheng, Wei Gu, Yanbin Shen, Liwei Chen. Surface Passivation of Lithium Metal via In situ Polymerization [J]. Acta Phys. -Chim. Sin., 2021, 37(1): 2004058-0. |
[2] | Fenfen Wang, Peng Wang, Hongyao Niu, Yingfeng Yu, Pingchuan Sun. Solid-State NMR Studies on Hydrogen Bonding Interactions and Structural Evolution in PAA/PEO Blends [J]. Acta Physico-Chimica Sinica, 2020, 36(4): 1912016-0. |
[3] | Chengcheng Zhang, Ralph Crisci, Zhan Chen. Probing Molecular Structures of Antifouling Polymer/Liquid Interfaces In Situ [J]. Acta Physico-Chimica Sinica, 2020, 36(10): 1910003-0. |
[4] | Jingru Fu,Teng Ben,Shilun Qiu. Fabrication of Polymer-Supported Metal Organic Framework Membrane and Its Gas Separation Performance [J]. Acta Physico-Chimica Sinica, 2020, 36(1): 1901079-0. |
[5] | Yizhou WANG,Yehong LIU,Shouhong XU,Honglai LIU. Design and Synthesis of Multi-Responsive Copolymers for Drug Carrier [J]. Acta Physico-Chimica Sinica, 2019, 35(8): 876-884. |
[6] | Monika GUPTA,Dong YAN,Fugang SHEN,Jianzhong XU,Chuanlang ZHAN. Perylenediimide: Phosphonium-Based Binary Blended Small-Molecule Cathode Interlayer for Efficient Fullerene-Free Polymer Solar Cells with Open Circuit Voltage to 1.0 V [J]. Acta Phys. -Chim. Sin., 2019, 35(5): 496-502. |
[7] | Shiyu FENG, Hao LU, Zekun LIU, Yahui LIU, Cuihong LI, Zhishan BO. Designing a High-Performance A-D-A Fused-Ring Electron Acceptor via Noncovalently Conformational Locking and Tailoring Its End Groups [J]. Acta Physico-Chimica Sinica, 2019, 35(4): 355-360. |
[8] | Kangjie LYU,Yanqiu PENG,Li XIAO,Juntao LU,Lin ZHUANG. Atomistic Understanding of the Peculiar Dissolution Behavior of Alkaline Polymer Electrolytes in Alcohol/Water Mixed Solvents [J]. Acta Phys. -Chim. Sin., 2019, 35(4): 378-384. |
[9] | Zhongqiang ZHANG, Shuhua ZHANG, Zhixi LIU, Zhiguo ZHANG, Yongfang LI, Changzhi LI, Hongzheng CHEN. A Simple Electron Acceptor with Unfused Backbone for Polymer Solar Cells [J]. Acta Phys. -Chim. Sin., 2019, 35(4): 394-400. |
[10] | Hengchang LIU,Yujun FENG. CO2-Induced Interaction between a Pentablock Nonionic Copolymer and an Anionic Fluorocarbon Surfactant [J]. Acta Phys. -Chim. Sin., 2019, 35(4): 408-414. |
[11] | Qingqing XU,Chunmei CHANG,Wanbin LI,Bing GUO,Xia GUO,Maojie ZHANG. Non-Fullerene Polymer Solar Cells Based on a New Polythiophene Derivative as Donor [J]. Acta Phys. -Chim. Sin., 2019, 35(3): 268-274. |
[12] | Yan HE,Hao LI,Li ZHOU,Ting XU,Changjun PENG,Honglai LIU. Removal of Methyl Orange from Aqueous Solutions by a Novel Hyper-Cross-Linked Aromatic Triazine Porous Polymer [J]. Acta Physico-Chimica Sinica, 2019, 35(3): 299-306. |
[13] | Yi WU, Jingyi KONG, Yunpeng QIN, Huifeng YAO, Shaoqing ZHANG, Jianhui HOU. Realizing Green Solvent Processable Non-fullerene Organic Solar Cells by Modulating the Side Groups of Conjugated Polymers [J]. Acta Physico-Chimica Sinica, 2019, 35(12): 1391-1398. |
[14] | Yangheng XIONG,Hao WU,Jianshu GAO,Wen CHEN,Jingchao ZHANG,Yanan YUE. Toward Improved Thermal Conductance of Graphene-Polyethylene Composites via Surface Defect Engineering: a Molecular Dynamics Study [J]. Acta Physico-Chimica Sinica, 2019, 35(10): 1150-1156. |
[15] | Zhimin XUE,Chuanyu YAN,Xinhui ZHAO,Dongkun YU,Tiancheng MU. How Hofmeister Ions Change the Local Environment around Thermoresponsive Polymers in Aqueous Solutions: an NMR Study [J]. Acta Phys. -Chim. Sin., 2019, 35(1): 49-57. |
|