Acta Physico-Chimica Sinica ›› 2020, Vol. 36 ›› Issue (4): 1906018.doi: 10.3866/PKU.WHXB201906018
Special Issue: Solid-State Nuclear Magnetic Resonance
• Review • Previous Articles Next Articles
Zhenfeng Pang,Hanxi Guan,Lina Gao,Weicheng Cao,Jinglin Yin,Xueqian Kong*()
Received:
2019-06-04
Accepted:
2019-07-09
Published:
2020-03-12
Contact:
Xueqian Kong
E-mail:kxq@zju.edu.cn
Supported by:
MSC2000:
Zhenfeng Pang,Hanxi Guan,Lina Gao,Weicheng Cao,Jinglin Yin,Xueqian Kong. Fundamentals and Applications of NMR Hyperpolarization Techniques[J].Acta Physico-Chimica Sinica, 2020, 36(4): 1906018.
Fig 2
Overhauser effect: (a) Schematic representation of four energy levels and their populations (size of gray bars) at thermal equilibrium. (black and red arrows indicate electron spins and nuclear spins, respectively) (b) Population distribution with the electron saturation transition at the microwave irradiation (ωm = ωe). (c) Population distribution with the cross relaxation."
Fig 3
Solid effect: (a) Schematic representation of four energy levels and their populations (size of gray bars) at thermal equilibrium. (λ1* = λ1 + qλ2, λ2* = λ2 − qλ1, λ3* = λ3 − qλ4, λ4* = λ4 + qλ3, q indicates mixing factor) (b) Microwave irradiation at ωe + ωn leads to positive enhancement. (c) Microwave irradiation at ωe − ωn leads to negative enhancement."
Fig 4
Cross effect: (a) Schematic representation of eight energy levels and their populations (size of gray bars) at thermal equilibrium. (black and red arrows indicate electron spins and nuclear spins, respectively) (b) Saturation of the allowed EPR transitions for electron 1. (c) Zero quantum transition of the electron 2 and nucleus leads to negative enhancement. (d) Saturation of the electron 2 and double quantum transition of the electron 1 and nucleus leads to positive enhancement."
Table 1
Four common DNP mechanisms 6."
Mechanism | Overhauser effect | Solid effect | Cross effect | Thermal mixing |
Sample type | Liquid; alkali metals organic | Dielectric samples in the solid | Dielectric samples in the solid | Dielectric samples in the solid state |
Conditions | ωeτ < 1 | δ, Δ < ωn | δ < ωn < Δ | δ, Δ > ωn |
Low concentration of radicals. No dipolar coupling between radicals. | Dipolar coupling between two types of radicals. Frequency difference between two radicals equals to the nuclear frequency | High concentration of radicals. Strong coupling between radicals. | ||
Dependence | ωeτ < 1 | ~ B0-2 | ~ B0-1 | δ |
Microwave frequency for maximal DNP enhancement | ω = ωe | ω = ωe ± ωn | Depends on EPR line shape | Depends on EPR line shape ω ≈ ωe ± δ |
Fig 5
(a) Process of spin-exchange optical pumping 25. (b) Orbital structure, fine structure and hyperfine structure of 85Rb 27. (c) 85Rb is hyperpolarized with irradiation of left circularly polarized light (hyperfine structure is ignored because of pressure broadening) 25. (d) 85Rb hyperpolarization in the presence of N2 25."
Fig 10
(a) Level diagram of molecular crystal. Circle sizes stand for the population of Tx, Ty, Tz. (b) Scheme of nitrogen-vacancy (NV) center, grey and black balls stand for carbon, blue is nitrogen, and green is vacancy. (c) Zero field splitting (ZFS) and Zeeman splitting of NV center. (d) Scheme of optical electron polarization of NV center 60. Adapted from WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim publisher."
Fig 12
(a) CIDNP net (bottom) and multiplet effects (top) in the photoreaction of excited xanthone with triethylamine in acetonitrile. Shown are spectra of the product N, N-diethylvinylamine (for the formula, see inset); left half, signals of HX; right half, signals of HA and HB); (b) level and population diagram of net (bottom) and multiplet (top) effects 77. (a) Adapted with permission from Ref. 79. Copyright (2012) Springer-Verlag Berlin Heidelberg; (b) Adapted from Elsevier publisher."
Fig 15
Energy levels of the radical pairs in electron-electron-nuclear three-spin mixing. The four quantum states of the S-T0 manifold are split due to the differences of the Zeeman interaction of both electron spins, the hyperfine coupling to the nuclear spin, the nuclear Zeeman interaction, and the coupling between the two electron spins 95, 96. Adapted from AIP publisher and Elsevier publisher."
1 | Settle F. A. Handbook of Instrumental Techniques for Analytical Chemistry Prentice Hall: Upper Saddle River, 1997. |
2 |
Carver T. R. ; Slichter C. P. Phys. Rev. 1953, 92, 212.
doi: 10.1103/PhysRev.92.212.2 |
3 | Ivanov, K. Summer School on Hyperpolarization at Windschleuba; Germany, 2018. |
4 |
Meier B. Magn. Reson. Chem. 2018, 56, 610.
doi: 10.1002/mrc.4725 |
5 |
Overhauser A. W. Phys. Rev. 1953, 92, 411.
doi: 10.1103/PhysRev.92.411 |
6 | Günther, U. L. Dynamic Nuclear Hyperpolarization in Liquids. In Modern NMR Methodology; Heise, H., Matthews, S. Eds. Springer Berlin Heidelberg: Berlin, Heidelberg, 2011; p. 23. |
7 |
Khutsishvili G. R. Sov. Phys. Usp. 1966, 8, 743.
doi: 10.1070/pu1966v008n05abeh003035 |
8 |
Carver T. R. ; Slichter C. P. Phys. Rev. 1956, 102, 975.
doi: 10.1103/PhysRev.102.975 |
9 |
Gao S. ; Huang C. ; Zhang Z. ; Chen J. ; He Y. ; Chen L. ; Chen F. ; Zhang J. ; Liu C. Chin. J. Magn. Reson. 2017, 34, 421.
doi: 10.11938/cjmr20172557 |
10 |
Tao Q. ; He Y. ; Wang C. ; Feng J. ; Chen F. ; Liu C. Chin. J. Magn. Reson. 2016, 33, 44.
doi: 10.11938/cjmr20160104 |
11 |
Matsuki Y. ; Ueda K. ; Idehara T. ; Ikeda R. ; Ogawa I. ; Nakamura S. ; Toda M. ; Anai T. ; Fujiwara T. J. Magn. Reson. 2012, 225, 1.
doi: 10.1016/j.jmr.2012.09.008 |
12 |
Loening N. M. ; Rosay M. ; Weis V. ; Griffin R. G. J. Am. Chem. Soc. 2002, 124, 8808.
doi: 10.1021/ja026660g |
13 |
Becerra L. R. ; Gerfen G. J. ; Temkin R. J. ; Singel D. J. ; Griffin R. G. Phys. Rev. Lett. 1993, 71, 3561.
doi: 10.1103/PhysRevLett.71.3561 |
14 |
Song C. ; Hu K. N. ; Joo C. G. ; Swager T. M. ; Griffin R. G. J. Am. Chem. Soc. 2006, 128, 11385.
doi: 10.1021/ja061284b |
15 |
Märker K. ; Paul S. ; Fernández-de-Alba C. ; Lee D. ; Mouesca J. M. ; Hediger S. ; De Paëpe G. Chem. Sci. 2017, 8, 974.
doi: 10.1039/C6SC02709A |
16 |
Eto H. ; Hyodo F. ; Kosem N. ; Kobayashi R. ; Yasukawa K. ; Nakao M. ; Kiniwa M. ; Utsumi H. Free Radic. Biol. Med. 2015, 89, 1097.
doi: 10.1016/j.freeradbiomed.2015.10.418 |
17 |
Otikovs M. ; Olsen G. L. ; Kupče E. R. ; Frydman L. J. Am. Chem. Soc. 2019, 141, 1857.
doi: 10.1021/jacs.8b12216 |
18 |
Märker K. ; Pingret M. ; Mouesca J. M. ; Gasparutto D. ; Hediger S. ; De Paëpe G. J. Am. Chem. Soc. 2015, 137, 13796.
doi: 10.1021/jacs.5b09964 |
19 |
Lesage A. ; Lelli M. ; Gajan D. ; Caporini M. A. ; Vitzthum V. ; Miéville P. ; Alauzun J. ; Roussey A. ; Thieuleux C. ; Mehdi A. ;et al J. Am. Chem. Soc. 2010, 132, 15459.
doi: 10.1021/ja104771z |
20 |
Kobayashi T. ; Perras F. A. ; Goh T. W. ; Metz T. L. ; Huang W. ; Pruski M. J. Phys. Chem. Lett. 2016, 7, 2322.
doi: 10.1021/acs.jpclett.6b00860 |
21 |
Vitzthum V. ; Miéville P. ; Carnevale D. ; Caporini M. A. ; Gajan D. ; Copéret C. ; Lelli M. ; Zagdoun A. ; Rossini A. J., Lesage A., et al. Chem. Comm. 2012, 48, 1988.
doi: 10.1039/C2CC15905H |
22 |
Bayro M. J. ; Debelouchina G. T. ; Eddy M. T. ; Birkett N. R. ; MacPhee C. E. ; Rosay M. ; Maas W. E. ; Dobson C. M. ; Griffin R. G. J. Am. Chem. Soc. 2011, 133, 13967.
doi: 10.1021/ja203756x |
23 |
Bajaj V. S. ; Mak-Jurkauskas M. L. ; Belenky M. ; Herzfeld J. ; Griffin R. G. J. Magn. Reson. 2010, 202, 9.
doi: 10.1016/j.jmr.2009.09.005 |
24 |
Gallagher F. A. ; Kettunen M. I. ; Brindle K. M. Prog. Nucl. Magn. Reson. Spectrosc. 2009, 55, 285.
doi: 10.1016/j.pnmrs.2009.06.001 |
25 | Brunner, E. Summer School on Hyperpolarization at Windschleuba; Germany, 2018. |
26 |
Happer W. Rev. Mod. Phys. 1972, 44, 169.
doi: 10.1103/RevModPhys.44.169 |
27 | Norquay, G. Spin-Exchange Optical Pumping and Nuclear Magnetic Resonance of 129Xe. Ph.D. Dissertation, University of Sheffield, Sheffield, 2014. |
28 |
Walker T. G. ; Happer W. Rev. Mod. Phys. 1997, 69, 629.
doi: 10.1103/RevModPhys.69.629 |
29 |
Beth R. A. Phys. Rev. 1936, 50, 115.
doi: 10.1103/PhysRev.50.115 |
30 |
Sieradzan A. ; Franz F. A. Phys. Rev. A 1982, 25, 2985.
doi: 10.1103/PhysRevA.25.2985 |
31 |
Cates G. D. ; Fitzgerald R. J. ; Barton A. S. ; Bogorad P. ; Gatzke M. ; Newbury N. R. ; Saam B. Phys. Rev. A 1992, 45, 4631.
doi: 10.1103/PhysRevA.45.4631 |
32 |
Driehuys B. ; Cates G. D. ; Happer W. Phys. Rev. Lett. 1995, 74, 4943.
doi: 10.1103/PhysRevLett.74.4943 |
33 |
Jau Y. Y. ; Kuzma N. N. ; Happer W. Phys. Rev. A 2002, 66, 052710.
doi: 10.1103/PhysRevA.66.052710 |
34 |
Jau Y. Y. ; Kuzma N. N. ; Happer W. Phys. Rev. A 2003, 67, 022720.
doi: 10.1103/PhysRevA.67.022720 |
35 |
Colegrove F. D. ; Schearer L. D. ; Walters G. K. Phys. Rev. 1963, 132, 2561.
doi: 10.1103/PhysRev.132.2561 |
36 |
Greenhow R. C. Phys. Rev. 1964, 136, A660.
doi: 10.1103/PhysRev.136.A660 |
37 |
Walters G. K. ; Colegrove F. D. ; Schearer L. D. Phys. Rev. Lett. 1962, 8, 439.
doi: 10.1103/PhysRevLett.8.439 |
38 |
Courtade E. ; Marion F. ; Nacher P. J. ; Tastevin G. ; Kiersnowski K. ; Dohnalik T. Eur. Phys. J. D 2002, 21, 25.
doi: 10.1140/epjd/e2002-00176-1 |
39 |
Barrett S. E. ; Tycko R. ; Pfeiffer L. N. ; West K. W. Phys. Rev. Lett. 1994, 72, 1368.
doi: 10.1103/PhysRevLett.72.1368 |
40 |
Hayes S. E. ; Mui S. ; Ramaswamy K. J. Chem. Phys. 2008, 128, 052203.
doi: 10.1063/1.2823131 |
41 |
Zhao X. ; Sun X. ; Yuan Y. ; Shi L. ; Ye C. ; Zhou X. Chin. J. Magn. Reson. 2016, 33, 458.
doi: 10.11938/cjmr20160311 |
42 |
Batz M. ; Nacher P. J. ; Tastevin G. J. Phys. Conf. Ser. 2011, 294, 012002.
doi: 10.1088/1742-6596/294/1/012002 |
43 |
Driehuys B. ; Möller H. E. ; Cleveland Z. I. ; Pollaro J. ; Hedlund L. W. Radiology 2009, 252, 386.
doi: 10.1148/radiol.2522081550 |
44 |
Lauterbur P. C. Nature 1973, 242, 190.
doi: 10.1038/242190a0 |
45 |
Albert M. S. ; Cates G. D. ; Driehuys B. ; Happer W. ; Saam B. ; Springer C. S. ; Wishnia A. Nature 1994, 370, 199.
doi: 10.1038/370199a0 |
46 | Mugler, J. P., 3rd; Altes, T. A. J. Magn. Reson. Imaging 2013, 37, 313. doi: 10.1002/jmri.23844 |
47 |
Fain S. ; Schiebler M. L. ; McCormack D. G. ; Parraga G. J. Magn. Reson. Imaging 2010, 32, 1398.
doi: 10.1002/jmri.22375 |
48 |
Ruan W. ; Zhong J. ; Han Y. ; Sun X. ; Ye C. ; Zhou X. Chin. J. Magn. Reson. 2015, 32, 261.
doi: 10.11938/cjmr20150209 |
49 |
Li H. ; Zhang Z. ; Zhong J. ; Ruan W. ; Han Y. ; Sun X. ; Ye C. ; Zhou X. NMR Biomed. 2016, 29, 220.
doi: 10.1002/nbm.3465 |
50 |
Pavlovskaya G. E. ; Cleveland Z. I. ; Stupic K. F. ; Basaraba R. J. ; Meersmann T. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 18275.
doi: 10.1073/pnas.0509419102 |
51 |
Zhang W. ; Ratcliffe C. I. ; Moudrakovski I. L. ; Mou C. Y. ; Ripmeester J. A. Anal. Chem. 2005, 77, 3379.
doi: 10.1021/ac050076j |
52 |
Weiland E. ; Springuel-Huet M. A. ; Nossov A. ; Gédéon A. Microporous Mesoporous Mater. 2016, 225, 41.
doi: 10.1016/j.micromeso.2015.11.025 |
53 |
Bonardet J. L. ; Fraissard J. ; Gédéon A. ; Springuel-Huet M. A. Catal. Rev. Sci. Eng. 1999, 41, 115.
doi: 10.1080/01614949909353779 |
54 | Kalevich V. ; Korenev V. ; Fedorova O. JETP Lett. 1990, 52, 349. |
55 |
Krapf M. ; Denninger G. ; Pascher H. ; Weimann G. ; Schlapp W. Solid State Commun. 1991, 78, 459.
doi: 10.1016/0038-1098(91)90704-Y |
56 |
Maier G. ; Haeberlen U. ; Wolf H. C. ; Hausser K. H. Phys. Lett. A 1967, 25, 384.
doi: 10.1016/0375-9601(67)90712-8 |
57 | Hausser, K. H.; Wolf, H. C., Optical Spin Polarization in Molecular Crystals. In Advances in Magnetic and Optical Resonance, Waugh, J. S. Ed. Academic Press: San Diego, 1976; Vol. 8, p. 85. |
58 |
Suter D. ; Jelezko F. Prog. Nucl. Magn. Reson. Spectrosc. 2017, 98-99, 50.
doi: 10.1016/j.pnmrs.2016.12.001 |
59 |
Jelezko F. ; Gaebel T. ; Popa I. ; Gruber A. ; Wrachtrup J. Phys. Rev. Lett. 2004, 92, 076401.
doi: 10.1103/PhysRevLett.92.076401 |
60 |
Wu Y. ; Jelezko F. ; Plenio M. B. ; Weil T. Angew. Chem. Int. Ed. 2016, 55, 6586.
doi: 10.1002/anie.201506556 |
61 |
Jacques V. ; Neumann P. ; Beck J. ; Markham M. ; Twitchen D. ; Meijer J. ; Kaiser F. ; Balasubramanian G. ; Jelezko F. ; Wrachtrup J. Phys. Rev. Lett. 2009, 102, 057403.
doi: 10.1103/PhysRevLett.102.057403 |
62 |
Wang H. J. ; Shin C. S. ; Avalos C. E. ; Seltzer S. J. ; Budker D. ; Pines A. ; Bajaj V. S. Nat. Commun. 2013, 4, 1940.
doi: 10.1038/ncomms2930 |
63 |
Cai J. ; Jelezko F. ; Plenio M. B. ; Retzker A. New J. Phys. 2013, 15, 013020.
doi: 10.1088/1367-2630/15/1/013020 |
64 |
Fischer R. ; Bretschneider C. O. ; London P. ; Budker D. ; Gershoni D. ; Frydman L. Phys. Rev. Lett. 2013, 111, 057601.
doi: 10.1103/PhysRevLett.111.057601 |
65 |
Zhang Z. ; He Y. ; Huang C. ; Liu C. ; Feng J. Chin. J. Magn. Reson. 2017, 34, 231.
doi: 10.11938/cjmr20170213 |
66 |
Álvarez G. A. ; Bretschneider C. O. ; Fischer R. ; London P. ; Kanda H. ; Onoda S. ; Isoya J. ; Gershoni D. ; Frydman L. Nat. Commun. 2015, 6, 8456.
doi: 10.1038/ncomms9456 |
67 |
Scheuer J. ; Schwartz I. ; Chen Q. ; Schulze-Sünninghausen D. ; Carl P. ; Höfer P. ; Retzker A. ; Sumiya H. ; Isoya J. ; Luy B. ; et al New J. Phys. 2016, 18, 013040.
doi: 10.1088/1367-2630/18/1/013040 |
68 |
Childress L. ; Gurudev Dutt M. V. ; Taylor J. M. ; Zibrov A. S. ; Jelezko F. ; Wrachtrup J. ; Hemmer P. R. ; Lukin M. D. Science 2006, 314, 281.
doi: 10.1126/science.1131871 |
69 |
Dutt M. V. G. ; Childress L. ; Jiang L. ; Togan E. ; Maze J. ; Jelezko F. ; Zibrov A. S. ; Hemmer P. R. ; Lukin M. D. Science 2007, 316, 1312.
doi: 10.1126/science.1139831 |
70 |
London P. ; Scheuer J. ; Cai J. M. ; Schwarz I. ; Retzker A. ; Plenio M. B., Katagiri M., Teraji T., Koizumi S., Isoya J., et al. Phys. Rev. Lett. 2013, 111, 067601.
doi: 10.1103/PhysRevLett.111.067601 |
71 |
Müller C. ; Kong X. ; Cai J. M., Melentijević K., Stacey A., Markham M., Twitchen D., Isoya J., Pezzagna S., Meijer J., et al. Nat. Commun. 2014, 5, 4703.
doi: 10.1038/ncomms5703 |
72 |
Chen Q. ; Schwarz I. ; Jelezko F. ; Retzker A. ; Plenio M. B. Phys. Rev. B 2015, 92, 184420.
doi: 10.1103/PhysRevB.92.184420 |
73 |
Dutta P. ; Martinez G. V. ; Gillies R. J. J. Phys. Chem. Lett. 2014, 5, 597.
doi: 10.1021/jz402659t |
74 |
Bargon J. ; Fischer H. ; Johnsen U. Z. Naturforsch A 1967, 22, 1551.
doi: 10.1515/zna-1967-1015 |
75 |
Ward H. R. ; Lawler R. G. J. Am. Chem. Soc. 1967, 89, 5518.
doi: 10.1021/ja00997a078 |
76 |
Closs G. L. J. Am. Chem. Soc. 1969, 91, 4552.
doi: 10.1021/ja01044a043 |
77 |
Ivanov K. L. ; Pravdivtsev A. N. ; Yurkovskaya A. V. ; Vieth H. M. ; Kaptein R. Prog. Nucl. Magn. Reson. Spectrosc. 2014, 81, 1.
doi: 10.1016/j.pnmrs.2014.06.001 |
78 |
Kaptein R. ; Den Hollander J. A. J. Am. Chem. Soc. 1972, 94, 6269.
doi: 10.1021/ja00773a003 |
79 | Goez, M., Elucidating Organic Reaction Mechanisms Using Photo-Cidnp Spectroscopy. In Hyperpolarization Methods in NMR Spectroscopy, Kuhn, L. T. Ed. Springer Berlin Heidelberg: Berlin, Heidelberg, 2013; p. 1. |
80 |
Kaptein R. J. Chem. Soc. D 1971, 732.
doi: 10.1039/C29710000732 |
81 | Goez, M., Photo-Cidnp Spectroscopy. In Annual Reports on NMR Spectroscopy; Academic Press: London, 2009; Vol. 66, p. 77. |
82 |
Goez M. ; Mok K. H. ; Hore P. J. J. Magn. Reson. 2005, 177, 236.
doi: 10.1016/j.jmr.2005.06.015 |
83 |
Goez M. ; Kuprov I. ; Hun Mok K. ; Hore P. J. Mol. Phys. 2006, 104, 1675.
doi: 10.1080/00268970600634431 |
84 |
Gugger A. ; Batra R. ; Rzadek P. ; Rist G. ; Giese B. J. Am. Chem. Soc. 1997, 119, 8740.
doi: 10.1021/ja971677y |
85 |
Khan F. ; Kuprov I. ; Craggs T. D. ; Hore P. J. ; Jackson S. E. J. Am. Chem. Soc. 2006, 128, 10729.
doi: 10.1021/ja060618u |
86 |
Herbertz T. ; Roth H. D. J. Am. Chem. Soc. 1997, 119, 9574.
doi: 10.1021/ja9706209 |
87 |
Ananchenko G. ; Fischer H. J. Chem. Soc. 2001, 1887.
doi: 10.1039/B106723K |
88 |
Kothe T. ; Marque S. ; Martschke R. ; Popov M. ; Fischer H. J. Chem. Soc. 1998, 1553.
doi: 10.1039/A802773K |
89 |
Schaffner E. ; Fischer H. J. Phys. Chem. 1996, 100, 1657.
doi: 10.1021/jp951999t |
90 |
Schael F. ; Löhmannsröben H. G. Chem. Phys. 1996, 206, 193.
doi: 10.1016/0301-0104(96)00012-2 |
91 |
Goez M. ; Eckert G. Helv. Chim. Acta 2006, 89, 2183.
doi: 10.1002/hlca.200690205 |
92 |
Zysmilich M. G. ; McDermott A. J. Am. Chem. Soc. 1994, 116, 8362.
doi: 10.1021/ja00097a052 |
93 |
Thamarath S. S. ; Heberle J. ; Hore P. J. ; Kottke T. ; Matysik J. J. Am. Chem. Soc. 2010, 132, 15542.
doi: 10.1021/ja1082969 |
94 |
Thamarath S. S. ; Bode B. E. ; Prakash S. ; Sai Sankar Gupta K. B. ; Alia A. ; Jeschke G. ; Matysik J. J. Am. Chem. Soc. 2012, 134, 5921.
doi: 10.1021/ja2117377 |
95 |
Jeschke G. J. Am. Chem. Soc. 1998, 120, 4425.
doi: 10.1021/ja973744u |
96 |
Jeschke G. J. Chem. Phys. 1997, 106, 10072.
doi: 10.1063/1.474063 |
97 |
Jeschke G. ; Matysik J. Chem. Phys. 2003, 294, 239.
doi: 10.1016/S0301-0104(03)00278-7 |
98 |
McDermott A. ; Zysmilich M. n. G. ; Polenova T. Solid State Nucl. Magn. Reson. 1998, 11, 21.
doi: 10.1016/S0926-2040(97)00094-5 |
99 |
Prakash S. ; Alia ; Gast P. ; de Groot H. J. M. ; Matysik J. ; Jeschke G. J. Am. Chem. Soc. 2006, 128, 12794.
doi: 10.1021/ja0623616 |
100 |
Schulten E. A. M. ; Matysik J. ; Alia ; Kiihne S. ; Raap J. ; Lugtenburg J. ; Gast P. ; Hoff A. J. ; de Groot H. J. M. Biochemistry 2002, 41, 8708.
doi: 10.1021/bi025608u |
101 |
Alia ; Roy E. ; Gast P. ; van Gorkom H. J. ; de Groot H. J. ; Jeschke G. ; Matysik J. J. Am. Chem. Soc. 2004, 126, 12819.
doi: 10.1021/ja048051+ |
102 |
Sai Sankar Gupta K. B. Rev. Environ. Sci. Biotechnol. 2009, 8, 313.
doi: 10.1007/s11157-009-9186-7 |
103 |
Seidler P. F. ; Bryndza H. E. ; Frommer J. E. ; Stuhl L. S. ; Bergman R. G. Organometallics 1983, 2, 1701.
doi: 10.1021/om50005a045 |
104 |
Bowers C. R. ; Weitekamp D. P. Phys. Rev. Lett. 1986, 57, 2645.
doi: 10.1103/PhysRevLett.57.2645 |
105 |
Bowers C. R. ; Weitekamp D. P. J. Am. Chem. Soc. 1987, 109, 5541.
doi: 10.1021/ja00252a049 |
106 |
Eisenschmid T. C. ; Kirss R. U. ; Deutsch P. P. ; Hommeltoft S. I. ; Eisenberg R. ; Bargon J. ; Lawler R. G. ; Balch A. L. J. Am. Chem. Soc. 1987, 109, 8089.
doi: 10.1021/ja00260a026 |
107 |
Pravica M. G. ; Weitekamp D. P. Chem. Phys. Lett. 1988, 145, 255.
doi: 10.1016/0009-2614(88)80002-2 |
108 | Bowers, C. R.; Jones, D. H.; Kurur, N. D.; Labinger, J. A.; Pravica, M. G.; Weitekamp, D. P. Symmetrization Postulate and Nuclear Magnetic Resonance of Reacting Systems. In Advances in Magnetic and Optical Resonance; Warren, W. S. Ed. Academic Press: San Diego, 1990; Vol. 14, p. 269. |
109 |
Jankowiak J. T. ; Schwartz J. M. ; Barrett P. A. Adsorption 2014, 20, 173.
doi: 10.1007/s10450-013-9561-0 |
110 |
Tom B. A. ; Bhasker S. ; Miyamoto Y. ; Momose T. ; McCall B. J. Rev. Sci. Instrum. 2009, 80, 016108.
doi: 10.1063/1.3072881 |
111 |
Natterer J. ; Bargon J. Prog. Nucl. Magn. Reson. Spectrosc. 1997, 31, 293.
doi: 10.1016/S0079-6565(97)00007-1 |
112 |
Song Y. ; Liu W. ; Yao Y. Chin. J. Magn. Reson. 2015, 32, 470.
doi: 10.11938/cjmr20150308 |
113 |
Arzumanov S. S. ; Stepanov A. G. J. Phys. Chem. C 2013, 117, 2888.
doi: 10.1021/jp311345r |
114 |
Wang W. ; Hu H. ; Xu J. ; Deng F. Chin. J. Magn. Reson. 2018, 35, 269.
doi: 10.11938/cjmr20182646 |
115 |
Wang W. ; Hu H. ; Xu J. ; Wang Q. ; Qi G. ; Wang C. ; Zhao X. ; Zhou X. ; Deng F. J. Phys. Chem. C 2018, 122, 1248.
doi: 10.1021/acs.jpcc.7b11801 |
116 |
Bales L. B. ; Kovtunov K. V. ; Barskiy D. A. ; Shchepin R. V. ; Coffey A. M. ; Kovtunova L. M. ; Bukhtiyarov A. V. ; Feldman M. A. ; Bukhtiyarov V. I. ; Chekmenev E. Y., et al. J. Phys. Chem. C 2017, 121, 15304.
doi: 10.1021/acs.jpcc.7b05912 |
117 |
Shchepin R. V. ; Coffey A. M. ; Waddell K. W. ; Chekmenev E. Y. Anal. Chem. 2014, 86, 5601.
doi: 10.1021/ac500952z |
118 |
Duckett S. B. ; Mewis R. E. Acc. Chem. Res. 2012, 45, 1247.
doi: 10.1021/ar2003094 |
119 |
Gong Q. ; Gordji-Nejad A. ; Blümich B. ; Appelt S. Anal. Chem. 2010, 82, 7078.
doi: 10.1021/ac101738f |
120 |
Butler M. C. ; Kervern G. ; Theis T. ; Ledbetter M. P. ; Ganssle P. J. ; Blanchard J. W. ; Budker D. ; Pines A. J. Chem. Phys. 2013, 138, 234201.
doi: 10.1063/1.4805062 |
121 |
Tian J. ; Liu W. ; Song Y. ; Xuan Y. ; Li J. ; Yao Y. ; Wei D. Chin. J. Magn. Reson. 2015, 32, 618.
doi: 10.11938/cjmr20150407 |
[1] | Xiao-Jie WANG,Smitha Surendran THAMARATH,A. ALIA,E. BODE Bela,Jörg MATYSIK. The Solid-State Photo-CIDNP Effect [J]. Acta Phys. -Chim. Sin., 2016, 32(2): 399-404. |
[2] | ZHOU Li-Min; WANG Yi-Ping; HUANG Qun-Wu; LIU Zhi-Rong. Adsorption Properties of Cu2+, Cd2+ and Ni2+ by Modified Magnetic Chitosan Microspheres [J]. Acta Phys. -Chim. Sin., 2007, 23(12): 1979-1984. |
|