Acta Phys. -Chim. Sin. ›› 2020, Vol. 36 ›› Issue (8): 1906026.doi: 10.3866/PKU.WHXB201906026
• Article • Previous Articles Next Articles
Kunfang Tu, Guang Li, Yanxia Jiang()
Received:
2019-06-26
Accepted:
2019-07-23
Published:
2020-05-19
Contact:
Yanxia Jiang
E-mail:yxjiang@xmu.edu.cn
Supported by:
MSC2000:
Kunfang Tu, Guang Li, Yanxia Jiang. Effect of Temperature on the Electrocatalytic Oxidation of Ethanol[J].Acta Phys. -Chim. Sin., 2020, 36(8): 1906026.
Fig 2
Schematic diagram of the electrode potential temperature coefficient measuring device. WE: working electrode; RE: reference electrode; 1: constant temperature water bath; 2, 3: electrolyte; T1, T2, T3: thermometer. Th: temperature of the heating piece of temperature controlled electrode; Ts: surface temperature of the electrode."
Fig 3
(a–c) Open circuit electrode potentials (OCP) measured at different temperatures in 5 mmol?L?1 K3[Fe(CN)6] + 5 mmol?L?1 K4[Fe(CN)6] + 0.5 mol?L?1 KCl solution; (d) relationship between heating temperature (Th) and electrode surface temperature (TS). inset: the linear relationship between OCP and T."
Table 2
The various vibration frequencies of ethanol oxidation in the infrared spectrum."
Wavenumber/cm?1 | Assignment |
2341–2345 | O―C―O asymmetric stretching |
2040–2060 | linearly adsorbed COL |
1713–1723 | C―O stretching of acetaldehyde and acetic acid in solution |
1640–1650 1274–1284 | H―O―H bending coupling C―O stretching and OH deformation of acetic acid |
1 |
Chen X. B. ; Li C. ; Gratzel M. ; Kostecki R. ; Mao S. S. Chem. Soc. Rev. 2012, 41, 7909.
doi: 10.1039/C2CS35230C |
2 |
Antolini E. J. Power Sources 2007, 170, 1.
doi: 10.1016/j.jpowsour.2007.04.009 |
3 |
An L. ; Zhao T. S. ; Li Y. S. Renew. Sust. Energ. Rev 2015, 50, 1462.
doi: 10.1016/j.rser.2015.05.074 |
4 |
Yajima T. ; Uchida H. ; Watanabe M. J. T. J. Phys. Chem. B 2004, 108 (8), 2654.
doi: 10.1021/jp037215q |
5 |
Ye J. Y. ; Jiang Y. X. ; Sheng T. ; Sun S. G. Nano Energy 2016, 29, 414.
doi: 10.1016/j.nanoen.2016.06.023 |
6 |
Watanabe M. ; Sato T. ; Kunimatsu K. ; Uchida H. Electrochim. Acta 2008, 53 (23), 6928.
doi: 10.1016/j.electacta.2008.02.023 |
7 |
Wang J. Anal. Chim. Acta 1999, 396, 33.
doi: 10.1016/S0003-2670(99)00355-4 |
8 |
Zhou Z. Y. ; Wang Q. ; Lin J. L. ; Tian N. ; Sun S. G. Electrochim. Acta 2010, 55 (27), 7995.
doi: 10.1016/j.electacta.2010.02.071 |
9 |
Jenkins D. M. ; Song C. Y. ; Fares S. ; Cheng H. ; Barrettino D. Sens Actu B: Chem. 2009, 137, 222.
doi: 10.1016/j.snb.2008.09.046 |
10 |
Compton R. G. ; Coles B. A. ; Marken F. Chem. Commun 1998, 2595, 2595.
doi: 10.1039/A806511J |
11 |
Yuan Q. ; Zhou Z. Y. ; Zhuang J. ; Wang X. Chem. Mater 2010, 22, 2395.
doi: 10.1021/cm903844t |
12 |
Hitmi H. ; Belgsir E. M. ; Léger J. M. ; Lamy C. ; Lezna R. O. Electrochim. Acta 1994, 39, 407.
doi: 10.1016/0013-4686(94)80080-4 |
13 |
Rao L. ; Jiang Y. X. ; Zhang B. W. ; Cai Y. R. ; Sun S. G. Phys. Chem. Chem. Phys. 2014, 16, 13662.
doi: 10.1039/C3CP55059A |
14 |
Iwasita T. ; Pastor E. Electrochim. Acta 1994, 39, 531.
doi: 10.1016/0013-4686(94)80097-9 |
15 |
Rasch B. ; Iwasita T. Electrochim. Acta 1990, 35, 989.
doi: 10.1016/0013-4686(90)90032-U |
16 |
Colmati F. ; Tremiliosi-Filho G. ; Gonzalez E. R. ; Berná A. ; Herrero E. ; Feliu ; J M. Faraday Discuss 2008, 140, 379.
doi: 10.1039/B802160K |
17 |
Liu H. X. ; Tian N. ; Brandon M. P. ; Zhou Z. Y. ; Lin J. L. ; Hardacre C. ; Lin W. F. ; Sun S. G. ACS Catal 2012, 2, 708.
doi: 10.1021/cs200686a |
18 |
Lu G. Q. ; Sun S. G. ; Cai L. R. ; Chen S. P. ; Tian Z. W. Langmuir 2000, 16, 778.
doi: 10.1021/la990282k |
19 |
Tian N. ; Xiao J. ; Zhou Z. Y. ; Liu H. X. ; Xu B. B. ; Sun S. G. Faraday Discuss. 2013, 162, 77.
doi: 10.1039/C3FD20146E |
20 |
Ghumman A. ; Pickup P. G. J. Power Sources 2008, 179, 280.
doi: 10.1016/j.jpowsour.2007.12.071 |
21 |
Rao V. ; Cremers C. ; Stimming U. J. Eletrochem. Soc 2007, 154, 1138.
doi: 10.1149/1.2777108 |
22 |
Camara G.A. ; Iwasita T. J. Eletrochem. Soc. 2005, 578, 315.
doi: 10.1016/j.jelechem.2005.01.013 |
23 |
Severson M. W. ; Stuhlmann C. ; Villegas I. ; Weaver M. J. J. Chem Phys. 1995, 103, 9832.
doi: 10.1063/1.469950 |
24 |
Zhang B. W. ; Sheng T. ; Wang Y. X. ACS Catal. 2017, 7 (1), 892.
doi: 10.1021/acscatal.6b03021 |
25 |
Wang H. F ; Liu Z. P. J. Am. Chem. Soc 2008, 130 (33), 10996.
doi: 10.1021/ja801648h |
[1] | Xiaohui Li, Xiaodong Li, Quanhu Sun, Jianjiang He, Ze Yang, Jinchong Xiao, Changshui Huang. Synthesis and Applications of Graphdiyne Derivatives [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2206029-0. |
[2] | Mingliang Wu, Yehui Zhang, Zhanzhao Fu, Zhiyang Lyu, Qiang Li, Jinlan Wang. Structure-Activity Relationship of Atomic-Scale Cobalt-Based N-C Catalysts in the Oxygen Evolution Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2207007-0. |
[3] | Mingjun Ma, Zhichao Feng, Xiaowei Zhang, Chaoyue Sun, Haiqing Wang, Weijia Zhou, Hong Liu. Progress in the Preparation and Application of Electrocatalysts Based on Microorganisms as Intelligent Templates [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2106003-. |
[4] | Yuke Song, Wenfu Xie, Mingfei Shao. Recent Advances in Integrated Electrode for Electrocatalytic Carbon Dioxide Reduction [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2101028-. |
[5] | Ying Liu, Xiaofang Liu, Lin Xia, Chaojie Huang, Zhaoxuan Wu, Hui Wang, Yuhan Sun. Methanol Synthesis by COx Hydrogenation over Cu/ZnO/Al2O3 Catalyst via Hydrotalcite-Like Precursors: the Role of CO in the Reactant Mixture [J]. Acta Phys. -Chim. Sin., 2022, 38(3): 2002017-. |
[6] | Yadong Du, Xiangtong Meng, Zhen Wang, Xin Zhao, Jieshan Qiu. Graphene-Based Catalysts for CO2 Electroreduction [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2101009-. |
[7] | Xiaoxiong Huang, Yingjie Ma, Linjie Zhi. Ultrathin Nitrogenated Carbon Nanosheets with Single-Atom Nickel as an Efficient Catalyst for Electrochemical CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2011050-. |
[8] | Yongxia Shi, Man Hou, Junjun Li, Li Li, Zhicheng Zhang. Cu-Based Tandem Catalysts for Electrochemical CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2206020-. |
[9] | Yuxin Chen, Lijun Wang, Zhibo Yao, Leiduan Hao, Xinyi Tan, Justus Masa, Alex W. Robertson, Zhenyu Sun. Tuning the Coordination Structure of Single Atoms and Their Interaction with the Support for Carbon Dioxide Electroreduction [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2207024-0. |
[10] | Zhengrong Li, Tao Shen, Yezhou Hu, Ke Chen, Yun Lu, Deli Wang. Progress on Ordered Intermetallic Electrocatalysts for Fuel Cells Application [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2010029-. |
[11] | Jiashun Liang, Xuan Liu, Qing Li. Principles, Strategies, and Approaches for Designing Highly Durable Platinum-based Catalysts for Proton Exchange Membrane Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2010072-. |
[12] | Zengqiang Gao, Congyong Wang, Junjun Li, Yating Zhu, Zhicheng Zhang, Wenping Hu. Conductive Metal-Organic Frameworks for Electrocatalysis:Achievements, Challenges, and Opportunities [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2010025-. |
[13] | Xueqing Gao, Shujiao Yang, Wei Zhang, Rui Cao. Biomimicking Hydrogen-Bonding Network by Ammoniated and Hydrated Manganese (Ⅱ) Phosphate for Electrocatalytic Water Oxidation [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2007031-. |
[14] | Rui Qin, Pengyan Wang, Can Lin, Fei Cao, Jinyong Zhang, Lei Chen, Shichun Mu. Transition Metal Nitrides: Activity Origin, Synthesis and Electrocatalytic Applications [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2009099-. |
[15] | Kangning Zhao, Xiao Li, Dong Su. High-Entropy Alloy Nanocatalysts for Electrocatalysis [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2009077-. |
|