Acta Phys. -Chim. Sin. ›› 2020, Vol. 36 ›› Issue (3): 1907013.doi: 10.3866/PKU.WHXB201907013
Special Issue: Photocatalyst
Previous Articles Next Articles
Received:
2019-07-01
Accepted:
2019-08-29
Published:
2019-09-02
Contact:
Zhenfeng Bian
E-mail:bianzhenfeng@shnu.edu.cn
Supported by:
MSC2000:
Zhenmin Xu, Zhenfeng Bian. Photocatalytic Methane Conversion[J].Acta Phys. -Chim. Sin., 2020, 36(3): 1907013.
Fig 6
(a) Methane conversion rate, hydrogen production rate and ethane selectivity obtained for the NOCM reaction catalyzed by different photocatalysts 64; (b) methane conversion and product distribution obtained in the NOCM reaction catalyzed by different photocatalysts 65. Adapted with permission from Wiley-VCH."
Fig 7
(a) Methane conversion and the corresponding selectivity towards ethane obtained in the photodriven NOCM reaction over various samples and (b) the ethane, propane, and hydrogen yields and the corresponding methane conversion from the photodriven NOCM reaction over Pt/HGTS (2%); (c) the proposed molecular mechanism of the photocatalytic NOCM reaction 13. Adapted with permission from American Chemical Society."
1 |
Xiao G. ; Guan F. ; Gang L. ; Hao M. ; Hong F. ; Liang Y. ; Chao M. ; Xing W. ; De D. ; Ming W. ; et al Science 2014, 334, 616.
doi: 10.1126/science.1253150 |
2 |
Golisz S. R. ; Brent G. T. ; Goddard W. A. ; Groves J. T. ; Periana R. A. Catal. Lett. 2010, 141, 213.
doi: 10.1007/s10562-010-0499-5 |
3 |
Patrick G. ; Michel P. Appl. Catal. B: Environ. 2002, 39, 1.
doi: 10.1016/S0926-3373(02)00076-0 |
4 |
Cullis C. F. ; Willatt B. M. J. Cat. 1983, 83, 267.
doi: 10.1016/0021-9517(83)90054-4 |
5 |
Andrey J. Z. ; Jackie Y. Y. Nature 2000, 43, 6765.
doi: 10.1038/47450 |
6 |
Tao F. F. ; Shan J. J. ; Nguyen L. ; Wang Z. ; Zhang S. ; Zhang L. ; Wu Z. ; Huang W. ; Zeng S. ; Hu P. Nat. Commun. 2015, 6, 7798.
doi: 10.1038/ncomms8798 |
7 |
Wang H. ; Chen C. ; Zhang Y. ; Peng L. ; Ma S. ; Yang T. ; Guo H. ; Zhang Z. ; Su D. S. ; Zhang J. Nat. Commun. 2015, 6, 7181.
doi: 10.1038/ncomms8181 |
8 |
Cargnello M. ; Delgado J. J. ; Hernandez J. C. ; Bakhmutsky K. ; Montini T. ; Calvino J. J. ; Gorte R. J. ; Fornasiero P. Science 2012, 337, 713.
doi: 10.1126/science.1222887 |
9 |
Narsimhan K. ; Iyoki K. ; Dinh K. ; Roman L. Y. ACS Cent. Sci. 2016, 2, 424.
doi: 10.1021/acscentsci.6b00139 |
10 |
Baek J. ; Rung B. ; Pei X. ; Park M. ; Fakra S. C. ; Liu Y. S. ; Matheu R. ; Alshmimri S. A. ; Alshehri S. ; Trickett C. A. ; et al J. Am. Chem. Soc. 2018, 140, 18208.
doi: 10.1021/jacs.8b11525 |
11 |
Chen X. ; Li Y. ; Pan X. ; Cortie D. ; Huang X. ; Yi Z. Nat. Commun. 2016, 7, 12273.
doi: 10.1038/ncomms12273 |
12 |
Shan J. ; Li M. ; Allard L. F. ; Lee S. ; Flytzani S. M. Nature 2017, 551, 605.
doi: 10.1038/nature24640 |
13 |
Sh Q. W. ; Xian T. ; Ju C. H. ; Wang L. ; Zhang J. L. J. Am. Chem. Soc. 2019, 141, 6592.
doi: 10.1021/jacs.8b13858 |
14 |
Ji X. ; Jin R. ; Li A. ; Bi Y. ; Ruan Q. ; Deng Y. ; Zhang Y. ; Yao S. ; Sankar G. ; Ma D. ; Tang J. Nat. Catal. 2018, 1, 889.
doi: 10.1038/s41929-018-0170-x |
15 |
Hansan L. ; Chao S. ; Lei Z. ; Jiu Z. ; Hai W. ; Wilkinson D. P. J. Power Sources 2006, 155, 95.
doi: 10.1016/j.jpowsour.2006.01.030 |
16 |
Nishth A. ; Simon J. F. ; Rebecca U. M. ; Sultan M. A. ; Nikolaos D. ; Qian H. ; David J. M. ; Robert L. J. ; David J. W. ; Stuart H. T. ; et al Science 2017, 358, 223.
doi: 10.1126/science |
17 |
Newton M. A. ; Knorpp A. J. ; Pinar A. B. ; Sushkevich V. L. ; Palagin D. ; Bokhoven J. A. J. Am. Chem. Soc. 2018, 140, 10090.
doi: 10.1021/jacs.8b05139 |
18 |
Vanelderen P. ; Snyder B. E. ; Tsai M. L. ; Hadt R. G. ; Van J. ; Coussens O. ; Schoonheydt R. A. ; Sels B. F. ; Solomon E. I. J. Am. Chem. Soc. 2015, 137, 6383.
doi: 10.1021/jacs.5b02817 |
19 |
Snyder B. E. ; Vanelderen P. ; Bols M. L. ; Hallaert S. D. ; Bottger L. H. ; Ungur L. ; Pierloot K. ; Schoonheydt R. A. ; Sels B. F. ; Solomon E. I. Nature 2016, 536, 317.
doi: 10.1038/nature19059 |
20 |
Michael M. ; Thomas S. ; Wolf A. H. Angew. Chem. Int. Ed. 2002, 41, 1475.
doi: 10.1002/1521-3773 |
21 |
Vitaly L. S. ; Dennis P. ; Marco R. ; Jeroen A. B. Science 2017, 356, 523.
doi: 10.1126/science.aam9035 |
22 |
Huang W. ; Zhang S. ; Tang Y. ; Li Y. ; Nguyen L. ; Li Y. ; Shan J. ; Xiao D. ; Gagne R. ; Anatoly I. F. ; et al Angew. Chem. Int. Ed. 2016, 55, 13441.
doi: 10.1002/anie.201604708 |
23 |
Zimmermann T. ; Soorholtz M. ; Bilke M. ; Schuth F. J. Am. Chem. Soc. 2016, 138, 12395.
doi: 10.1021/jacs.6b05167 |
24 |
Rahim M. H. ; Armstrong R. D. ; Hammond C. ; Dimitratos N. ; Freakley S. J. ; Forde M. M. ; Morgan D. J. ; Lalev G. ; Jenkins R. L. ; Lopez J. A. ; et al Catal. Sci. Technol. 2016, 6, 3410.
doi: 10.1039/c5cy01586c |
25 |
Liu C. ; Mou C. Y. ; Yu S. F. ; Chan S. I. Energy Environ. Sci. 2016, 9, 1361.
doi: 10.1039/c5ee03372a |
26 |
Grundner S. ; Markovits M. A. ; Li G. ; Tromp M. ; Pidko E. A. ; Hensen E. J. ; Jentys A. ; Sanchez M. ; Lercher J. A. Nat. Commun. 2015, 6, 7546.
doi: 10.1038/ncomms8546 |
27 |
Kaliaguine S. L. ; Shelomov B. N. ; Kazansky V. B. J. Catal. 1978, 55, 384.
doi: 10.1016/0021-9517(78)90225-7 |
28 |
Heactor H. L. ; Agustõan M. Catal. Lett. 2002, 83, 37.
doi: 10.1023/A:1020649313699 |
29 |
Hu Y. ; Nagai Y. ; Rahmawaty D. ; Wei C. ; Anpo M. Catal. Lett. 2008, 124, 80.
doi: 10.1007/s10562-008-9491-8: |
30 |
Richard P. N. ; Charles E. T. ; Joseph R. D. Catal. Today 1997, 33, 167.
doi: 10.1016/S0920-5861(96)00155-1 |
31 |
Villa K. ; Murcia L. S. ; Remon M. J. ; Andreu T. Appl. Catal. B: Environ. 2016, 187, 30.
doi: 10.1016/j.apcatb.2016.01.032 |
32 |
Xuan L. ; Chen G. ; Liang Y. ; Zhen J. ; Jin L. Adv. Funct. Mater. 2010, 20, 2815.
doi: 10.1002/adfm.201000792 |
33 |
Chen Y. ; Zeng D. ; Zhang K. ; Lu A. ; Wang L. ; Peng D. L. Nanoscale 2014, 6, 874.
doi: 10.1039/c3nr04558g |
34 |
Li G. ; Tang Z. Nanoscale 2014, 6, 3995.
doi: 10.1039/c3nr06787d |
35 |
Reza G. M. ; Dinh C. T. ; Beland F. ; Do T. O. Nanoscale 2015, 7, 8187.
doi: 10.1039/c4nr07224c |
36 |
Amiri O. ; Salavati N. M. ; Mir N. ; Beshkar F. ; Saadat M. ; Ansari F. Renewable Energy 2018, 125, 590.
doi: 10.1016/j.renene.2018.03.003 |
37 |
Qing Q. ; Hong Y. ; Zheng J. ; Gong L. ; Ying B. RSC Adv. 2014, 4, 59114.
doi: 10.1039/c4ra09355k |
38 |
Na T. ; Zhi Z. ; Shi S. ; Yong D. ; Zhong W. Science 2007, 316, 732.
doi: 10.1126/science.1140484 |
39 |
Hameed A. ; Ismail I. M. ; Aslam M. ; Gondal M. A. Appl. Catal. A: Gen. 2014, 470, 327.
doi: 10.1016/j.apcata.2013.10.045 |
40 |
Xiao J. D. ; Han L. ; Luo J. ; Yu S. H. ; Jiang H. L. Angew. Chem. Int. Ed. 2018, 57, 1103.
doi: 10.1002/anie.201711725 |
41 |
Wang Y. ; Suzuki H. ; Xie J. ; Tomita O. ; Martin D. J. ; Higashi M. ; Kong D. ; Abe R. ; Tang J. Chem. Rev. 2018, 118, 5201.
doi: 10.1021/acs.chemrev.7b00286 |
42 |
Guo L. ; Yang Z. ; Marcus K. ; Li Z. ; Luo B. ; Zhou L. ; Wang X. ; Du Y. ; Yang Y. J. Am. Chem. Soc. 2018, 11, 106.
doi: 10.1039/c7ee02464a: |
43 |
Qian C. ; Long C. ; Juan Q. ; Ying T. ; Yi L. ; Chao X. ; Jin N. ; Wen L. Chin. Chem. Lett. 2019, 06, 1214.
doi: 10.1016/j.cclet.2019.03.002 |
44 |
Murcia L. S. ; Bacariza M. C. ; Villa K. ; Lopes J. M. ; Morante J. R. ; Andreu T. ACS Catal. 2017, 7, 2878.
doi: 10.1021/acscatal.6b03535 |
45 |
Villa K. ; S M. L. ; Andreu T. ; Remon M. J. Appl. Catal. B: Environ. 2015, 163, 150.
doi: 10.1016/j.apcatb.2014.07.055 |
46 | Xu Z. M. ; Zheng Ru. ; Chen Y. ; Zhu J. ; Bian Z. F. Chin. J. Catal. 2019, 40, 631. |
47 |
Shi F. ; Tse M. K. ; Pohl M. M. ; Bruckner A. ; Zhang S. ; Beller M. Angew. Chem. Int. Ed. 2007, 46, 8866.
doi: 10.1002/anie.200703418 |
48 |
Wang T. ; Yang G. ; Liu J. ; Yang B. ; Ding S. ; Yan Z. ; Xiao T. Appl. Surf. Sci. 2014, 311, 314.
doi: 10.1016/j.apsusc.2014.05.060 |
49 |
Eunsung K. ; Scott G. H. Environ. Sci. Technol. 2009, 43, 1493.
doi: 10.1021/es802360f |
50 |
Qian X. ; Ren M. ; Zhu Y. ; Yue D. ; Han Y. ; Jia J. ; Zhao Y. Environ. Sci. Technol. 2017, 51, 3993.
doi: 10.1021/acs.est.6b06429 |
51 |
Hems R. F. ; Hsieh J. S. ; Slodki M. A. ; Zhou S. ; Abbatt J. P. Environ. Sci. Technol. Lett. 2017, 4, 439.
doi: 10.1021/acs.estlett.7b00381 |
52 |
Jian Z. ; Jie R. ; Yuning H. ; Zhen F. B. ; He L. J. Phys. Chem. C 2007, 111, 18965.
doi: 10.1021/jp0751108 |
53 |
Yue Z. ; Yang S. ; Ying W. ; Ji B. ; Mcpherson G. L. ; John V. T. RSC Adv. 2017, 7, 39049.
doi: 10.1039/c7ra06621j |
54 |
Isaac B. ; Maxime S. Angew. Chem. Int. Ed. 2016, 55, 12873.
doi: 10.1002/anie.201607216 |
55 |
Spannring P. ; Yazerski V. ; Bruijnincx P. C. A. ; Weckhuysen B. M. ; Klein R. J. M. Chem. Eur. J. 2013, 19, 15012.
doi: 10.1002/chem.201301371 |
56 |
Eric M. F. Science 2012, 6105, 340.
doi: 10.1126/science.1226840 |
57 |
Vasant R. C. ; Anil K. K. ; Tushar V. C. Science 1997, 275, 1286.
doi: 10.1126/science.275.5304.1286 |
58 |
Shimura K. ; Yoshida H. Catal. Surv. Asia 2014, 18, 24.
doi: 10.1007/s10563-014-9165-z |
59 |
Yuliati L. ; Itoh H. ; Yoshida H. Chem. Phy. Lett. 2008, 452, 178.
doi: 10.1016/j.cplett.2007.12.051 |
60 |
Yuko K. ; Yoshida H. ; Tadashi H. Chem. Commun. 1998, 21, 2389.
doi: 10.1039/A806825I |
61 |
Yuliati L. ; Tsubota M. ; Satsuma A. ; Itoh H. ; Yoshida H. J. Catal. 2006, 238, 214.
doi: 10.1016/j.jcat.2005.12.002 |
62 |
Yoshida H. ; Matsushita N. ; Kato Y. ; Hattori T. J. Phys. Chem. B 2003, 107, 8355.
doi: 10.1021/jp034458 |
63 |
Yuko K. ; Hisao Y. ; Atsushi S. ; Tadashi H. Microporous Mesoporous Mat. 2002, 51, 223.
doi: 10.1016/s1387-1811(02)00268-8 |
64 |
Li L. ; Li G. D. ; Yan C. ; Mu X. Y. ; Pan X. L. ; Zou X. X. ; Wang K. X. ; Chen J. S. Angew. Chem. Int. Ed. 2011, 50, 8299.
doi: 10.1002/anie.201102320 |
65 |
Li L. ; Cai Y. Y. ; Li G. D. ; Mu X. Y. ; Wang K. X. ; Chen J. S. Angew. Chem. Int. Ed. 2012, 51, 4702.
doi: 10.1002/anie.201200045 |
66 |
Wei H. ; Shou F. ; Qun L. ; Yong H. Science 1997, 277, 1287.
doi: 10.1126/science.277.5330.1287 |
67 |
Schafer S. ; Wyrzgol S. A. ; Caterino R. ; Jentys A. ; Schoell S. J. ; Haver M. ; Knop A. ; Lercher J. A. ; Sharp I. D. ; Stut M. J. Am. Chem. Soc. 2012, 134, 12528.
doi: 10.1021/ja3020132 |
68 |
Li L. ; Fan S. ; Mu X. ; Mi Z. ; Li C. J. Am. Chem. Soc. 2014, 136, 7793.
doi: 10.1021/ja5004119 |
69 |
Yu L. ; Shao Y. ; Li D. Appl. Catal. B: Environ. 2017, 204, 216.
doi: 10.1016/j.apcatb.2016.11.039 |
70 |
Chen Y. ; Zhao H. ; Liu B. ; Yang H. Appl. Catal. B: Environ. 2015, 163, 189.
doi: 10.1016/j.apcatb.2014.07.044 |
71 |
Zhang B. ; Wang Z. ; Huang B. ; Zhang X. ; Qin X. ; Li H. ; Dai Y. ; Li Y. Chem. Mater. 2016, 28, 6613.
doi: 10.1021/acs.chemmater.6b02639 |
72 |
Meng L. ; Chen Z. ; Ma Z. ; He S. ; Hou Y. ; Li H. ; Yuan R. ; Huang X. ; Wang X. ; Long J. J. Am. Chem. Soc. 2018, 11, 294.
doi: 10.1039/c7ee02951a |
73 |
Zhou Y. ; Zhang L. ; Wang W. Nat. Commun. 2019, 10, 506.
doi: 10.1038/s41467-019-08454-0 |
[1] | Yunfeng Li, Min Zhang, Liang Zhou, Sijia Yang, Zhansheng Wu, Ma Yuhua. Recent Advances in Surface-Modified g-C3N4-Based Photocatalysts for H2 Production and CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2009030-0. |
[2] | Yiwen Chen, Lingling Li, Quanlong Xu, Düren Tina, Jiajie Fan, Dekun Ma. Controllable Synthesis of g-C3N4 Inverse Opal Photocatalysts for Superior Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2009080-0. |
[3] | Xingang Fei, Haiyan Tan, Bei Cheng, Bicheng Zhu, Liuyang Zhang. 2D/2D Black Phosphorus/g-C3N4 S-Scheme Heterojunction Photocatalysts for CO2 Reduction Investigated using DFT Calculations [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2010027-0. |
[4] | Xibao Li, Jiyou Liu, Juntong Huang, Chaozheng He, Zhijun Feng, Zhi Chen, Liying Wan, Fang Deng. All Organic S-Scheme Heterojunction PDI-Ala/S-C3N4 Photocatalyst with Enhanced Photocatalytic Performance [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2010030-0. |
[5] | Dong Liu, Shengtao Chen, Renjie Li, Tianyou Peng. Review of Z-Scheme Heterojunctions for Photocatalytic Energy Conversion [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2010017-0. |
[6] | Zejian Wang, Jiajia Hong, Sue-Faye Ng, Wen Liu, Junjie Huang, Pengfei Chen, Wee-Jun Ong. Recent Progress of Perovskite Oxide in Emerging Photocatalysis Landscape: Water Splitting, CO2 Reduction, and N2 Fixation [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2011033-0. |
[7] | Jihong Zhang, Dichang Zhong, Tongbu Lu. Co(Ⅱ)-Based Molecular Complexes for Photochemical CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2021, 37(5): 2008068-0. |
[8] | Xinjiang Cui, Feng Shi. Selective Conversion of CO2 by Single-Site Catalysts [J]. Acta Phys. -Chim. Sin., 2021, 37(5): 2006080-0. |
[9] | Zuzeng Qin, Jing Wu, Bin Li, Tongming Su, Hongbing Ji. Ultrathin Layered Catalyst for Photocatalytic Reduction of CO2 [J]. Acta Phys. -Chim. Sin., 2021, 37(5): 2005027-0. |
[10] | Fanghong Qin, Ting Wan, Jiangyuan Qiu, Yihui Wang, Biyuan Xiao, Zaiyin Huang. Temperature Effects on Photocatalytic Heat Changes and Kinetics via In Situ Photocalorimetry-Fluorescence Spectroscopy [J]. Acta Physico-Chimica Sinica, 2020, 36(6): 1905087-0. |
[11] | Yiqing Wang,Shaohua Shen. Progress and Prospects of Non-Metal Doped Graphitic Carbon Nitride for Improved Photocatalytic Performances [J]. Acta Physico-Chimica Sinica, 2020, 36(3): 1905080-0. |
[12] | Jinbo Pan,Sheng Shen,Wei Zhou,Jie Tang,Hongzhi Ding,Jinbo Wang,Lang Chen,Chak-Tong Au,Shuang-Feng Yin. Recent Progress in Photocatalytic Hydrogen Evolution [J]. Acta Physico-Chimica Sinica, 2020, 36(3): 1905068-0. |
[13] | Wanjun Sun,Junqi Lin,Xiangming Liang,Junyi Yang,Baochun Ma,Yong Ding. Recent Advances in Catalysts Based on Molecular Cubanes for Visible Light-Driven Water Oxidation [J]. Acta Physico-Chimica Sinica, 2020, 36(3): 1905025-0. |
[14] | Zhiming Pan,Minghui Liu,Pingping Niu,Fangsong Guo,Xianzhi Fu,Xinchen Wang. Photocatalytic CO2 Reduction Using Ni2P Nanosheets [J]. Acta Physico-Chimica Sinica, 2020, 36(1): 1906014-0. |
[15] | Xiaoyue MU,Lu LI. Photo-Induced Activation of Methane at Room Temperature [J]. Acta Physico-Chimica Sinica, 2019, 35(9): 968-976. |
|