Acta Phys. -Chim. Sin. ›› 2020, Vol. 36 ›› Issue (3): 1907013.doi: 10.3866/PKU.WHXB201907013
Special Issue: Photocatalyst
Previous Articles Next Articles
Received:
2019-07-01
Accepted:
2019-08-29
Published:
2019-09-02
Contact:
Zhenfeng Bian
E-mail:bianzhenfeng@shnu.edu.cn
Supported by:
MSC2000:
Zhenmin Xu, Zhenfeng Bian. Photocatalytic Methane Conversion[J].Acta Phys. -Chim. Sin., 2020, 36(3): 1907013.
Fig 6
(a) Methane conversion rate, hydrogen production rate and ethane selectivity obtained for the NOCM reaction catalyzed by different photocatalysts 64; (b) methane conversion and product distribution obtained in the NOCM reaction catalyzed by different photocatalysts 65. Adapted with permission from Wiley-VCH."
Fig 7
(a) Methane conversion and the corresponding selectivity towards ethane obtained in the photodriven NOCM reaction over various samples and (b) the ethane, propane, and hydrogen yields and the corresponding methane conversion from the photodriven NOCM reaction over Pt/HGTS (2%); (c) the proposed molecular mechanism of the photocatalytic NOCM reaction 13. Adapted with permission from American Chemical Society."
1 |
Xiao G. ; Guan F. ; Gang L. ; Hao M. ; Hong F. ; Liang Y. ; Chao M. ; Xing W. ; De D. ; Ming W. ; et al Science 2014, 334, 616.
doi: 10.1126/science.1253150 |
2 |
Golisz S. R. ; Brent G. T. ; Goddard W. A. ; Groves J. T. ; Periana R. A. Catal. Lett. 2010, 141, 213.
doi: 10.1007/s10562-010-0499-5 |
3 |
Patrick G. ; Michel P. Appl. Catal. B: Environ. 2002, 39, 1.
doi: 10.1016/S0926-3373(02)00076-0 |
4 |
Cullis C. F. ; Willatt B. M. J. Cat. 1983, 83, 267.
doi: 10.1016/0021-9517(83)90054-4 |
5 |
Andrey J. Z. ; Jackie Y. Y. Nature 2000, 43, 6765.
doi: 10.1038/47450 |
6 |
Tao F. F. ; Shan J. J. ; Nguyen L. ; Wang Z. ; Zhang S. ; Zhang L. ; Wu Z. ; Huang W. ; Zeng S. ; Hu P. Nat. Commun. 2015, 6, 7798.
doi: 10.1038/ncomms8798 |
7 |
Wang H. ; Chen C. ; Zhang Y. ; Peng L. ; Ma S. ; Yang T. ; Guo H. ; Zhang Z. ; Su D. S. ; Zhang J. Nat. Commun. 2015, 6, 7181.
doi: 10.1038/ncomms8181 |
8 |
Cargnello M. ; Delgado J. J. ; Hernandez J. C. ; Bakhmutsky K. ; Montini T. ; Calvino J. J. ; Gorte R. J. ; Fornasiero P. Science 2012, 337, 713.
doi: 10.1126/science.1222887 |
9 |
Narsimhan K. ; Iyoki K. ; Dinh K. ; Roman L. Y. ACS Cent. Sci. 2016, 2, 424.
doi: 10.1021/acscentsci.6b00139 |
10 |
Baek J. ; Rung B. ; Pei X. ; Park M. ; Fakra S. C. ; Liu Y. S. ; Matheu R. ; Alshmimri S. A. ; Alshehri S. ; Trickett C. A. ; et al J. Am. Chem. Soc. 2018, 140, 18208.
doi: 10.1021/jacs.8b11525 |
11 |
Chen X. ; Li Y. ; Pan X. ; Cortie D. ; Huang X. ; Yi Z. Nat. Commun. 2016, 7, 12273.
doi: 10.1038/ncomms12273 |
12 |
Shan J. ; Li M. ; Allard L. F. ; Lee S. ; Flytzani S. M. Nature 2017, 551, 605.
doi: 10.1038/nature24640 |
13 |
Sh Q. W. ; Xian T. ; Ju C. H. ; Wang L. ; Zhang J. L. J. Am. Chem. Soc. 2019, 141, 6592.
doi: 10.1021/jacs.8b13858 |
14 |
Ji X. ; Jin R. ; Li A. ; Bi Y. ; Ruan Q. ; Deng Y. ; Zhang Y. ; Yao S. ; Sankar G. ; Ma D. ; Tang J. Nat. Catal. 2018, 1, 889.
doi: 10.1038/s41929-018-0170-x |
15 |
Hansan L. ; Chao S. ; Lei Z. ; Jiu Z. ; Hai W. ; Wilkinson D. P. J. Power Sources 2006, 155, 95.
doi: 10.1016/j.jpowsour.2006.01.030 |
16 |
Nishth A. ; Simon J. F. ; Rebecca U. M. ; Sultan M. A. ; Nikolaos D. ; Qian H. ; David J. M. ; Robert L. J. ; David J. W. ; Stuart H. T. ; et al Science 2017, 358, 223.
doi: 10.1126/science |
17 |
Newton M. A. ; Knorpp A. J. ; Pinar A. B. ; Sushkevich V. L. ; Palagin D. ; Bokhoven J. A. J. Am. Chem. Soc. 2018, 140, 10090.
doi: 10.1021/jacs.8b05139 |
18 |
Vanelderen P. ; Snyder B. E. ; Tsai M. L. ; Hadt R. G. ; Van J. ; Coussens O. ; Schoonheydt R. A. ; Sels B. F. ; Solomon E. I. J. Am. Chem. Soc. 2015, 137, 6383.
doi: 10.1021/jacs.5b02817 |
19 |
Snyder B. E. ; Vanelderen P. ; Bols M. L. ; Hallaert S. D. ; Bottger L. H. ; Ungur L. ; Pierloot K. ; Schoonheydt R. A. ; Sels B. F. ; Solomon E. I. Nature 2016, 536, 317.
doi: 10.1038/nature19059 |
20 |
Michael M. ; Thomas S. ; Wolf A. H. Angew. Chem. Int. Ed. 2002, 41, 1475.
doi: 10.1002/1521-3773 |
21 |
Vitaly L. S. ; Dennis P. ; Marco R. ; Jeroen A. B. Science 2017, 356, 523.
doi: 10.1126/science.aam9035 |
22 |
Huang W. ; Zhang S. ; Tang Y. ; Li Y. ; Nguyen L. ; Li Y. ; Shan J. ; Xiao D. ; Gagne R. ; Anatoly I. F. ; et al Angew. Chem. Int. Ed. 2016, 55, 13441.
doi: 10.1002/anie.201604708 |
23 |
Zimmermann T. ; Soorholtz M. ; Bilke M. ; Schuth F. J. Am. Chem. Soc. 2016, 138, 12395.
doi: 10.1021/jacs.6b05167 |
24 |
Rahim M. H. ; Armstrong R. D. ; Hammond C. ; Dimitratos N. ; Freakley S. J. ; Forde M. M. ; Morgan D. J. ; Lalev G. ; Jenkins R. L. ; Lopez J. A. ; et al Catal. Sci. Technol. 2016, 6, 3410.
doi: 10.1039/c5cy01586c |
25 |
Liu C. ; Mou C. Y. ; Yu S. F. ; Chan S. I. Energy Environ. Sci. 2016, 9, 1361.
doi: 10.1039/c5ee03372a |
26 |
Grundner S. ; Markovits M. A. ; Li G. ; Tromp M. ; Pidko E. A. ; Hensen E. J. ; Jentys A. ; Sanchez M. ; Lercher J. A. Nat. Commun. 2015, 6, 7546.
doi: 10.1038/ncomms8546 |
27 |
Kaliaguine S. L. ; Shelomov B. N. ; Kazansky V. B. J. Catal. 1978, 55, 384.
doi: 10.1016/0021-9517(78)90225-7 |
28 |
Heactor H. L. ; Agustõan M. Catal. Lett. 2002, 83, 37.
doi: 10.1023/A:1020649313699 |
29 |
Hu Y. ; Nagai Y. ; Rahmawaty D. ; Wei C. ; Anpo M. Catal. Lett. 2008, 124, 80.
doi: 10.1007/s10562-008-9491-8: |
30 |
Richard P. N. ; Charles E. T. ; Joseph R. D. Catal. Today 1997, 33, 167.
doi: 10.1016/S0920-5861(96)00155-1 |
31 |
Villa K. ; Murcia L. S. ; Remon M. J. ; Andreu T. Appl. Catal. B: Environ. 2016, 187, 30.
doi: 10.1016/j.apcatb.2016.01.032 |
32 |
Xuan L. ; Chen G. ; Liang Y. ; Zhen J. ; Jin L. Adv. Funct. Mater. 2010, 20, 2815.
doi: 10.1002/adfm.201000792 |
33 |
Chen Y. ; Zeng D. ; Zhang K. ; Lu A. ; Wang L. ; Peng D. L. Nanoscale 2014, 6, 874.
doi: 10.1039/c3nr04558g |
34 |
Li G. ; Tang Z. Nanoscale 2014, 6, 3995.
doi: 10.1039/c3nr06787d |
35 |
Reza G. M. ; Dinh C. T. ; Beland F. ; Do T. O. Nanoscale 2015, 7, 8187.
doi: 10.1039/c4nr07224c |
36 |
Amiri O. ; Salavati N. M. ; Mir N. ; Beshkar F. ; Saadat M. ; Ansari F. Renewable Energy 2018, 125, 590.
doi: 10.1016/j.renene.2018.03.003 |
37 |
Qing Q. ; Hong Y. ; Zheng J. ; Gong L. ; Ying B. RSC Adv. 2014, 4, 59114.
doi: 10.1039/c4ra09355k |
38 |
Na T. ; Zhi Z. ; Shi S. ; Yong D. ; Zhong W. Science 2007, 316, 732.
doi: 10.1126/science.1140484 |
39 |
Hameed A. ; Ismail I. M. ; Aslam M. ; Gondal M. A. Appl. Catal. A: Gen. 2014, 470, 327.
doi: 10.1016/j.apcata.2013.10.045 |
40 |
Xiao J. D. ; Han L. ; Luo J. ; Yu S. H. ; Jiang H. L. Angew. Chem. Int. Ed. 2018, 57, 1103.
doi: 10.1002/anie.201711725 |
41 |
Wang Y. ; Suzuki H. ; Xie J. ; Tomita O. ; Martin D. J. ; Higashi M. ; Kong D. ; Abe R. ; Tang J. Chem. Rev. 2018, 118, 5201.
doi: 10.1021/acs.chemrev.7b00286 |
42 |
Guo L. ; Yang Z. ; Marcus K. ; Li Z. ; Luo B. ; Zhou L. ; Wang X. ; Du Y. ; Yang Y. J. Am. Chem. Soc. 2018, 11, 106.
doi: 10.1039/c7ee02464a: |
43 |
Qian C. ; Long C. ; Juan Q. ; Ying T. ; Yi L. ; Chao X. ; Jin N. ; Wen L. Chin. Chem. Lett. 2019, 06, 1214.
doi: 10.1016/j.cclet.2019.03.002 |
44 |
Murcia L. S. ; Bacariza M. C. ; Villa K. ; Lopes J. M. ; Morante J. R. ; Andreu T. ACS Catal. 2017, 7, 2878.
doi: 10.1021/acscatal.6b03535 |
45 |
Villa K. ; S M. L. ; Andreu T. ; Remon M. J. Appl. Catal. B: Environ. 2015, 163, 150.
doi: 10.1016/j.apcatb.2014.07.055 |
46 | Xu Z. M. ; Zheng Ru. ; Chen Y. ; Zhu J. ; Bian Z. F. Chin. J. Catal. 2019, 40, 631. |
47 |
Shi F. ; Tse M. K. ; Pohl M. M. ; Bruckner A. ; Zhang S. ; Beller M. Angew. Chem. Int. Ed. 2007, 46, 8866.
doi: 10.1002/anie.200703418 |
48 |
Wang T. ; Yang G. ; Liu J. ; Yang B. ; Ding S. ; Yan Z. ; Xiao T. Appl. Surf. Sci. 2014, 311, 314.
doi: 10.1016/j.apsusc.2014.05.060 |
49 |
Eunsung K. ; Scott G. H. Environ. Sci. Technol. 2009, 43, 1493.
doi: 10.1021/es802360f |
50 |
Qian X. ; Ren M. ; Zhu Y. ; Yue D. ; Han Y. ; Jia J. ; Zhao Y. Environ. Sci. Technol. 2017, 51, 3993.
doi: 10.1021/acs.est.6b06429 |
51 |
Hems R. F. ; Hsieh J. S. ; Slodki M. A. ; Zhou S. ; Abbatt J. P. Environ. Sci. Technol. Lett. 2017, 4, 439.
doi: 10.1021/acs.estlett.7b00381 |
52 |
Jian Z. ; Jie R. ; Yuning H. ; Zhen F. B. ; He L. J. Phys. Chem. C 2007, 111, 18965.
doi: 10.1021/jp0751108 |
53 |
Yue Z. ; Yang S. ; Ying W. ; Ji B. ; Mcpherson G. L. ; John V. T. RSC Adv. 2017, 7, 39049.
doi: 10.1039/c7ra06621j |
54 |
Isaac B. ; Maxime S. Angew. Chem. Int. Ed. 2016, 55, 12873.
doi: 10.1002/anie.201607216 |
55 |
Spannring P. ; Yazerski V. ; Bruijnincx P. C. A. ; Weckhuysen B. M. ; Klein R. J. M. Chem. Eur. J. 2013, 19, 15012.
doi: 10.1002/chem.201301371 |
56 |
Eric M. F. Science 2012, 6105, 340.
doi: 10.1126/science.1226840 |
57 |
Vasant R. C. ; Anil K. K. ; Tushar V. C. Science 1997, 275, 1286.
doi: 10.1126/science.275.5304.1286 |
58 |
Shimura K. ; Yoshida H. Catal. Surv. Asia 2014, 18, 24.
doi: 10.1007/s10563-014-9165-z |
59 |
Yuliati L. ; Itoh H. ; Yoshida H. Chem. Phy. Lett. 2008, 452, 178.
doi: 10.1016/j.cplett.2007.12.051 |
60 |
Yuko K. ; Yoshida H. ; Tadashi H. Chem. Commun. 1998, 21, 2389.
doi: 10.1039/A806825I |
61 |
Yuliati L. ; Tsubota M. ; Satsuma A. ; Itoh H. ; Yoshida H. J. Catal. 2006, 238, 214.
doi: 10.1016/j.jcat.2005.12.002 |
62 |
Yoshida H. ; Matsushita N. ; Kato Y. ; Hattori T. J. Phys. Chem. B 2003, 107, 8355.
doi: 10.1021/jp034458 |
63 |
Yuko K. ; Hisao Y. ; Atsushi S. ; Tadashi H. Microporous Mesoporous Mat. 2002, 51, 223.
doi: 10.1016/s1387-1811(02)00268-8 |
64 |
Li L. ; Li G. D. ; Yan C. ; Mu X. Y. ; Pan X. L. ; Zou X. X. ; Wang K. X. ; Chen J. S. Angew. Chem. Int. Ed. 2011, 50, 8299.
doi: 10.1002/anie.201102320 |
65 |
Li L. ; Cai Y. Y. ; Li G. D. ; Mu X. Y. ; Wang K. X. ; Chen J. S. Angew. Chem. Int. Ed. 2012, 51, 4702.
doi: 10.1002/anie.201200045 |
66 |
Wei H. ; Shou F. ; Qun L. ; Yong H. Science 1997, 277, 1287.
doi: 10.1126/science.277.5330.1287 |
67 |
Schafer S. ; Wyrzgol S. A. ; Caterino R. ; Jentys A. ; Schoell S. J. ; Haver M. ; Knop A. ; Lercher J. A. ; Sharp I. D. ; Stut M. J. Am. Chem. Soc. 2012, 134, 12528.
doi: 10.1021/ja3020132 |
68 |
Li L. ; Fan S. ; Mu X. ; Mi Z. ; Li C. J. Am. Chem. Soc. 2014, 136, 7793.
doi: 10.1021/ja5004119 |
69 |
Yu L. ; Shao Y. ; Li D. Appl. Catal. B: Environ. 2017, 204, 216.
doi: 10.1016/j.apcatb.2016.11.039 |
70 |
Chen Y. ; Zhao H. ; Liu B. ; Yang H. Appl. Catal. B: Environ. 2015, 163, 189.
doi: 10.1016/j.apcatb.2014.07.044 |
71 |
Zhang B. ; Wang Z. ; Huang B. ; Zhang X. ; Qin X. ; Li H. ; Dai Y. ; Li Y. Chem. Mater. 2016, 28, 6613.
doi: 10.1021/acs.chemmater.6b02639 |
72 |
Meng L. ; Chen Z. ; Ma Z. ; He S. ; Hou Y. ; Li H. ; Yuan R. ; Huang X. ; Wang X. ; Long J. J. Am. Chem. Soc. 2018, 11, 294.
doi: 10.1039/c7ee02951a |
73 |
Zhou Y. ; Zhang L. ; Wang W. Nat. Commun. 2019, 10, 506.
doi: 10.1038/s41467-019-08454-0 |
[1] | Zhuang Xiong, Yidong Hou, Rusheng Yuan, Zhengxin Ding, Wee-Jun Ong, Sibo Wang. Hollow NiCo2S4 Nanospheres as a Cocatalyst to Support ZnIn2S4 Nanosheets for Visible-Light-Driven Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2111021-. |
[2] | Liang Zhou, Yunfeng Li, Yongkang Zhang, Liewei Qiu, Yan Xing. A 0D/2D Bi4V2O11/g-C3N4 S-Scheme Heterojunction with Rapid Interfacial Charges Migration for Photocatalytic Antibiotic Degradation [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2112027-. |
[3] | Wenliang Wang, Haochun Zhang, Yigang Chen, Haifeng Shi. Efficient Degradation of Tetracycline via Coupling of Photocatalysis and Photo-Fenton Processes over a 2D/2D α-Fe2O3/g-C3N4 S-Scheme Heterojunction Catalyst [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2201008-. |
[4] | Hongying Li, Haiming Gong, Zhiliang Jin. In2O3-Modified Three-Dimensional Nanoflower MoSx Form S-scheme Heterojunction for Efficient Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2022, 38(12): 2201037-. |
[5] | Kelin He, Rongchen Shen, Lei Hao, Youji Li, Peng Zhang, Jizhou Jiang, Xin Li. Advances in Nanostructured Silicon Carbide Photocatalysts [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2201021-. |
[6] | Kaining Li, Mengxi Zhang, Xiaoyu Ou, Ruina Li, Qin Li, Jiajie Fan, Kangle Lv. Strategies for the Fabrication of 2D Carbon Nitride Nanosheets [J]. Acta Phys. -Chim. Sin., 2021, 37(8): 2008010-. |
[7] | Han Li, Fang Li, Jiaguo Yu, Shaowen Cao. 2D/2D FeNi-LDH/g-C3N4 Hybrid Photocatalyst for Enhanced CO2 Photoreduction [J]. Acta Phys. -Chim. Sin., 2021, 37(8): 2010073-. |
[8] | Wei Wang, Yu Huang, Zhenyu Wang. Defect Engineering in Two-Dimensional Graphitic Carbon Nitride and Application to Photocatalytic Air Purification [J]. Acta Phys. -Chim. Sin., 2021, 37(8): 2011073-. |
[9] | Yiwen Chen, Lingling Li, Quanlong Xu, Düren Tina, Jiajie Fan, Dekun Ma. Controllable Synthesis of g-C3N4 Inverse Opal Photocatalysts for Superior Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2009080-. |
[10] | Zejian Wang, Jiajia Hong, Sue-Faye Ng, Wen Liu, Junjie Huang, Pengfei Chen, Wee-Jun Ong. Recent Progress of Perovskite Oxide in Emerging Photocatalysis Landscape: Water Splitting, CO2 Reduction, and N2 Fixation [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2011033-. |
[11] | Yunfeng Li, Min Zhang, Liang Zhou, Sijia Yang, Zhansheng Wu, Ma Yuhua. Recent Advances in Surface-Modified g-C3N4-Based Photocatalysts for H2 Production and CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2009030-. |
[12] | Xibao Li, Jiyou Liu, Juntong Huang, Chaozheng He, Zhijun Feng, Zhi Chen, Liying Wan, Fang Deng. All Organic S-Scheme Heterojunction PDI-Ala/S-C3N4 Photocatalyst with Enhanced Photocatalytic Performance [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2010030-. |
[13] | Dong Liu, Shengtao Chen, Renjie Li, Tianyou Peng. Review of Z-Scheme Heterojunctions for Photocatalytic Energy Conversion [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2010017-. |
[14] | Xingang Fei, Haiyan Tan, Bei Cheng, Bicheng Zhu, Liuyang Zhang. 2D/2D Black Phosphorus/g-C3N4 S-Scheme Heterojunction Photocatalysts for CO2 Reduction Investigated using DFT Calculations [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2010027-. |
[15] | Zuzeng Qin, Jing Wu, Bin Li, Tongming Su, Hongbing Ji. Ultrathin Layered Catalyst for Photocatalytic Reduction of CO2 [J]. Acta Phys. -Chim. Sin., 2021, 37(5): 2005027-. |
|