Acta Physico-Chimica Sinica ›› 2020, Vol. 36 ›› Issue (1): 1907021.doi: 10.3866/PKU.WHXB201907021
Special Issue: Special Issue in Honor of Academician Youqi Tang on the Occasion of His 100th Birthday
• Review • Previous Articles Next Articles
Shuchen Zhang,Na Zhang,Jin Zhang*()
Received:
2019-07-04
Accepted:
2019-08-01
Published:
2019-08-29
Contact:
Jin Zhang
E-mail:jinzhang@pku.edu.cn
Supported by:
MSC2000:
Shuchen Zhang,Na Zhang,Jin Zhang. Controlled Synthesis of Carbon Nanotubes: Past, Present and Future[J].Acta Physico-Chimica Sinica, 2020, 36(1): 1907021.
Fig 3
Structure controlled growth of CNTs using catalysts. (a) relationship between catalysts and CNTs; (b) lifetime of catalysts for length of CNTs 25; (c) size of catalysts for diameter of CNTs 24 (Adapted from American Chemical Society); (d) state of catalysts for chirality of catalysts 58 (Adapted from Oxford University Press); (e) structure matching 53 and (f) symmetry matching 27; (g) screw dislocation growth mechanism for CNTs 59; (h) kinetic growth mode on solid catalysts 60"
Fig 5
Progress in CNTs solution separated method: (a) general process to realize CNTs separation; (b) commercial CNTs solution with single chirality; (c) comparison on different separation methods; (d) comparison on different molecular; (e) separation methods developed by amplifying difference between CNTs; (f) different molecular design to separate CNTs."
Fig 6
Different CNTs aggregates. (a) Horizontal CNTs array using "Trojan" catalyst 38 (Adapted from Springer Nature); (b) CNTs vertical array (top) 39 and super-aligned CNTs array to fabricate fibers (bottom) 68 (Adapted from American Chemical Society); (c) CNTs film with different colors 69 (Adapted from American Chemical Society); (d) CNT sponges (top) 70 (Adapted from American Chemical Society) and aerogels (bottom) 71 (Adapted from American Chemical Society)."
Fig 8
Different characterizations for CNTs. (a) STM 79 (Adapted from Springer Nature); (b) TEM 80 (Adapted from Springer Nature); (c) UV-Vis absorption spectra 63 (Adapted from Science); (d) Fluorescence spectra 81 (Adapted from Science); (e) Resonance Raman spectra and Katarua-plot 82 (Adapted from Wiley); (f) Resonance Rayleigh scattering spectra 83 (Adapted from American Chemical Society)."
Fig 9
Exploration on CNTs killer applications. (a) Different kinds of commercial CNTs products for different applications; (b) Journal publications in Web of Science according to the key words "carbon nanotubes, applications" and "carbon nanotubes, growth", respectively. (c) FET for integrated circuit (left) 8 (Adapted from Science) and TFTs (right) 40 (Adapted from Springer Nature)."
1 |
Iijima S. Nature 1991, 354, 56.
doi: 10.1038/354056a0 |
2 |
Peng B. ; Locascio M. ; Zapol P. ; Li S. ; Mielke S. L. ; Schatz G. C. ; Espinosa H. D. Nat. Nanotechnol. 2008, 3, 626.
doi: 10.1038/nnano.2008.211 |
3 |
Jin S. H. ; Dunham S. N. ; Song J. ; Xie X. ; Kim J. H. ; Lu C. ; Islam A. ; Du F. ; Kim J. ; Felts J. ; et al A. Nat. Nanotechnol. 2013, 8, 347.
doi: 10.1038/nnano.2013.56 |
4 |
Gong K. ; Du F. ; Xia Z. ; Durstock M. ; Dai L Science 2009, 323, 760.
doi: 10.1126/science.1168049 |
5 |
Baughman R. H. ; Zakhidov A. A. ; de Heer W. A Science 2002, 297, 787.
doi: 10.1126/science.1060928 |
6 |
Chou T. W. ; Gao L. ; Thostenson E. T. ; Zhang Z. ; Byun J. H Compos. Sci. Technol. 2010, 70, 1.
doi: 10.1016/j.compscitech.2009.10.004 |
7 |
De Volder M. F. L. ; Tawfick S. H. ; Baughman R. H. ; Hart A. J Science 2013, 339, 535.
doi: 10.1126/science.1222453 |
8 |
Qiu C. ; Zhang Z. ; Xiao M. ; Yang Y. ; Zhong D. ; Peng L. M Science 2017, 355, 271.
doi: 10.1126/science.aaj1628 |
9 |
Appenzeller J. ; Lin Y. M. ; Knoch J. ; Avouris P Phys. Rev. Lett. 2004, 93, 196805.
doi: 10.1103/PhysRevLett.93.196805 |
10 |
Franklin A. D. ; Luisier M. ; Han S. J. ; Tulevski G. ; Breslin C. M. ; Gignac L. ; Lundstrom M. S. ; Haensch W Nano Lett. 2012, 12, 758.
doi: 10.1021/nl203701g |
11 |
An K. H. ; Kim W. S. ; Park Y. S. ; Moon J. M. ; Bae D. J. ; Lim S. C. ; Lee Y. S. ; Lee Y. H Adv. Funct. Mater. 2001, 11, 387.
doi: 10.1002/1616-3028(200110)11:5<387::AID-ADFM387>3.0.CO;2-G |
12 |
Sotowa C. ; Origi G. ; Takeuchi M. ; Nishimura Y. ; Takeuchi K. ; Jang I. Y. ; Kim Y. J. ; Hayashi T. Kim Y A., Endo M., et al. ChemSusChem 2008, 1, 911.
doi: 10.1002/cssc.200800170 |
13 |
Niu C. ; Sichel E. K. ; Hoch R. ; Moy D. ; Tennent H Appl. Phys. Lett. 1997, 70, 1480.
doi: 10.1063/1.118568 |
14 |
Kim P. ; Shi L. ; Majumdar A. ; McEuen P. L Phys. Rev. Lett. 2001, 87, 215502.
doi: 10.1103/PhysRevLett.87.215502 |
15 |
Balandin A. A. ; Ghosh S. ; Bao W. ; Calizo I. ; Teweldebrhan D. ; Miao F. ; Lau C. N Nano Lett. 2008, 8, 902.
doi: 10.1021/nl0731872 |
16 |
Franklin A. D Science 2015, 349, 6249.
doi: 10.1126/science.aab2750 |
17 |
Dresselhaus M. S. ; Dresselhaus G. ; Saito R Carbon 1995, 33, 883.
doi: 10.1016/0008-6223(95)00017-8 |
18 |
Chen Y. ; Zhang J Acc. Chem. Res. 2014, 47, 2273.
doi: 10.1021/ar400314b |
19 |
Chen Y. ; Zhang Y. ; Hu Y. ; Kang L. ; Zhang S. ; Xie H. ; Liu D. ; Zhao Q. ; Li Q. ; Zhang J Adv. Mater. 2014, 26, 5898.
doi: 10.1002/adma.201400431 |
20 |
Zhang R. ; Zhang Y. ; Wei F Acc. Chem. Res. 2017, 50, 179.
doi: 10.1021/acs.accounts.6b00430 |
21 |
Wang H. ; Yuan Y. ; Wei L. ; Goh K. ; Yu D. ; Chen Y Carbon 2015, 81, 1.
doi: 10.1016/j.carbon.2014.09.063 |
22 |
Yang F. ; Wang X. ; Li M. ; Liu X. ; Zhao X. ; Zhang D. ; Zhang Y. ; Yang J. ; Li Y Acc. Chem. Res. 2016, 49, 606.
doi: 10.1021/acs.accounts.5b00485 |
23 |
Li Y. ; Kim W. ; Zhang Y. ; Rolandi M. ; Wang D. ; Dai H. J Phys. Chem. B 2001, 105, 11424.
doi: 10.1021/jp012085b |
24 |
An L. ; Owens J. M. ; McNeil L. E. ; Liu J J. Am. Chem. Soc. 2002, 124, 13688.
doi: 10.1021/ja0274958 |
25 |
Zhang R. ; Zhang Y. ; Zhang Q. ; Xie H. ; Qian W. ; Wei F ACS Nano 2013, 7, 6156.
doi: 10.1021/nn401995z |
26 |
Kang L. ; Zhang S. ; Li Q. ; Zhang J J. Am. Chem. Soc. 2016, 138, 6727.
doi: 10.1021/jacs.6b03527 |
27 |
Zhang S. ; Kang L. ; Wang X. ; Tong L. ; Yang L. ; Wang Z. ; Qi K. ; Deng S. ; Li Q. ; Bai X. ; et al Nature 2017, 543, 234.
doi: 10.1038/nature21051 |
28 |
Moisala A. ; Nasibulin A. G. ; Brown D. P. ; Jiang H. ; Khriachtchev L. ; Kauppinen E. I Chem. Eng. Sci. 2006, 61, 4393.
doi: 10.1016/j.ces.2006.02.020 |
29 |
Zhang Q. ; Huang J. Q. ; Zhao M. Q. ; Qian W. Z. ; Wei F ChemSusChem 2011, 4, 864.
doi: 10.1002/cssc.201100177 |
30 |
Iijima S. ; Ichihashi T. Nature 1993, 363, 603.
doi: 10.1038/363603a0 |
31 |
Hayashi T. ; Kim Y. A. ; Matoba T. ; Esaka M. ; Nishimura K. ; Tsukada T. ; Endo M. ; Dresselhaus M. S. Nano Lett. 2003, 3, 887.
doi: 10.1021/nl034080r |
32 |
Zhang C. ; Bets K. ; Lee S. S. ; Sun Z. ; Mirri F. ; Colvin V. L. ; Yakobson B. I. ; Hauge R. H. ACS Nano 2012, 6, 6023.
doi: 10.1021/nn301039v |
33 |
Hou P. X. ; Li W. S. ; Zhao S. Y. ; Li G. X. ; Shi C. ; Liu C. ; Cheng H. M. ACS Nano 2014, 8, 7156.
doi: 10.1021/nn502120k |
34 |
Chen Y. ; Shen Z. ; Xu Z. ; Hu Y. ; Xu H. ; Wang S. ; Guo X. ; Zhang Y. ; Peng L. ; Ding F. ; et al Nat. Commun. 2013, 4, 2205.
doi: 10.1038/ncomms3205 |
35 |
Kang L. ; Hu Y. ; Liu L. ; Wu J. ; Zhang S. ; Zhao Q. ; Ding F. ; Li Q. ; Zhang J. Nano Lett. 2015, 15, 403.
doi: 10.1021/nl5037325 |
36 |
Zhang S. ; Tong L. ; Hu Y. ; Kang L. ; Zhang J. J. Am. Chem. Soc. 2015, 137, 8904.
doi: 10.1021/jacs.5b05384 |
37 |
Zhang Q. ; Huang J. Q. ; Qian W. Z. ; Zhang Y. Y. ; Wei F. Small 2013, 9, 1237.
doi: 10.1002/smll.201203252 |
38 |
Hu Y. ; Kang L. ; Zhao Q. ; Zhong H. ; Zhang S. ; Yang L. ; Wang Z. ; Lin J. ; Li Q. ; Zhang Z. ; et al Nat. Commun. 2015, 6, 6099.
doi: 10.1038/ncomms7099 |
39 |
Hata K. ; Futaba D. N. ; Mizuno K. ; Namai T. ; Yumura M. ; Iijima S. Science 2004, 306, 1362.
doi: 10.1126/science.1104962 |
40 |
Sun D. M. ; Timmermans M. Y. ; Tian Y. ; Nasibulin A. G. ; Kauppinen E. I. ; Kishimoto S. ; Mizutani T. ; Ohno Y. Nat. Nanotechnol. 2011, 6, 156.
doi: 10.1038/nnano.2011.1 |
41 |
Du R. ; Zhao Q. ; Zhang N. ; Zhang J. Small 2015, 11, 3263.
doi: 10.1002/smll.201403170 |
42 |
Li Y. L. ; Kinloch I. A. ; Windle A. H. Science 2004, 304, 276.
doi: 10.1126/science.1094982 |
43 |
Liu C. ; Cong H. T. ; Li F. ; Tan P. H. ; Cheng H. M. ; Lu K. ; Zhou B. L. Carbon 1999, 11, 1865.
doi: 10.1016/S0008-6223(99)00196-7 |
44 |
Guo T. ; Nikolaev P. ; Rinzler A. G. ; Tomanek D. ; Colbert D. T. ; Smalley R. E. J. Phys. Chem. 1995, 99, 10694.
doi: 10.1021/acs.energyfuels.7b03144 |
45 |
Zhang X. ; Jiang K. ; Feng C. ; Liu P. ; Zhang L. ; Kong J. ; Zhang T. ; Li Q. ; Fan S. Adv. Mater. 2006, 18, 1505.
doi: 10.1002/adma.200502528 |
46 |
Wang Y. ; Wei F. ; Luo G. ; Yu H. ; Gu G. Chem. Phys. Lett. 2002, 364, 568.
doi: 10.1016/S0009-2614(02)01384-2 |
47 |
Gui X. ; Wei J. ; Wang K. ; Cao A. ; Zhu H. ; Jia Y. ; Shu Q. ; Wu D. Adv. Mater. 2010, 22, 617.
doi: 10.1002/adma.200902986 |
48 |
Arnold M. S. ; Green A. A. ; Hulvat J. F. ; Stupp S. I. ; Hersam M. C. Nat. Nanotechnol. 2006, 1, 60.
doi: 10.1038/nnano.2006.52 |
49 |
Liu H. ; Nishide D. ; Tanaka T. ; Kataura H. Nat. Commun. 2011, 2, 309.
doi: 10.1038/ncomms1313 |
50 |
Khripin C. Y. ; Fagan J. A. ; Zheng M. J. Am. Chem. Soc. 2013, 135, 6822.
doi: 10.1021/ja402762e |
51 |
Lolli G. ; Zhang L. ; Balzano L. ; Sakulchaicharoen N. ; Tan Y. ; Resasco D. E. J. Phys. Chem. B 2006, 110, 2108.
doi: 10.1021/jp056095e |
52 |
Wang H. ; Wei L. ; Ren F. ; Wang Q. ; Pfefferle L. D. ; Haller G. L. ; Chen Y. ACS Nano 2012, 7, 614.
doi: 10.1021/nn3047633 |
53 |
Yang F. ; Wang X. ; Zhang D. ; Yang J. ; Luo D. ; Xu Z. ; Wei J. ; Wang J. Q. ; Xu Z. ; Peng F. ; et al Nature 2014, 510, 522.
doi: 10.1038/nature13434 |
54 |
Wang Z. ; Zhao Q. ; Tong L. ; Zhang J. J. Phys. Chem. C 2017, 121, 27655.
doi: 10.1021/acs.jpcc.7b06653 |
55 |
Zhou W. ; Zhan S. ; Ding L. ; Liu J. J. Am. Chem. Soc. 2012, 134, 14019.
doi: 10.1021/ja3038992 |
56 |
Zhang G. ; Qi P. ; Wang X. ; Lu Y. ; Li X. ; Tu R. ; Bangsaruntip S. ; Mann D. ; Zhang L. ; Dai H. Science 2006, 314, 974.
doi: 10.1126/science.1133781 |
57 |
Zhang S. ; Wang X. ; Yao F. ; He M. ; Lin D. ; Ma H. ; Sun Y. ; Zhao Q. ; Liu K. ; Ding F. ; et al Chem 2019, 5, 1182.
doi: 10.1016/j.chempr.2019.02.012 |
58 |
Zhang S. ; Tong L. ; Zhang J. Nat. Sci. Rev. 2017, 5, 310.
doi: 10.1093/nsr/nwx080 |
59 |
Ding F. ; Harutyunyan A. R. ; Yakobson B. I. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 2506.
doi: 10.1073/pnas.0811946106 |
60 |
Artyukhov V. I. ; Penev E. S. ; Yakobson B. I. Nat. Commun. 2014, 5, 4892.
doi: 10.1038/ncomms5892 |
61 |
Yao Y. ; Feng C. ; Zhang J. ; Liu Z. Nano Lett. 2009, 9, 1673.
doi: 10.1021/nl900207v |
62 |
Liu J. ; Wang C. ; Tu X. ; Liu B. ; Chen L. ; Zheng M. ; Zhou C. Nat. Commun. 2012, 3, 1199.
doi: 10.1038/ncomms2205 |
63 |
O'connell M. J. ; Bachilo S. M. ; Huffman C. B. ; Moore V. C. ; Strano M. S. ; Haroz E. H. ; Rialon1 K. L. ; Boul1 P. J. ; Noon W. H. ; Kittrell1 C. ; et al Science 2002, 297, 593.
doi: 10.1126/science.1072631 |
64 |
Ortiz-Acevedo A. ; Xie H. ; Zorbas V. ; Sampson W. M. ; Dalton A. B. ; Baughman R. H. ; Draper R. K. ; Musselman I. H. ; Dieckmann G. R. J. Am. Chem. Soc. 2005, 127, 9512.
doi: 10.1021/ja050507f |
65 |
Nish A. ; Hwang J. Y. ; Doig J. ; Nicholas R. J. Nat. Nanotechnol. 2007, 2, 640.
doi: 10.1038/nnano.2007.290 |
66 |
D Franklin A. D. Nature 2013, 498, 443.
doi: 10.1038/498443a |
67 |
Cao Q. ; Han S. J. ; Tulevski G. S. ; Zhu Y. ; Lu D. D. ; Haensch W. Nat. Nanotechnol. 2013, 8, 180.
doi: 10.1038/nnano.2012.257 |
68 |
Kuznetsov A. A. ; Fonseca A. F. ; Baughman R. H. ; Zakhidov A. A. ACS Nano 2011, 5, 985.
doi: 10.1021/nn102405u |
69 |
Liao Y. ; Jiang H. ; Wei N. ; Laiho P. ; Zhang Q. ; Khan S. A. ; Kauppinen E. I. J. Am. Chem. Soc. 2018, 140, 9797.
doi: 10.1021/jacs.8b05151 |
70 |
Shan C. ; Zhao W. ; Lu X. L. ; O'Brien D. J. ; Li Y. ; Cao Z. ; Suhr J. Nano Lett. 2013, 13, 5514.
doi: 10.1021/nl403109g |
71 |
Hough L. A. ; Islam M. F. ; Hammouda B. ; Yodh A. G. ; Heiney P. A. Nano Lett. 2006, 6, 313.
doi: 10.1021/nl051871f |
72 |
Kim K. H. ; Oh Y. ; Islam M. F. Adv. Funct. Mater. 2013, 23, 377.
doi: 10.1002/adfm.201201055 |
73 |
Du R. ; Wu J. ; Chen L. ; Huang H. ; Zhang X. ; Zhang J. Small 2014, 10, 1387.
doi: 10.1002/smll.201302649 |
74 |
Wei F. ; Zhang Q. ; Qian W. Z. ; Yu H. ; Wang Y. ; Luo G. H. ; Wang D. Z. Powder Technol. 2008, 183, 10.
doi: 10.1016/j.powtec.2007.11.025 |
75 |
Jia X. ; Wei F. Topics Curr. Chem. 2017, 375, 18.
doi: 10.1007/s41061-017-0102-2 |
76 |
He M. ; Magnin Y. ; Amara H. ; Jiang H. ; Cui H. ; Fossard F. ; Castan A. ; Kauppinen E. ; Loiseau A. ; Bichara C. Carbon 2017, 113, 231.
doi: 10.1016/j.carbon.2016.11.057 |
77 |
Magnin Y. ; Amara H. ; Ducastelle F. ; Loiseau A. ; Bichara C. Science 2018, 362, 212.
doi: 10.1126/science.aat6228 |
78 |
Hussain A. ; Liao Y. ; Zhang Q. ; Ding E. X. ; Laiho P. ; Ahmad S. ; Wei N. ; Tian Y. ; Jiang H. ; Kauppinen E. I. Nanoscale 2018, 10, 9752.
doi: 10.1039/C8NR00716K |
79 |
Wilder J. W. ; Venema L. C. ; Rinzler A. G. ; Smalley R. E. ; Dekker C. Nature 1998, 391, 59.
doi: 10.1038/34139 |
80 |
Hashimoto A. ; Suenaga K. ; Gloter A. ; Urita K. ; Iijima S. Nature 2004, 430, 870.
doi: 10.1038/nature02817 |
81 |
Bachilo S. M. ; Strano M. S. ; Kittrell C. ; Hauge R. H. ; Smalley R. E. ; Weisman R. B. Science 2002, 298, 2361.
doi: 10.1126/science.1078727 |
82 |
Araujo P. T. ; Jorio A. Phys. Status Solidi B 2008, 245, 2201.
doi: 10.1002/pssb.200879625 |
83 |
Joh D. Y. ; Herman L. H. ; Ju S. Y. ; Kinder J. ; Segal M. A. ; Johnson J. N. ; Chan G. ; Park J. Nano Lett. 2010, 1, 1.
doi: 10.1021/nl1012568 |
84 |
Tans S. J. ; Verschueren A. R. ; Dekker C. Nature 1998, 393, 49.
doi: 10.1038/29954 |
85 |
Appenzeller J. ; Lin Y. M. ; Knoch J. ; Avouris P. Phys. Rev. Lett. 2004, 93, 196805.
doi: 10.1103/PhysRevLett.93.196805 |
86 |
Shulaker M. M. ; Hills G. ; Patil N. ; Wei H. ; Chen H. Y. ; Wong H. S. P. ; Mitra S. Nature 2013, 501, 526.
doi: 10.1038/nature12502 |
[1] | Tian Wang, Taiyang Zhang, Yuetian Chen, Yixin Zhao. Highly Moisture Resistant 5-Aminovaleric Acid Crosslinked CH3NH3PbBr3 Perovskite Film with ALD-Al2O3 Protection [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2007021-0. |
[2] | Guiying Xu, Rongming Xue, Moyao Zhang, Yaowen Li, Yongfang Li. Synthesis of Pyrazine-based Hole Transport Layer and Its Application in p-i-n Planar Perovskite Solar Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2008050-0. |
[3] | Yawen Li, Guangren Na, Shulin Luo, Xin He, Lijun Zhang. Structural, Thermodynamical and Electronic Properties of All-Inorganic Lead Halide Perovskites [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2007015-0. |
[4] | Yumeng Zhao, Lingxiao Ren, Aoxuan Wang, Jiayan Luo. Composite Anodes for Lithium Metal Batteries [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2008090-0. |
[5] | Chen Wu, Ying Zhou, Xiaolong Zhu, Minzhi Zhan, Hanxi Yang, Jiangfeng Qian. Research Progress on High Concentration Electrolytes for Li Metal Batteries [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2008044-0. |
[6] | Yamei Yang, Huijie Lun, Lasheng Long, Xiangjian Kong, Lansun Zheng. Controlled Synthesis of Lanthanide-titanium Oxo Clusters EuTi6, EuTi7 and La2Ti14 [J]. Acta Physico-Chimica Sinica, 2020, 36(9): 1912007-0. |
[7] | Jian Zhang, Liang Wang, Zhiyi Wu, Chengtao Wang, Zerui Su, Feng-Shou Xiao. Rational Design of a Core-Shell Rh@Zeolite Catalyst for Selective Diene Hydrogenation [J]. Acta Phys. -Chim. Sin., 2020, 36(9): 1912001-0. |
[8] | Tianyi Yang, Cheng Cui, Hongpan Rong, Jiatao Zhang, Dingsheng Wang. Recent Advances in Platinum-based Intermetallic Nanocrystals: Controlled Synthesis and Electrocatalytic Applications [J]. Acta Physico-Chimica Sinica, 2020, 36(9): 2003047-0. |
[9] | Yanan Zhao, Min He, Xiaofang Liu, Bin Liu, Jianhui Yang. Self-Assembly and Structural Characterization of Au Binary Nanocrystal Superlattices [J]. Acta Physico-Chimica Sinica, 2020, 36(9): 1908041-0. |
[10] | Kaixuan Li, Tailong Zhang, Huizeng Li, Mingzhu Li, Yanlin Song. The Precise Assembly of Nanoparticles [J]. Acta Physico-Chimica Sinica, 2020, 36(9): 1911057-0. |
[11] | Hui Xiong, Xinwen Xie, Miao Wang, Yaqi Hou, Xu Hou. CVD Grown Carbon Nanotubes on Reticulated Skeleton for Brine Desalination [J]. Acta Physico-Chimica Sinica, 2020, 36(9): 1912008-0. |
[12] | Yang Ge, Xulin Mu, Yue Lu, Manling Sui. Photoinduced Degradation of Lead Halide Perovskite Thin Films in Air [J]. Acta Physico-Chimica Sinica, 2020, 36(8): 1905039-0. |
[13] | Chao Zhang, Sihan Li, Chenliang Wu, Xiaoqing Li, Xinhuan Yan. Preparation and Characterization of Pt@Au/Al2O3 Core-Shell Nanoparticles for Toluene Oxidation Reaction [J]. Acta Physico-Chimica Sinica, 2020, 36(8): 1907057-0. |
[14] | Danye Liu,Dong Chen,Hui Liu,Jun Yang. Inside-Out Migration of Noble Metals in Ag2S Nanoparticles [J]. Acta Physico-Chimica Sinica, 2020, 36(7): 1906069-0. |
[15] | Ting Zhang,Cuicui Li,Wei Wang,Zhaoqi Guo,Aimin Pang,Haixia Ma. Construction of Three-Dimensional Hematite/Graphene with Effective Catalytic Activity for the Thermal Decomposition of CL-20 [J]. Acta Physico-Chimica Sinica, 2020, 36(6): 1905048-0. |
|