Acta Physico-Chimica Sinica ›› 2020, Vol. 36 ›› Issue (1): 1907021.doi: 10.3866/PKU.WHXB201907021
Special Issue: Special Issue in Honor of Academician Youqi Tang on the Occasion of His 100th Birthday
• Review • Previous Articles Next Articles
Shuchen Zhang,Na Zhang,Jin Zhang*()
Received:
2019-07-04
Accepted:
2019-08-01
Published:
2019-08-29
Contact:
Jin Zhang
E-mail:jinzhang@pku.edu.cn
Supported by:
MSC2000:
Shuchen Zhang,Na Zhang,Jin Zhang. Controlled Synthesis of Carbon Nanotubes: Past, Present and Future[J].Acta Physico-Chimica Sinica, 2020, 36(1): 1907021.
Fig 3
Structure controlled growth of CNTs using catalysts. (a) relationship between catalysts and CNTs; (b) lifetime of catalysts for length of CNTs 25; (c) size of catalysts for diameter of CNTs 24 (Adapted from American Chemical Society); (d) state of catalysts for chirality of catalysts 58 (Adapted from Oxford University Press); (e) structure matching 53 and (f) symmetry matching 27; (g) screw dislocation growth mechanism for CNTs 59; (h) kinetic growth mode on solid catalysts 60"
Fig 5
Progress in CNTs solution separated method: (a) general process to realize CNTs separation; (b) commercial CNTs solution with single chirality; (c) comparison on different separation methods; (d) comparison on different molecular; (e) separation methods developed by amplifying difference between CNTs; (f) different molecular design to separate CNTs."
Fig 6
Different CNTs aggregates. (a) Horizontal CNTs array using "Trojan" catalyst 38 (Adapted from Springer Nature); (b) CNTs vertical array (top) 39 and super-aligned CNTs array to fabricate fibers (bottom) 68 (Adapted from American Chemical Society); (c) CNTs film with different colors 69 (Adapted from American Chemical Society); (d) CNT sponges (top) 70 (Adapted from American Chemical Society) and aerogels (bottom) 71 (Adapted from American Chemical Society)."
Fig 8
Different characterizations for CNTs. (a) STM 79 (Adapted from Springer Nature); (b) TEM 80 (Adapted from Springer Nature); (c) UV-Vis absorption spectra 63 (Adapted from Science); (d) Fluorescence spectra 81 (Adapted from Science); (e) Resonance Raman spectra and Katarua-plot 82 (Adapted from Wiley); (f) Resonance Rayleigh scattering spectra 83 (Adapted from American Chemical Society)."
Fig 9
Exploration on CNTs killer applications. (a) Different kinds of commercial CNTs products for different applications; (b) Journal publications in Web of Science according to the key words "carbon nanotubes, applications" and "carbon nanotubes, growth", respectively. (c) FET for integrated circuit (left) 8 (Adapted from Science) and TFTs (right) 40 (Adapted from Springer Nature)."
1 |
Iijima S. Nature 1991, 354, 56.
doi: 10.1038/354056a0 |
2 |
Peng B. ; Locascio M. ; Zapol P. ; Li S. ; Mielke S. L. ; Schatz G. C. ; Espinosa H. D. Nat. Nanotechnol. 2008, 3, 626.
doi: 10.1038/nnano.2008.211 |
3 |
Jin S. H. ; Dunham S. N. ; Song J. ; Xie X. ; Kim J. H. ; Lu C. ; Islam A. ; Du F. ; Kim J. ; Felts J. ; et al A. Nat. Nanotechnol. 2013, 8, 347.
doi: 10.1038/nnano.2013.56 |
4 |
Gong K. ; Du F. ; Xia Z. ; Durstock M. ; Dai L Science 2009, 323, 760.
doi: 10.1126/science.1168049 |
5 |
Baughman R. H. ; Zakhidov A. A. ; de Heer W. A Science 2002, 297, 787.
doi: 10.1126/science.1060928 |
6 |
Chou T. W. ; Gao L. ; Thostenson E. T. ; Zhang Z. ; Byun J. H Compos. Sci. Technol. 2010, 70, 1.
doi: 10.1016/j.compscitech.2009.10.004 |
7 |
De Volder M. F. L. ; Tawfick S. H. ; Baughman R. H. ; Hart A. J Science 2013, 339, 535.
doi: 10.1126/science.1222453 |
8 |
Qiu C. ; Zhang Z. ; Xiao M. ; Yang Y. ; Zhong D. ; Peng L. M Science 2017, 355, 271.
doi: 10.1126/science.aaj1628 |
9 |
Appenzeller J. ; Lin Y. M. ; Knoch J. ; Avouris P Phys. Rev. Lett. 2004, 93, 196805.
doi: 10.1103/PhysRevLett.93.196805 |
10 |
Franklin A. D. ; Luisier M. ; Han S. J. ; Tulevski G. ; Breslin C. M. ; Gignac L. ; Lundstrom M. S. ; Haensch W Nano Lett. 2012, 12, 758.
doi: 10.1021/nl203701g |
11 |
An K. H. ; Kim W. S. ; Park Y. S. ; Moon J. M. ; Bae D. J. ; Lim S. C. ; Lee Y. S. ; Lee Y. H Adv. Funct. Mater. 2001, 11, 387.
doi: 10.1002/1616-3028(200110)11:5<387::AID-ADFM387>3.0.CO;2-G |
12 |
Sotowa C. ; Origi G. ; Takeuchi M. ; Nishimura Y. ; Takeuchi K. ; Jang I. Y. ; Kim Y. J. ; Hayashi T. Kim Y A., Endo M., et al. ChemSusChem 2008, 1, 911.
doi: 10.1002/cssc.200800170 |
13 |
Niu C. ; Sichel E. K. ; Hoch R. ; Moy D. ; Tennent H Appl. Phys. Lett. 1997, 70, 1480.
doi: 10.1063/1.118568 |
14 |
Kim P. ; Shi L. ; Majumdar A. ; McEuen P. L Phys. Rev. Lett. 2001, 87, 215502.
doi: 10.1103/PhysRevLett.87.215502 |
15 |
Balandin A. A. ; Ghosh S. ; Bao W. ; Calizo I. ; Teweldebrhan D. ; Miao F. ; Lau C. N Nano Lett. 2008, 8, 902.
doi: 10.1021/nl0731872 |
16 |
Franklin A. D Science 2015, 349, 6249.
doi: 10.1126/science.aab2750 |
17 |
Dresselhaus M. S. ; Dresselhaus G. ; Saito R Carbon 1995, 33, 883.
doi: 10.1016/0008-6223(95)00017-8 |
18 |
Chen Y. ; Zhang J Acc. Chem. Res. 2014, 47, 2273.
doi: 10.1021/ar400314b |
19 |
Chen Y. ; Zhang Y. ; Hu Y. ; Kang L. ; Zhang S. ; Xie H. ; Liu D. ; Zhao Q. ; Li Q. ; Zhang J Adv. Mater. 2014, 26, 5898.
doi: 10.1002/adma.201400431 |
20 |
Zhang R. ; Zhang Y. ; Wei F Acc. Chem. Res. 2017, 50, 179.
doi: 10.1021/acs.accounts.6b00430 |
21 |
Wang H. ; Yuan Y. ; Wei L. ; Goh K. ; Yu D. ; Chen Y Carbon 2015, 81, 1.
doi: 10.1016/j.carbon.2014.09.063 |
22 |
Yang F. ; Wang X. ; Li M. ; Liu X. ; Zhao X. ; Zhang D. ; Zhang Y. ; Yang J. ; Li Y Acc. Chem. Res. 2016, 49, 606.
doi: 10.1021/acs.accounts.5b00485 |
23 |
Li Y. ; Kim W. ; Zhang Y. ; Rolandi M. ; Wang D. ; Dai H. J Phys. Chem. B 2001, 105, 11424.
doi: 10.1021/jp012085b |
24 |
An L. ; Owens J. M. ; McNeil L. E. ; Liu J J. Am. Chem. Soc. 2002, 124, 13688.
doi: 10.1021/ja0274958 |
25 |
Zhang R. ; Zhang Y. ; Zhang Q. ; Xie H. ; Qian W. ; Wei F ACS Nano 2013, 7, 6156.
doi: 10.1021/nn401995z |
26 |
Kang L. ; Zhang S. ; Li Q. ; Zhang J J. Am. Chem. Soc. 2016, 138, 6727.
doi: 10.1021/jacs.6b03527 |
27 |
Zhang S. ; Kang L. ; Wang X. ; Tong L. ; Yang L. ; Wang Z. ; Qi K. ; Deng S. ; Li Q. ; Bai X. ; et al Nature 2017, 543, 234.
doi: 10.1038/nature21051 |
28 |
Moisala A. ; Nasibulin A. G. ; Brown D. P. ; Jiang H. ; Khriachtchev L. ; Kauppinen E. I Chem. Eng. Sci. 2006, 61, 4393.
doi: 10.1016/j.ces.2006.02.020 |
29 |
Zhang Q. ; Huang J. Q. ; Zhao M. Q. ; Qian W. Z. ; Wei F ChemSusChem 2011, 4, 864.
doi: 10.1002/cssc.201100177 |
30 |
Iijima S. ; Ichihashi T. Nature 1993, 363, 603.
doi: 10.1038/363603a0 |
31 |
Hayashi T. ; Kim Y. A. ; Matoba T. ; Esaka M. ; Nishimura K. ; Tsukada T. ; Endo M. ; Dresselhaus M. S. Nano Lett. 2003, 3, 887.
doi: 10.1021/nl034080r |
32 |
Zhang C. ; Bets K. ; Lee S. S. ; Sun Z. ; Mirri F. ; Colvin V. L. ; Yakobson B. I. ; Hauge R. H. ACS Nano 2012, 6, 6023.
doi: 10.1021/nn301039v |
33 |
Hou P. X. ; Li W. S. ; Zhao S. Y. ; Li G. X. ; Shi C. ; Liu C. ; Cheng H. M. ACS Nano 2014, 8, 7156.
doi: 10.1021/nn502120k |
34 |
Chen Y. ; Shen Z. ; Xu Z. ; Hu Y. ; Xu H. ; Wang S. ; Guo X. ; Zhang Y. ; Peng L. ; Ding F. ; et al Nat. Commun. 2013, 4, 2205.
doi: 10.1038/ncomms3205 |
35 |
Kang L. ; Hu Y. ; Liu L. ; Wu J. ; Zhang S. ; Zhao Q. ; Ding F. ; Li Q. ; Zhang J. Nano Lett. 2015, 15, 403.
doi: 10.1021/nl5037325 |
36 |
Zhang S. ; Tong L. ; Hu Y. ; Kang L. ; Zhang J. J. Am. Chem. Soc. 2015, 137, 8904.
doi: 10.1021/jacs.5b05384 |
37 |
Zhang Q. ; Huang J. Q. ; Qian W. Z. ; Zhang Y. Y. ; Wei F. Small 2013, 9, 1237.
doi: 10.1002/smll.201203252 |
38 |
Hu Y. ; Kang L. ; Zhao Q. ; Zhong H. ; Zhang S. ; Yang L. ; Wang Z. ; Lin J. ; Li Q. ; Zhang Z. ; et al Nat. Commun. 2015, 6, 6099.
doi: 10.1038/ncomms7099 |
39 |
Hata K. ; Futaba D. N. ; Mizuno K. ; Namai T. ; Yumura M. ; Iijima S. Science 2004, 306, 1362.
doi: 10.1126/science.1104962 |
40 |
Sun D. M. ; Timmermans M. Y. ; Tian Y. ; Nasibulin A. G. ; Kauppinen E. I. ; Kishimoto S. ; Mizutani T. ; Ohno Y. Nat. Nanotechnol. 2011, 6, 156.
doi: 10.1038/nnano.2011.1 |
41 |
Du R. ; Zhao Q. ; Zhang N. ; Zhang J. Small 2015, 11, 3263.
doi: 10.1002/smll.201403170 |
42 |
Li Y. L. ; Kinloch I. A. ; Windle A. H. Science 2004, 304, 276.
doi: 10.1126/science.1094982 |
43 |
Liu C. ; Cong H. T. ; Li F. ; Tan P. H. ; Cheng H. M. ; Lu K. ; Zhou B. L. Carbon 1999, 11, 1865.
doi: 10.1016/S0008-6223(99)00196-7 |
44 |
Guo T. ; Nikolaev P. ; Rinzler A. G. ; Tomanek D. ; Colbert D. T. ; Smalley R. E. J. Phys. Chem. 1995, 99, 10694.
doi: 10.1021/acs.energyfuels.7b03144 |
45 |
Zhang X. ; Jiang K. ; Feng C. ; Liu P. ; Zhang L. ; Kong J. ; Zhang T. ; Li Q. ; Fan S. Adv. Mater. 2006, 18, 1505.
doi: 10.1002/adma.200502528 |
46 |
Wang Y. ; Wei F. ; Luo G. ; Yu H. ; Gu G. Chem. Phys. Lett. 2002, 364, 568.
doi: 10.1016/S0009-2614(02)01384-2 |
47 |
Gui X. ; Wei J. ; Wang K. ; Cao A. ; Zhu H. ; Jia Y. ; Shu Q. ; Wu D. Adv. Mater. 2010, 22, 617.
doi: 10.1002/adma.200902986 |
48 |
Arnold M. S. ; Green A. A. ; Hulvat J. F. ; Stupp S. I. ; Hersam M. C. Nat. Nanotechnol. 2006, 1, 60.
doi: 10.1038/nnano.2006.52 |
49 |
Liu H. ; Nishide D. ; Tanaka T. ; Kataura H. Nat. Commun. 2011, 2, 309.
doi: 10.1038/ncomms1313 |
50 |
Khripin C. Y. ; Fagan J. A. ; Zheng M. J. Am. Chem. Soc. 2013, 135, 6822.
doi: 10.1021/ja402762e |
51 |
Lolli G. ; Zhang L. ; Balzano L. ; Sakulchaicharoen N. ; Tan Y. ; Resasco D. E. J. Phys. Chem. B 2006, 110, 2108.
doi: 10.1021/jp056095e |
52 |
Wang H. ; Wei L. ; Ren F. ; Wang Q. ; Pfefferle L. D. ; Haller G. L. ; Chen Y. ACS Nano 2012, 7, 614.
doi: 10.1021/nn3047633 |
53 |
Yang F. ; Wang X. ; Zhang D. ; Yang J. ; Luo D. ; Xu Z. ; Wei J. ; Wang J. Q. ; Xu Z. ; Peng F. ; et al Nature 2014, 510, 522.
doi: 10.1038/nature13434 |
54 |
Wang Z. ; Zhao Q. ; Tong L. ; Zhang J. J. Phys. Chem. C 2017, 121, 27655.
doi: 10.1021/acs.jpcc.7b06653 |
55 |
Zhou W. ; Zhan S. ; Ding L. ; Liu J. J. Am. Chem. Soc. 2012, 134, 14019.
doi: 10.1021/ja3038992 |
56 |
Zhang G. ; Qi P. ; Wang X. ; Lu Y. ; Li X. ; Tu R. ; Bangsaruntip S. ; Mann D. ; Zhang L. ; Dai H. Science 2006, 314, 974.
doi: 10.1126/science.1133781 |
57 |
Zhang S. ; Wang X. ; Yao F. ; He M. ; Lin D. ; Ma H. ; Sun Y. ; Zhao Q. ; Liu K. ; Ding F. ; et al Chem 2019, 5, 1182.
doi: 10.1016/j.chempr.2019.02.012 |
58 |
Zhang S. ; Tong L. ; Zhang J. Nat. Sci. Rev. 2017, 5, 310.
doi: 10.1093/nsr/nwx080 |
59 |
Ding F. ; Harutyunyan A. R. ; Yakobson B. I. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 2506.
doi: 10.1073/pnas.0811946106 |
60 |
Artyukhov V. I. ; Penev E. S. ; Yakobson B. I. Nat. Commun. 2014, 5, 4892.
doi: 10.1038/ncomms5892 |
61 |
Yao Y. ; Feng C. ; Zhang J. ; Liu Z. Nano Lett. 2009, 9, 1673.
doi: 10.1021/nl900207v |
62 |
Liu J. ; Wang C. ; Tu X. ; Liu B. ; Chen L. ; Zheng M. ; Zhou C. Nat. Commun. 2012, 3, 1199.
doi: 10.1038/ncomms2205 |
63 |
O'connell M. J. ; Bachilo S. M. ; Huffman C. B. ; Moore V. C. ; Strano M. S. ; Haroz E. H. ; Rialon1 K. L. ; Boul1 P. J. ; Noon W. H. ; Kittrell1 C. ; et al Science 2002, 297, 593.
doi: 10.1126/science.1072631 |
64 |
Ortiz-Acevedo A. ; Xie H. ; Zorbas V. ; Sampson W. M. ; Dalton A. B. ; Baughman R. H. ; Draper R. K. ; Musselman I. H. ; Dieckmann G. R. J. Am. Chem. Soc. 2005, 127, 9512.
doi: 10.1021/ja050507f |
65 |
Nish A. ; Hwang J. Y. ; Doig J. ; Nicholas R. J. Nat. Nanotechnol. 2007, 2, 640.
doi: 10.1038/nnano.2007.290 |
66 |
D Franklin A. D. Nature 2013, 498, 443.
doi: 10.1038/498443a |
67 |
Cao Q. ; Han S. J. ; Tulevski G. S. ; Zhu Y. ; Lu D. D. ; Haensch W. Nat. Nanotechnol. 2013, 8, 180.
doi: 10.1038/nnano.2012.257 |
68 |
Kuznetsov A. A. ; Fonseca A. F. ; Baughman R. H. ; Zakhidov A. A. ACS Nano 2011, 5, 985.
doi: 10.1021/nn102405u |
69 |
Liao Y. ; Jiang H. ; Wei N. ; Laiho P. ; Zhang Q. ; Khan S. A. ; Kauppinen E. I. J. Am. Chem. Soc. 2018, 140, 9797.
doi: 10.1021/jacs.8b05151 |
70 |
Shan C. ; Zhao W. ; Lu X. L. ; O'Brien D. J. ; Li Y. ; Cao Z. ; Suhr J. Nano Lett. 2013, 13, 5514.
doi: 10.1021/nl403109g |
71 |
Hough L. A. ; Islam M. F. ; Hammouda B. ; Yodh A. G. ; Heiney P. A. Nano Lett. 2006, 6, 313.
doi: 10.1021/nl051871f |
72 |
Kim K. H. ; Oh Y. ; Islam M. F. Adv. Funct. Mater. 2013, 23, 377.
doi: 10.1002/adfm.201201055 |
73 |
Du R. ; Wu J. ; Chen L. ; Huang H. ; Zhang X. ; Zhang J. Small 2014, 10, 1387.
doi: 10.1002/smll.201302649 |
74 |
Wei F. ; Zhang Q. ; Qian W. Z. ; Yu H. ; Wang Y. ; Luo G. H. ; Wang D. Z. Powder Technol. 2008, 183, 10.
doi: 10.1016/j.powtec.2007.11.025 |
75 |
Jia X. ; Wei F. Topics Curr. Chem. 2017, 375, 18.
doi: 10.1007/s41061-017-0102-2 |
76 |
He M. ; Magnin Y. ; Amara H. ; Jiang H. ; Cui H. ; Fossard F. ; Castan A. ; Kauppinen E. ; Loiseau A. ; Bichara C. Carbon 2017, 113, 231.
doi: 10.1016/j.carbon.2016.11.057 |
77 |
Magnin Y. ; Amara H. ; Ducastelle F. ; Loiseau A. ; Bichara C. Science 2018, 362, 212.
doi: 10.1126/science.aat6228 |
78 |
Hussain A. ; Liao Y. ; Zhang Q. ; Ding E. X. ; Laiho P. ; Ahmad S. ; Wei N. ; Tian Y. ; Jiang H. ; Kauppinen E. I. Nanoscale 2018, 10, 9752.
doi: 10.1039/C8NR00716K |
79 |
Wilder J. W. ; Venema L. C. ; Rinzler A. G. ; Smalley R. E. ; Dekker C. Nature 1998, 391, 59.
doi: 10.1038/34139 |
80 |
Hashimoto A. ; Suenaga K. ; Gloter A. ; Urita K. ; Iijima S. Nature 2004, 430, 870.
doi: 10.1038/nature02817 |
81 |
Bachilo S. M. ; Strano M. S. ; Kittrell C. ; Hauge R. H. ; Smalley R. E. ; Weisman R. B. Science 2002, 298, 2361.
doi: 10.1126/science.1078727 |
82 |
Araujo P. T. ; Jorio A. Phys. Status Solidi B 2008, 245, 2201.
doi: 10.1002/pssb.200879625 |
83 |
Joh D. Y. ; Herman L. H. ; Ju S. Y. ; Kinder J. ; Segal M. A. ; Johnson J. N. ; Chan G. ; Park J. Nano Lett. 2010, 1, 1.
doi: 10.1021/nl1012568 |
84 |
Tans S. J. ; Verschueren A. R. ; Dekker C. Nature 1998, 393, 49.
doi: 10.1038/29954 |
85 |
Appenzeller J. ; Lin Y. M. ; Knoch J. ; Avouris P. Phys. Rev. Lett. 2004, 93, 196805.
doi: 10.1103/PhysRevLett.93.196805 |
86 |
Shulaker M. M. ; Hills G. ; Patil N. ; Wei H. ; Chen H. Y. ; Wong H. S. P. ; Mitra S. Nature 2013, 501, 526.
doi: 10.1038/nature12502 |
[1] | Mingliang Wu, Yehui Zhang, Zhanzhao Fu, Zhiyang Lyu, Qiang Li, Jinlan Wang. Structure-Activity Relationship of Atomic-Scale Cobalt-Based N-C Catalysts in the Oxygen Evolution Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2207007-0. |
[2] | Chenlu Wang, Suling Xu, Ning Ren, Jianjun Zhang. Construction, Thermochemistry, and Fluorescence Properties of Novel Lanthanide Complexes Synthesized from Halogenated Aromatic Carboxylic Acids and Nitrogen-Containing Ligands [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2206035-0. |
[3] | Yeye Wen, Ming Ren, Jiangtao Di, Jin Zhang. Application of Carbonene Materials for Artificial Muscles [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2107006-. |
[4] | Zhou Xia, Yuanlong Shao. Wet Spinning Assembled Graphene Fiber: Processing, Structure, Property, and Smart Applications [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2103046-. |
[5] | Bichen Zhu, Xiaoyang Hong, Liyong Tang, Qinqin Liu, Hua Tang. Enhanced Photocatalytic CO2 Reduction over 2D/1D BiOBr0.5Cl0.5/WO3 S-Scheme Heterostructure [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2111008-. |
[6] | Mingjun Ma, Zhichao Feng, Xiaowei Zhang, Chaoyue Sun, Haiqing Wang, Weijia Zhou, Hong Liu. Progress in the Preparation and Application of Electrocatalysts Based on Microorganisms as Intelligent Templates [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2106003-. |
[7] | Siying Zhu, Huiyang Li, Zhongli Hu, Qiaobao Zhang, Jinbao Zhao, Li Zhang. Research Progresses on Structural Optimization and Interfacial Modification of Silicon Monoxide Anode for Lithium-Ion Battery [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2103052-. |
[8] | Wei Zhang, Haichen Liang, Kerun Zhu, Yong Tian, Yao Liu, Jiayin Chen, Wei Li. Three-Dimensional Macro-/Mesoporous C-TiC Nanocomposites for Dendrite-Free Lithium Metal Anode [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2105024-. |
[9] | Yue Yang, Jiawei Zhu, Pengyan Wang, Haimi Liu, Weihao Zeng, Lei Chen, Zhixiang Chen, Shichun Mu. NH2-MIL-125 (Ti) Derived Flower-Like Fine TiO2 Nanoparticles Implanted in N-doped Porous Carbon as an Anode with High Activity and Long Cycle Life for Lithium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2106002-. |
[10] | Jingyun Zou, Bing Gao, Xiaopin Zhang, Lei Tang, Simin Feng, Hehua Jin, Bilu Liu, Hui-Ming Cheng. Direct Growth of 1D SWCNT/2D MoS2 Mixed-Dimensional Heterostructures and Their Charge Transfer Property [J]. Acta Phys. -Chim. Sin., 2022, 38(5): 2008037-. |
[11] | Yuxin Chen, Lijun Wang, Zhibo Yao, Leiduan Hao, Xinyi Tan, Justus Masa, Alex W. Robertson, Zhenyu Sun. Tuning the Coordination Structure of Single Atoms and Their Interaction with the Support for Carbon Dioxide Electroreduction [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2207024-0. |
[12] | Xianhong Chen, Pengchao Ruan, Xianwen Wu, Shuquan Liang, Jiang Zhou. Crystal Structures, Reaction Mechanisms, and Optimization Strategies of MnO2 Cathode for Aqueous Rechargeable Zinc Batteries [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2111003-. |
[13] | Zixu He, Yawei Chen, Fanyang Huang, Yulin Jie, Xinpeng Li, Ruiguo Cao, Shuhong Jiao. Fluorinated Solvents for Lithium Metal Batteries [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2205005-. |
[14] | Heng Chen, Jincan Zhang, Xiaoting Liu, Zhongfan Liu. Effect of Gas-Phase Reaction on the CVD Growth of Graphene [J]. Acta Phys. -Chim. Sin., 2022, 38(1): 2101053-. |
[15] | Qing Chen, Jian Zhao, Huhu Cheng, Liangti Qu. Progress in 3D-Graphene Assemblies Preparation for Solar-Thermal Steam Generation and Water Treatment [J]. Acta Phys. -Chim. Sin., 2022, 38(1): 2101020-. |
|