Acta Physico-Chimica Sinica ›› 2020, Vol. 36 ›› Issue (9): 2001041.doi: 10.3866/PKU.WHXB202001041
Special Issue: Precise Nanosynthesis
• Perspective • Previous Articles Next Articles
Yuan Zhou, Na Han(), Yanguang Li(
)
Received:
2020-01-19
Accepted:
2020-03-09
Published:
2020-03-16
Contact:
Na Han,Yanguang Li
E-mail:hanna@suda.edu.cn;yanguang@suda.edu.cn
Supported by:
MSC2000:
Yuan Zhou, Na Han, Yanguang Li. Recent Progress on Pd-based Nanomaterials for Electrochemical CO2 Reduction[J].Acta Physico-Chimica Sinica, 2020, 36(9): 2001041.
Fig 2
(a–c) TEM images of Pd nanoparticles with different sizes, (d) their corresponding potential-dependent CO Faradaic efficiency and (e) CO partial current density; (f–h) TEM images of Pd nanoparticles with different sizes, (i) dependence of formate Faradaic efficiency on the particle size under various working potentials (a–e) Adapted from ACS Publications publisher 37. (f–i) Adapted from Wiley publisher 38."
Fig 3
(a) Schematic illustration showing Pd nanocrystals with different facets for CO2 reduction to formate; (b) adsorption energy of *CO on different facets of Pd nanocrystals; (c–f) TEM images of Pd nanocrystals with different morphologies; (g) Faradic efficiency for CO and H2 on Pd cubes and Pd octahedra; (h) CO Faradic efficiency on Pd octahedra and Pd icosahedra (a, b) Adapted from ACS Publications publisher 40. (c, d, g) Adapted from Wiley publisher 41. (e, f, h) Adapted from Wiley publisher 42."
Fig 5
(a–f) TEM images of different Pd-Au core-shell nanostructures: (a, d) Pd@Pd7Au3, (b, e) Pd@Pd3Au7, (c, f) Pd@Pd1Au9; (g) CO Faradaic efficiency on different Pd-Au core-shell nanostructures; (h–k) TEM images of different Pd-Au alloy nanoparticles: (h) Au60Pd40, (i) Au75Pd25, (j) Au84Pd16, (k) Au94Pd6; (l) CO Faradaic efficiency and (m) CO partial current density on different Pd-Au alloy nanoparticles (a–g) Adapted from ACS Publications publisher 50. (h–m) Adapted from Royal Society of Chemistry publisher 51."
1 |
Reichstein M. ; Bahn M. ; Ciais P. ; Frank D. ; Mahecha M. D. ; Seneviratne S. I. ; Zscheischler J. ; Beer C. ; Buchmann N. ; Frank D. C. Nature 2013, 500, 287.
doi: 10.1038/nature12350 |
2 |
Creutzig F. ; Agoston P. ; Minx J. C. ; Canadell J. G. ; Andrew R. M. ; Le Quéré C. ; Peters G. P. ; Sharifi A. ; Yamagata Y. ; Dhakal S. Nat. Clim. Change 2016, 6, 1054.
doi: 10.1038/nclimate3169 |
3 |
Davis S. J. ; Caldeira K. Proc. Natl. Acad. Sci. 2010, 107, 5687.
doi: 10.1073/pnas.0906974107 |
4 |
Qiao J. ; Liu Y. ; Hong F. ; Zhang J. Chem. Soc. Rev. 2014, 43, 631.
doi: 10.1039/c3cs60323g |
5 | Yang Y. ; Zhang Y. ; Hu J. ; Wan L. Acta Phys. -Chim. Sin. 2019, 36, 1906085. |
杨艳; 张云; 胡劲松; 万立骏. 物理化学学报, 2019, 36, 1906085.
doi: 10.3866/PKU.WHXB201906085 |
|
6 |
Mac Dowell N. ; Fennell P. S. ; Shah N. ; Maitland G. C. Nat. Clim. Change 2017, 7, 243.
doi: 10.1038/nclimate3231 |
7 |
Keith D. W. Science 2009, 325, 1654.
doi: 10.1126/science.1175680 |
8 |
Haas T. ; Krause R. ; Weber R. ; Demler M. ; Schmid G. Nat. Catal. 2018, 1, 32.
doi: 10.1038/s41929-017-0005-1 |
9 |
Whipple D. T. ; Kenis P. J. J. Phys. Chem. C 2010, 1, 3451.
doi: 10.1021/jz1012627 |
10 | Bai X. ; Chen W. ; Wang B. ; Feng G. ; Wei W. ; Jiao Z. ; Sun Y. Acta Phys. -Chim. Sin. 2017, 33, 2388. |
白晓芳; 陈为; 王白银; 冯光辉; 魏伟; 焦正; 孙予罕. 物理化学学报, 2017, 33, 2388.
doi: 10.3866/PKU.WHXB201706131 |
|
11 |
Costentin C. ; Robert M. ; Savéant J. M. Chem. Soc. Rev. 2013, 42, 2423.
doi: 10.1039/c2cs35360a |
12 |
Wu J. ; Huang Y. ; Ye W. ; Li Y. Adv. Sci. 2017, 4, 1700194.
doi: 10.1002/advs.201700194 |
13 |
Han N. ; Ding P. ; He L. ; Li Y. ; Li Y. Adv. Energy Mater. 2019, 1902338.
doi: 10.1002/aenm.201902338 |
14 |
Kortlever R. ; Shen J. ; Schouten K. J. P. ; Calle-Vallejo F. ; Koper M. T. J. Phys. Chem. Lett. 2015, 6, 4073.
doi: 10.1021/acs.jpclett.5b01559 |
15 |
Benson E. E. ; Kubiak C. P. ; Sathrum A. J. ; Smieja J. M. Chem. Soc. Rev. 2009, 38, 89.
doi: 10.1039/B804323J |
16 |
Zhu D. D. ; Liu J. L. ; Qiao S. Z. Adv. Mater. 2016, 28, 3423.
doi: 10.1002/adma.201504766 |
17 |
Zhang Y. ; Sethuraman V. ; Michalsky R. ; Peterson A. A. ACS Catal. 2014, 4, 3742.
doi: 10.1021/cs5012298 |
18 | Hori, Y. Electrochemical CO2 Reduction on Metal Electrodes. In Modern Aspects of Electrochemistry; Springer: New York, 2008; p. 89. |
19 |
Hori Y. ; Wakebe H. ; Tsukamoto T. ; Koga O. Electrochim. Acta 1994, 39, 1833.
doi: 10.1016/0013-4686(94)85172-7 |
20 |
Yang H. ; Han N. ; Deng J. ; Wu J. ; Wang Y. ; Hu Y. ; Ding P. ; Li Y. ; Li Y. ; Lu J. Adv. Energy Mater. 2018, 8, 1801536.
doi: 10.1002/aenm.201801536 |
21 |
Jia L. ; Yang H. ; Deng J. ; Chen J. ; Zhou Y. ; Ding P. ; Li L. ; Han N. ; Li Y. Chinese J. Chem. 2019, 37, 497.
doi: 10.1002/cjoc.201900010 |
22 |
Han N. ; Wang Y. ; Yang H. ; Deng J. ; Wu J. ; Li Y. ; Li Y. Nat. Commun. 2018, 9, 1320.
doi: 10.1038/s41467-018-03712-z |
23 |
Han N. ; Wang Y. ; Deng J. ; Zhou J. ; Wu Y. ; Yang H. ; Ding P. ; Li Y. J. Mater. Chem. A 2019, 7, 1267.
doi: 10.1039/c8ta10959a |
24 |
Gong Q. ; Ding P. ; Xu M. ; Zhu X. ; Wang M. ; Deng J. ; Ma Q. ; Han N. ; Zhu Y. ; Lu J. Nat. Commun. 2019, 10, 2807.
doi: 10.1038/s41467-019-10819-4 |
25 |
Ding P. ; Hu Y. ; Deng J. ; Chen J. ; Zha C. ; Yang H. ; Han N. ; Gong Q. ; Li L. ; Wang T. Mater. Today Chem. 2019, 11, 80.
doi: 10.1016/j.mtchem.2018.10.009 |
26 |
Yang H. ; Huang Y. ; Deng J. ; Wu Y. ; Han N. ; Zha C. ; Li L. ; Li Y. J. Energy Chem. 2019, 37, 93.
doi: 10.1016/j.jechem.2018.12.004 |
27 |
Jouny M. ; Luc W. ; Jiao F. Ind. Eng. Chem. Res. 2018, 57, 2165.
doi: 10.1021/acs.iecr.7b03514 |
28 |
Zhang H. ; Jin M. ; Xiong Y. ; Lim B. ; Xia Y. Acc. Chem. Res. 2012, 46, 1783.
doi: 10.1021/ar300209w |
29 |
Chen A. ; Ostrom C. Chem. Rev. 2015, 115, 11999.
doi: 10.1021/acs.chemrev.5b00324 |
30 |
Gao D. ; Zhou H. ; Cai F. ; Wang D. ; Hu Y. ; Jiang B. ; Cai W. B. ; Chen X. ; Si R. ; Yang F. Nano Res. 2017, 10, 2181.
doi: 10.1007/s12274-017-1514-6 |
31 |
Sheng W. ; Kattel S. ; Yao S. ; Yan B. ; Liang Z. ; Hawxhurst C. J. ; Wu Q. ; Chen J. G. Energy Environ. Sci. 2017, 10, 1180.
doi: 10.1039/c7ee00071e |
32 |
Ohkawa K. ; Hashimoto K. ; Fujishima A. ; Noguchi Y. ; Nakayama S. J. Electroanal. Chem. 1993, 345, 445.
doi: 10.1016/0022-0728(93)80495-4 |
33 |
Stalder C. J. ; Chao S. ; Wrighton M. S. J. Am. Chem. Soc. 1984, 106, 3673.
doi: 10.1021/ja00324a046 |
34 |
Han N. ; Wang Y. ; Ma L. ; Wen J. ; Li J. ; Zheng H. ; Nie K. ; Wang X. ; Zhao F. ; Li Y. ; et al Chem 2017, 3, 652.
doi: 10.1016/j.chempr.2017.08.002 |
35 |
Zheng T. ; Jiang K. ; Wang H. Adv. Mater. 2018, 30, 1802066.
doi: 10.1002/adma.201802066 |
36 |
Koper M. T. Nanoscale 2011, 3, 2054.
doi: 10.1039/C0NR00857E |
37 |
Gao D. ; Zhou H. ; Wang J. ; Miao S. ; Yang F. ; Wang G. ; Wang J. ; Bao X. J. Am. Chem. Soc. 2015, 137, 4288.
doi: 10.1021/jacs.5b00046 |
38 |
Rahaman M. ; Dutta A. ; Broekmann P. ChemSusChem 2017, 10, 1733.
doi: 10.1002/cssc.201601778 |
39 |
Porter N. S. ; Wu H. ; Quan Z. ; Fang J. Acc. Chem. Res. 2013, 46, 1867.
doi: 10.1021/ar3002238 |
40 |
Klinkova A. ; De Luna P. ; Dinh C. T. ; Voznyy O. ; Larin E. M. ; Kumacheva E. ; Sargent E. H. ACS Catal. 2016, 6, 8115.
doi: 10.1021/acscatal.6b01719 |
41 |
Zhu W. ; Kattel S. ; Jiao F. ; Chen J. G. Adv. Energy Mater. 2019, 9, 1802840.
doi: 10.1002/aenm.201802840 |
42 |
Huang H. ; Jia H. ; Liu Z. ; Gao P. ; Zhao J. ; Luo Z. ; Yang J. ; Zeng J. Angew. Chem. Int. Ed. 2017, 56, 3594.
doi: 10.1002/anie.201612617 |
43 |
Wang Y. ; Cao L. ; Libretto N. J. ; Li X. ; Li C. ; Wan Y. ; He C. ; Lee J. ; Gregg J. ; Zong H. J. Am. Chem. Soc. 2019, 141, 16635.
doi: 10.1021/jacs.9b05766 |
44 |
Lu L. ; Sun X. ; Ma J. ; Yang D. ; Wu H. ; Zhang B. ; Zhang J. ; Han B. Angew. Chem. Int. Ed. 2018, 57, 14149.
doi: 10.1002/anie.201808964 |
45 |
Zhu W. ; Zhang L. ; Yang P. ; Chang X. ; Dong H. ; Li A. ; Hu C. ; Huang Z. ; Zhao Z. J. ; Gong J. Small 2018, 14, 1703314.
doi: 10.1002/smll.201703314 |
46 |
Bai X. ; Chen W. ; Zhao C. ; Li S. ; Song Y. ; Ge R. ; Wei W. ; Sun Y. Angew. Chem. Int. Ed. 2017, 56, 12219.
doi: 10.1002/anie.201707098 |
47 |
Yin Z. ; Gao D. ; Yao S. ; Zhao B. ; Cai F. ; Lin L. ; Tang P. ; Zhai P. ; Wang G. ; Ma D. Nano Energy 2016, 27, 35.
doi: 10.1016/j.nanoen.2016.06.035 |
48 |
Kang Y. ; Snyder J. ; Chi M. ; Li D. ; More K. L. ; Markovic N. M. ; Stamenkovic V. R. Nano Lett. 2014, 14, 6361.
doi: 10.1021/nl5028205 |
49 |
Jiang R. ; Tung S. ; Tang Z. ; Li L. ; Ding L. ; Xi X. ; Liu Y. ; Zhang L. ; Zhang J. Energy Storage Mater. 2018, 12, 260.
doi: 10.1016/j.ensm.2017.11.005 |
50 |
Yuan X. ; Zhang L. ; Li L. ; Dong H. ; Chen S. ; Zhu W. ; Hu C. ; Deng W. ; Zhao Z. J. ; Gong J. J. Am. Chem. Soc. 2019, 141, 4791.
doi: 10.1021/jacs.8b11771 |
51 |
Zhu S. ; Qin X. ; Wang Q. ; Li T. ; Tao R. ; Gu M. ; Shao M. J. Mater. Chem. A 2019.
doi: 10.1039/c9ta05325e |
52 |
Hou Y. ; Erni R. ; Widmer R. ; Rahaman M. ; Guo H. ; Fasel R. ; Moreno-García P. ; Zhang Y. ; Broekmann P. ChemElectroChem 2019, 6, 3189.
doi: 10.1002/celc.201900752 |
53 |
Wang J. ; Kattel S. ; Hawxhurst C. J. ; Lee J. H. ; Tackett B. M. ; Chang K. ; Rui N. ; Liu C. J. ; Chen J. G. Angew. Chem. Int. Ed. 2015, 58, 6271.
doi: 10.1002/anie.201900781 |
[1] | Zejian Wang, Jiajia Hong, Sue-Faye Ng, Wen Liu, Junjie Huang, Pengfei Chen, Wee-Jun Ong. Recent Progress of Perovskite Oxide in Emerging Photocatalysis Landscape: Water Splitting, CO2 Reduction, and N2 Fixation [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2011033-0. |
[2] | Xinjiang Cui, Feng Shi. Selective Conversion of CO2 by Single-Site Catalysts [J]. Acta Phys. -Chim. Sin., 2021, 37(5): 2006080-0. |
[3] | Jihong Zhang, Dichang Zhong, Tongbu Lu. Co(Ⅱ)-Based Molecular Complexes for Photochemical CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2021, 37(5): 2008068-0. |
[4] | Chao Zheng, Aqiang Liu, Chenghao Bi, Jianjun Tian. SCN-doped CsPbI3 for Improving Stability and Photodetection Performance of Colloidal Quantum Dots [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2007084-0. |
[5] | Wentao Zhou, Yihua Chen, Huanping Zhou. Strategies to Improve the Stability of Perovskite-based Tandem Solar Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2009044-0. |
[6] | Tian Wang, Taiyang Zhang, Yuetian Chen, Yixin Zhao. Highly Moisture Resistant 5-Aminovaleric Acid Crosslinked CH3NH3PbBr3 Perovskite Film with ALD-Al2O3 Protection [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2007021-0. |
[7] | Jiaxin Wang, Weili Shen, Jinning Hu, Jun Chen, Xiaoming Li, Haibo Zeng. Mechanisms and Applications of Laser Action on Lead Halide Perovskites [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2008051-0. |
[8] | Mingli Cai, Liu Yao, Jun Jin, Zhaoyin Wen. In situ Lithiophilic ZnO Layer Constructed using Aqueous Strategy for a Stable Li-Garnet Interface [J]. Acta Phys. -Chim. Sin., 2021, 37(1): 2009006-0. |
[9] | Kunfang Tu, Guang Li, Yanxia Jiang. Effect of Temperature on the Electrocatalytic Oxidation of Ethanol [J]. Acta Phys. -Chim. Sin., 2020, 36(8): 1906026-0. |
[10] | Xiaolong Tang,Shenghui Zhang,Jing Yu,Chunxiao Lü,Yuqing Chi,Junwei Sun,Yu Song,Ding Yuan,Zhaoli Ma,Lixue Zhang. Preparation of Platinum Catalysts on Porous Titanium Nitride Supports by Atomic Layer Deposition and Their Catalytic Performance for Oxygen Reduction Reaction [J]. Acta Physico-Chimica Sinica, 2020, 36(7): 1906070-0. |
[11] | Yongli Tong, Meizhen Dai, Lei Xing, Hengqi Liu, Wanting Sun, Xiang Wu. Asymmetric Hybrid Capacitor Based on NiCo2O4 Nanosheets Electrode [J]. Acta Physico-Chimica Sinica, 2020, 36(7): 1903046-0. |
[12] | Chengfang Qiao,Lei Lü,Wenfeng Xu,Zhengqiang Xia,Chunsheng Zhou,Sanping Chen,Shengli Gao. Synthesis, Thermal Decomposition Kinetics and Detonation Performance of a Three-Dimensional Solvent-Free Energetic Ag(I)-MOF [J]. Acta Physico-Chimica Sinica, 2020, 36(6): 1905085-0. |
[13] | Guanghai Chen,Ying Bai,Yongsheng Gao,Feng Wu,Chuan Wu. Chalcogenide Electrolytes for All-Solid-State Sodium Ion Batteries [J]. Acta Physico-Chimica Sinica, 2020, 36(5): 1905009-0. |
[14] | Wei Zhou,Jun-Kang Guo,Sheng Shen,Jinbo Pan,Jie Tang,Lang Chen,Chak-Tong Au,Shuang-Feng Yin. Progress in Photoelectrocatalytic Reduction of Carbon Dioxide [J]. Acta Physico-Chimica Sinica, 2020, 36(3): 1906048-0. |
[15] | Jingxuan Ge, Jun Hu, Yingting Zhu, Zonish Zeb, Dejin Zang, Zhaoxian Qin, Yichao Huang, Jiangwei Zhang, Yongge Wei. Recent Advances in Polyoxometalates for Applications in Electrocatalytic Hydrogen Evolution Reaction [J]. Acta Physico-Chimica Sinica, 2020, 36(1): 1906063-0. |
|