Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (9): 2004052.doi: 10.3866/PKU.WHXB202004052
Special Issue: Fuel Cells
• REVIEW • Previous Articles Next Articles
Yue-Jiao Zhang, Yue-Zhou Zhu, Jian-Feng Li()
Received:
2020-04-17
Accepted:
2020-05-31
Published:
2020-06-04
Contact:
Jian-Feng Li
E-mail:li@xmu.edu.cn
About author:
Jian-Feng Li, Email: li@xmu.edu.cn; Tel.: +86-592-2186192Supported by:
MSC2000:
Yue-Jiao Zhang, Yue-Zhou Zhu, Jian-Feng Li. Application of Raman Spectroscopy in Fuel Cell[J].Acta Phys. -Chim. Sin., 2021, 37(9): 2004052.
Fig 1
(a) An example Raman spectrum of CGO-NiO cermet in situ at 600 ℃, (b) in situ Raman monitoring of the reduction of CGO-NiO cermet and pure CGO in dry and wet (humidified to 3% H2O) hydrogen, (c) schematic illustration of the hydrogen spillover process on CGO-NiO cermet. Adapted from Fuel Cells, Wiley publisher 17"
Fig 2
(a) Raman spectra of pristine and phosphoric acid-doped PBI; (b) ratio of relative intensities versus acid doping level expressed in 1 mol∙L − 1 H3PO4 per polar group (%) for the peaks 1570 and 1000 cm − 1 for PBI/ H3PO4; (c) confocal Raman mapping of phosphoric-acid-doped AB-PBI membranes, the membrane sheets were immersed in a 120 ℃ hot phosphoric acid bath for 1 and 6 h. Adapted from J. Power Sources, Elsevier publisher 45 and J. Mater. Chem. A, RSC publisher 46."
Fig 4
Electrochemical SHINERS spectra of the ORR process on (a) Pt(111)- and (b) Pt(110)-electrode surfaces in 0.1 mol∙L−1 HClO4 solution saturated with O2 and on (c) Pt(110)-electrode surfaces in 0.1 mol∙L−1 NaClO4 solution (pH ∼ 10.3) saturated with O2; (d) polarization curves of the ORR process on three Pt(hkl) rotating-disk electrodes in saturated 0.1 mol∙L−1 HClO4 solution (scan rate: 50 mV ∙s−1, rotation rate: 1600 r∙min−1). Adapted from Nat. Energy, Springer Nature publisher 18."
Fig 5
In situ EC-SHINERS spectra of ORR on dealloyed Pt3Co nanocatalysts in 0.1 mol∙L−1 HClO4 with (a) H2O and (b) D2O solution saturated O2; in situ EC-SHINERS spectra of ORR on dealloyed Pt3Co nanocatalysts in O2 saturated 0.1 mol∙L−1 NaClO4 + 1 m mol∙L−1 NaOH with (c) H2O and (d) D2O solution. Adapted from Angew. Chem. Int. Ed., Wiley publisher 19."
1 |
Wilberforce T. ; El-Hassan Z. ; Khatib F. N. ; Al Makky A. ; Baroutaji A. ; Carton J. G. ; Olabi A. G. Int. J. Hydrogen Energy 2017, 42, 25695.
doi: 10.1016/j.ijhydene.2017.07.054 |
2 |
Wilberforce T. ; Alaswad A. ; Palumbo A. ; Dassisti M. ; Olabi A. G. Int. J. Hydrogen Energy 2016, 41, 16509.
doi: 10.1016/j.ijhydene.2016.02.057 |
3 |
Alaswad A. ; Baroutaji A. ; Achour H. ; Carton J. ; Al Makky A. ; Olabi A. G. Int. J. Hydrogen Energy 2016, 41, 16499.
doi: 10.1016/j.ijhydene.2016.03.164 |
4 |
Majlan E. H. ; Rohendi D. ; Daud W. R. W. ; Husaini T. ; Haque M. A. Renew. Sust. Energy Rev. 2018, 89, 117.
doi: 10.1016/j.rser.2018.03.007 |
5 |
Brandon N. P. ; Skinner S. ; Steele B. C. H. Ann. Rev. Mater. Res. 2003, 33, 183.
doi: 10.1146/annurev.matsci.33.022802.094122 |
6 |
Sung S. S. ; Hoffmann R. J. Am. Chem. Soc. 1985, 107, 578.
doi: 10.1021/ja00289a009 |
7 |
Anderson A. B. Electrochim. Acta 2002, 47, 3759.
doi: 10.1016/S0013-4686(02)00346-8 |
8 |
Damjanovic A. ; Dey A. ; Bockris J. O. M. Electrochim. Acta 1966, 11, 791.
doi: 10.1016/0013-4686(66)87056-1 |
9 |
Damjanovic A. ; Brusic V. Electrochim. Acta 1967, 12, 615.
doi: 10.1016/0013-4686(67)85030-8 |
10 |
Wei C. ; Rao R. R. ; Peng J. ; Huang B. ; Stephens I. E. L. ; Risch M. ; Xu Z. J. ; Shao-Horn Y. Adv. Mater. 2019, 31, 1806296.
doi: 10.1002/adma.201806296 |
11 |
Wang X. X. ; Swihart M. T. ; Wu G. Nat. Catal. 2019, 2, 578.
doi: 10.1038/s41929-019-0304-9 |
12 | Luo M. C. ; Sun Y. J. ; Qin Y. N. ; Yang Y. ; Wu D. ; Guo S. J. Acta Phys. -Chim. Sin. 2018, 34, 361. |
骆明川; 孙英俊; 秦英楠; 杨勇; 吴冬; 郭少军. 物理化学学报, 2018, 34, 361.
doi: 10.3866/PKU.WHXB201708312 |
|
13 | Chang Q. W. ; Xiao F. ; Xu Y. ; Shao M. H. Acta Phys. -Chim. Sin. 2017, 33, 9. |
常乔婉; 肖菲; 徐源; 邵敏华. 物理化学学报, 2017, 33, 9.
doi: 10.3866/PKU.WHXB201609202 |
|
14 |
Itoh T. ; Abe K. ; Dokko K. ; Mohamedi M. ; Uchida I. ; Kasuya A. J. Electrochem. Soc. 2004, 151, A2042.
doi: 10.1149/1.1812735 |
15 |
Itoh T. ; Maeda T. ; Kasuya A. Faraday Discuss. 2006, 132, 95.
doi: 10.1039/b506197k |
16 |
Pomfret M. B. ; Owrutsky J. C. ; Walker R. A. Annu. Rev. Anal. Chem. 2010, 3, 151.
doi: 10.1146/annurev.anchem.111808.073641 |
17 |
Maher R. C. ; Duboviks V. ; Offer G. J. ; Kishimoto M. ; Brandon N. P. ; Cohen L. F. Fuel Cells 2013, 13, 455.
doi: 10.1002/fuce.201200173 |
18 |
Dong J. C. ; Zhang X. G. ; Briega-Martos V. ; Jin X. ; Yang J. ; Chen S. ; Yang Z. L. ; Wu D. Y. ; Feliu J. M. ; Williams C. T. ; et al Nat. Energy 2018, 4, 60.
doi: 10.1038/s41560-018-0292-z |
19 |
Wang Y. H. ; Le J. B. ; Li W. Q. ; Wei J. ; Radjenovic P. M. ; Zhang H. ; Zhou X. S. ; Cheng J. ; Tian Z. Q. ; Li J. F. Angew. Chem. Int. Ed. 2019, 58, 16062.
doi: 10.1002/anie.201908907 |
20 |
Jeanmaire D. L. ; Van Duyne R. P. J. Electroanal. Chem. 1977, 84, 1.
doi: 10.1016/S0022-0728(77)80224-6 |
21 |
Lane L. A. ; Qian X. M. ; Nie S. M. Chem. Rev. 2015, 115, 10489.
doi: 10.1021/acs.chemrev.5b00265 |
22 |
Li J. F. ; Zhang Y. J. ; Ding S. Y. ; Panneerselvam R. ; Tian Z. Q. Chem. Rev. 2017, 117, 5002.
doi: 10.1021/acs.chemrev.6b00596 |
23 |
Nie S. ; Emory S. R. Science 1997, 275, 1102.
doi: 10.1126/science.275.5303.1102 |
24 |
Xu H. X. ; Bjerneld E. J. ; Kall M. ; Borjesson L. Phys. Rev. Lett. 1999, 83, 4357.
doi: 10.1103/PhysRevLett.83.4357 |
25 | Tian, Z. Q.; Ren, B.; Li, J. F.; Yang, Z. L. Chem. Commun. 2007, 3514. doi: 10.1039/B616986D |
26 |
Li J. F. ; Huang Y. F. ; Ding Y. ; Yang Z. L. ; Li S. B. ; Zhou X. S. ; Fan F. R. ; Zhang W. ; Zhou Z. Y. ; Wu D. Y. ; et al Nature 2010, 464, 392.
doi: 10.1038/nature08907 |
27 |
Li J. F. ; Tian X. D. ; Li S. B. ; Anema J. R. ; Yang Z. L. ; Ding Y. ; Wu Y. F. ; Zeng Y. M. ; Chen Q. Z. ; Ren B. ; et al Nat. Protoc. 2013, 8, 52.
doi: 10.1038/nprot.2012.141 |
28 | Zhang, H.; Duan, S.; Radjenovic, P. M.; Tian, Z. Q.; Li, J. F. Acc. Chem. Res. 2020, doi: 10.1021/acs.accounts.9b00545 |
29 | Wei, J.; Qin, S. N.; Liu, J. L.; Ruan, X. Y.; Guan, Z.; Yan, H.; Wei, D. Y.; Zhang, H.; Cheng, J.; Xu, H.; et al. Angew. Chem. Int. Ed. 2020, doi: 10.1002/anie.202000426 |
30 |
Li C. Y. ; Le J. B. ; Wang Y. H. ; Chen S. ; Yang Z. L. ; Li J. F. ; Cheng J. ; Tian Z. Q. Nat. Mater. 2019, 18, 697.
doi: 10.1038/s41563-019-0356-x |
31 |
Wang C. ; Chen X. ; Chen T. M. ; Wei J. ; Qin S. N. ; Zheng J. F. ; Zhang H. ; Tian Z. Q. ; Li J. F. ChemCatChem 2020, 12, 75.
doi: 10.1002/cctc.201901747 |
32 |
Wang Y. H. ; Wei J. ; Radjenovic P. ; Tian Z. Q. ; Li J. F. Anal. Chem. 2019, 91, 1675.
doi: 10.1021/acs.analchem.8b05499 |
33 |
Jiang S. P. Int. J. Hydrogen Energy 2019, 44, 7448.
doi: 10.1016/j.ijhydene.2019.01.212 |
34 |
Fan L. ; Zhu B. ; Su P.C. ; He C. Nano Energy 2018, 45, 148.
doi: 10.1016/j.nanoen.2017.12.044 |
35 |
Abdalla A. M. ; Hossain S. ; Azad A. T. ; Petra P. M. I. ; Begum F. ; Eriksson S. G. ; Azad A. K. Renew. Sust. Energy Rev. 2018, 82, 353.
doi: 10.1016/j.rser.2017.09.046 |
36 |
Hossain S. ; Abdalla A. M. ; Jamain S. N. B. ; Zaini J. H. ; Azad A. K. Renew. Sust. Energy Rev. 2017, 79, 750.
doi: 10.1016/j.rser.2017.05.147 |
37 |
da Silva F. S. ; de Souza T. M. Int. J. Hydrogen Energy 2017, 42, 26020.
doi: 10.1016/j.ijhydene.2017.08.105 |
38 |
Gorte R. J. ; Vohs J. M. Annu. Rev. Chem. Biomol. 2011, 2, 9.
doi: 10.1146/annurev-chembioeng-061010-114148 |
39 |
Shaikh S. P. S. ; Muchtar A. ; Somalu M. R. Renew. Sust. Energy Rev. 2015, 51, 1.
doi: 10.1016/j.rser.2015.05.069 |
40 |
Connor P. A. ; Yue X. ; Savaniu C. D. ; Price R. ; Triantafyllou G. ; Cassidy M. ; Kerherve G. ; Payne D. J. ; Maher R. C. ; Cohen L. F. ; et al Adv. Energy Mater. 2018, 8, 1800120.
doi: 10.1002/aenm.201800120 |
41 |
Rosli R. E. ; Sulong A. B. ; Daud W. R. W. ; Zulkifley M. A. ; Husaini T. ; Rosli M. I. ; Majlan E. H. ; Haque M. A. Int. J. Hydrogen Energy 2017, 42, 9293.
doi: 10.1016/j.ijhydene.2016.06.211 |
42 |
Araya S. S. ; Zhou F. ; Liso V. ; Sahlin S. L. ; Vang J. R. ; Thomas S. ; Gao X. ; Jeppesen C. ; Kær S. K. Int. J. Hydrogen Energy 2016, 41, 21310.
doi: 10.1016/j.ijhydene.2016.09.024 |
43 |
Zhang J. ; Xie Z. ; Zhang J. ; Tang Y. ; Song C. ; Navessin T. ; Shi Z. ; Song D. ; Wang H. ; Wilkinson D. P. ; et al J. Power Sources 2006, 160, 872.
doi: 10.1016/j.jpowsour.2006.05.034 |
44 |
Zeis R. Beilstein J. Nanotech. 2015, 6, 68.
doi: 10.3762/bjnano.6.8 |
45 |
Mack F. ; Heissler S. ; Laukenmann R. ; Zeis R. J. Power Sources 2014, 270, 627.
doi: 10.1016/j.jpowsour.2014.06.171 |
46 |
Daletou M. K. ; Geormezi M. ; Vogli E. ; Voyiatzis G. A. ; Neophytides S. G. J. Mater. Chem. A 2014, 2, 1117.
doi: 10.1039/C3TA13335D |
47 |
Li X. ; Lee J. P. ; Blinn K. S. ; Chen D. ; Yoo S. ; Kang B. ; Bottomley L. A. ; El-Sayed M. A. ; Park S. ; Liu M. Energy Environ. Sci. 2014, 7, 306.
doi: 10.1039/c3ee42462f |
48 |
Li X. ; Blinn K. ; Chen D. ; Liu M. Electro. Energy Rev. 2018, 1, 433.
doi: 10.1007/s41918-018-0017-9 |
49 |
Chen X. ; Liang M. M. ; Xu J. ; Sun H. L. ; Wang C. ; Wei J. ; Zhang H. ; Yang W. M. ; Yang Z. L. ; Sun J. J. ; et al Nanoscale 2020, 12, 5341.
doi: 10.1039/C9NR10304J |
50 |
Gómez-Marín A. M. ; Feliu J. M. ChemSusChem 2013, 6, 1091.
doi: 10.1002/cssc.201200847 |
51 |
Briega-Martos V. ; Herrero E. ; Feliu J. M. Electrochim. Acta 2017, 241, 497.
doi: 10.1016/j.electacta.2017.04.162 |
52 |
Dong J. C. ; Su M. ; Briega-Martos V. ; Li L. ; Le J. B. ; Radjenovic P. ; Zhou X. S. ; Feliu J. M. ; Tian Z. Q. ; Li J. F. J. Am. Chem. Soc. 2020, 142, 715.
doi: 10.1021/jacs.9b12803 |
[1] | Mengting Li, Xingqun Zheng, Li Li, Zidong Wei. Research Progress of Hydrogen Oxidation and Hydrogen Evolution Reaction Mechanism in Alkaline Media [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2007054-0. |
[2] | Miaomiao Liu, Maomao Yang, XinXin Shu, Jintao Zhang. Design Strategies for Carbon-Based Electrocatalysts and Application to Oxygen Reduction in Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2007072-0. |
[3] | Yufei Bao, Ligang Feng. Formic Acid Electro-Oxidation Catalyzed by PdNi/Graphene Aerogel [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2008031-0. |
[4] | Lei Huang, Shahid Zaman, Zhitong Wang, Huiting Niu, Bo You, Bao Yu Xia. Synthesis and Application of Platinum-Based Hollow Nanoframes for Direct Alcohol Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2009035-0. |
[5] | Liliang Tian, Weiqi Zhang, Zheng Xie, Kai Peng, Qiang Ma, Qian Xu, Sivakumar Pasupathi, Huaneng Su. Enhanced Performance and Durability of High-Temperature Polymer Electrolyte Membrane Fuel Cell by Incorporating Covalent Organic Framework into Catalyst Layer [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2009049-0. |
[6] | Fang Luo, Shuyuan Pan, Zehui Yang. Recent Progress on Electrocatalyst for High-Temperature Polymer Exchange Membrane Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2009087-0. |
[7] | Jian Wang, Wei Ding, Zidong Wei. Performance of Polymer Electrolyte Membrane Fuel Cells at Ultra-Low Platinum Loadings [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2009094-0. |
[8] | Yanrong Xue, Xingdong Wang, Xiangqian Zhang, Jinjie Fang, Zhiyuan Xu, Yufeng Zhang, Xuerui Liu, Mengyuan Liu, Wei Zhu, Zhongbin Zhuang. Cost-Effective Hydrogen Oxidation Reaction Catalysts for Hydroxide Exchange Membrane Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2009103-0. |
[9] | Liang Ding, Tang Tang, Jin-Song Hu. Recent Progress in Proton-Exchange Membrane Fuel Cells Based on Metal-Nitrogen-Carbon Catalysts [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2010048-0. |
[10] | Jiashun Liang, Xuan Liu, Qing Li. Principles, Strategies, and Approaches for Designing Highly Durable Platinum-based Catalysts for Proton Exchange Membrane Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2010072-0. |
[11] | Jujia Zhang, Jin Zhang, Haining Wang, Yan Xiang, Shanfu Lu. Advancement in Distribution and Control Strategy of Phosphoric Acid in Membrane Electrode Assembly of High-Temperature Polymer Electrolyte Membrane Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2010071-0. |
[12] | Zhengrong Li, Tao Shen, Yezhou Hu, Ke Chen, Yun Lu, Deli Wang. Progress on Ordered Intermetallic Electrocatalysts for Fuel Cells Application [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2010029-0. |
[13] | Yun Fan, Guodan Chen, Xiuan Xi, Jun Li, Qi Wang, Jingli Luo, Xianzhu Fu. Co-Generation of Ethylene and Electricity from Ethane by CeO2/RP-PSCFM@CoFe Anode Materials in Proton Conductive Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2009107-0. |
[14] | Bo Fang,Ligang Feng. PtCo-NC Catalyst Derived from the Pyrolysis of Pt-Incorporated ZIF-67 for Alcohols Fuel Electrooxidation [J]. Acta Physico-Chimica Sinica, 2020, 36(7): 1905023-0. |
[15] | Fang LIU,Lufeng ZHANG,Qian DONG,Zhuo CHEN. Synthesis and Characterization of Small Size Gold-Graphitic Nanocapsules [J]. Acta Physico-Chimica Sinica, 2019, 35(6): 651-656. |
|