Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (2): 2005003.doi: 10.3866/PKU.WHXB202005003
Special Issue: Lithium Metal Anodes
• ARTICLE • Previous Articles Next Articles
Gaolong Zhu1,2,3,5, Chenzi Zhao3, Hong Yuan1, Haoxiong Nan3,4, Bochen Zhao3, Lipeng Hou3, Chuangxin He2, Quanbing Liu4, Jiaqi Huang1,*()
Received:
2020-05-05
Published:
2020-06-18
Contact:
Jiaqi Huang
E-mail:jqhuang@bit.edu.cn
About author:
Jiaqi Huang, Email: jqhuang@bit.edu.cnSupported by:
MSC2000:
Gaolong Zhu, Chenzi Zhao, Hong Yuan, Haoxiong Nan, Bochen Zhao, Lipeng Hou, Chuangxin He, Quanbing Liu, Jiaqi Huang. Liquid Phase Therapy with Localized High-Concentration Electrolytes for Solid-State Li Metal Pouch Cells[J].Acta Phys. -Chim. Sin., 2021, 37(2): 2005003.
Table 1
Main chemical reagent"
Reagent | Parameters | Company |
Li4TI5O12 | Size: 50-300 nm | Aladdin |
Li7P3S11 | Size: 1-5 μm, Conductivity: 0.64 mS·cm-1 | HF-Kejing |
HFE | 99.9% | DoDoChem |
DME | 99.9% | DoDoChem |
LiTFSI | 99.9% | DoDoChem |
Dibromomethane | 99.9% | Aladdin |
NBR | Molecular weight: 200000-300000 | Aladdin |
S | Particle size < 50 μm | Jiangsu Cnano Technology Co., Ltd |
Li metal | Thickness: 100 μm | China Energy Lithium Co., Ltd. Aladdin |
CNT | Specific area 200-500 m2·g-1 |
Fig 3
The cycling performances of Li|LTO solid pouch cells. (a) Charge-discharge profiles, (b) rate performance, and (c) cycle stability of Li|LTO solid pouch cell with liquid phase therapy. (d) charge-discharge profiles of Li|LTO solid pouch cell without liquid phase therapy. The batteries are operated under room temperature (25 ℃)."
Fig 4
The charge-discharge profiles of Li|S solid pouch cell with a liquid phase therapy. Inset is the digital photograph of a Li|S pouch cell, where the Li anode/solid electrolytes interface is wetted with HFE-DME LiTFSI liquid electrolyte. The pouch cell size is 30 mm × 30 mm. The battery is tested under 25 ℃."
1 |
Cheng X. B. ; Zhao C. Z. ; Yao Y. X. ; Liu H. ; Zhang Q. Chem 2019, 5, 74.
doi: 10.1016/j.chempr.2018.12.002 |
2 |
Peng H. J. ; Huang J. Q. ; Cheng X. B. ; Zhang Q. Adv. Energy Mater. 2017, 7, 1700260.
doi: 10.1002/aenm.201700260 |
3 |
Li B. Q. ; Kong L. ; Zhao C. X. ; Jin Q. ; Chen X. ; Peng H. J. ; Qin J. L. ; Chen J. X. ; Yuan H. ; Zhang Q. ; Huang J. Q. InfoMat 2019, 1, 533.
doi: 10.1002/inf2.12056 |
4 |
Shen X. ; Cheng X. ; Shi P. ; Huang J. ; Zhang X. ; Yan C. ; Li T. ; Zhang Q. J. Energy Chem. 2019, 37, 29.
doi: 10.1016/j.jechem.2018.11.016 |
5 |
Chen J. X. ; Zhang X. Q. ; Li B. Q. ; Wang X. M. ; Shi P. ; Zhu W. ; Chen A. ; Jin Z. ; Xiang R. ; Huang J. Q. J. Energy Chem. 2020, 47, 128.
doi: 10.1016/j.jechem.2019.11.024 |
6 |
Jiang J. H. ; Wang A. B. ; Wang W. K. ; Jin Z. Q. ; Fan L. Z. J. Energy Chem. 2020, 46, 114.
doi: 10.1016/j.jechem.2019.10.009 |
7 |
Yan C. ; Yuan H. ; Park H. S. ; Huang J. Q. J. Energy Chem. 2020, 47, 217.
doi: 10.1016/j.jechem.2019.09.034 |
8 | Guo F. ; Chen P. ; Kang T. ; Wang Y. L. ; Liu C. H. ; Shen Y. B. ; Lu W. ; Chen L. W. Acta Phys. -Chim. Sin. 2019, 35, 1365. |
郭峰; 陈鹏; 康拓; 王亚龙; 刘承浩; 沈炎宾; 卢威; 陈立桅. 物理化学学报, 2019, 35, 1365.
doi: 10.3866/PKU.WHXB201903008 |
|
9 | Chen K. ; Sun Z. H. ; Fang R. P. ; Li F. ; Cheng H. M. Acta Phys. -Chim. Sin. 2018, 34, 377. |
陈克; 孙振华; 方若翩; 李峰; 成会明. 物理化学学报, 2018, 34, 377.
doi: 10.3866/PKU.WHXB201709001 |
|
10 |
Oh P. ; Lee H. ; Park S. ; Cha H. ; Kim J. ; Cho J. Adv. Energy Matter. 2020, 2000904.
doi: 10.1002/aenm.202000904 |
11 |
Cao D. ; Sun X. ; Li Q. ; Natan A. ; Xiang P. ; Zhu H. Matter 2020, 2, 1.
doi: 10.1016/j.matt.2020.03.015 |
12 |
Zhang X. Q. ; Zhao C. Z. ; Huang J. Q. ; Zhang Q. Engineering 2018, 4, 831.
doi: 10.1016/j.eng.2018.10.008 |
13 |
Zhao C. Z. ; Duan H. ; Huang J. Q. ; Zhang J. ; Zhang Q. ; Guo Y. G. ; Wan L. J. Sci. China Chem. 2019, 62, 1286.
doi: 10.1007/s11426-019-9519-9 |
14 |
Ates T. ; Keller M. ; Kulisch J. ; Adermann T. ; Passerini S. Energy Storage Mater. 2019, 17, 204.
doi: 10.1016/j.ensm.2018.11.011 |
15 |
Busche M. R. ; Drossel T. ; Leichtweiss T. ; Weber D. A. ; Falk M. ; Schneider M. ; Reich M. L. ; Sommer H. ; Adelhelm P. ; Janek J. Nat. Chem. 2016, 8, 426.
doi: 10.1038/nchem.2470 |
16 |
Sakuda A. ; Sato Y. ; Hayashi A. ; Tatsumisago M. Energy Technol. 2019, 7, 1900077.
doi: 10.1002/ente.201900077 |
17 |
Shen Y. Q. ; Zeng F. L. ; Zhou X. Y. ; Wang A. B. ; Wang W. K. ; Yuan N. Y. ; Ding J. N. J. Energy Chem. 2020, 48, 267.
doi: 10.1016/j.jechem.2020.01.016 |
18 |
Wu J. Y. ; Ling S. G. ; Yang Q. ; Li H. ; Xu X. X. ; Chen L. Q. Chin. Phys. B 2016, 25, 078204.
doi: 10.1088/1674-1056/25/7/078204 |
19 |
Yao X. Y. ; Huang N. ; Han F. D. ; Zhang Q. ; Wan H. L. ; Mwizerwa J. P. ; Wang C. S. ; Xu X. X. Adv. Energy Mater. 2017, 7, 1602923.
doi: 10.1002/aenm.201602923 |
20 |
Zhang H. ; Judez X. ; Santiago A. ; Martinez-Ibanez M. ; Munoz-Marquez M. A. ; Carrasco J. ; Li C. M. ; Eshetu G. G. ; Armand M. Adv. Energy Mater. 2019, 9, 1900763.
doi: 10.1002/aenm.201900763 |
21 |
Xu R. ; Zhang S. ; Wang X. ; Xia Y. ; Xia X. ; Wu J. ; Gu C. ; Tu J. Chem. -A Eur. J. 2018, 24, 6007.
doi: 10.1002/chem.201704568 |
22 |
Zhao C. Z. ; Zhang X. Q. ; Cheng X. B. ; Zhang R. ; Xu R. ; Chen P. Y. ; Peng H. J. ; Huang J. Q. ; Zhang Q. Proc. Natl. Acad. Sci. 2017, 114, 11069.
doi: 10.1073/pnas.1708489114 |
23 |
Hou L. P. ; Yuan H. ; Zhao C. Z. ; Xu L. ; Zhu G. L. ; Nan H. X. ; Cheng X. B. ; Liu Q. B. ; He C. X. ; Huang J. Q. ; Zhang Q. Energy Storage Mater. 2019, 25, 436.
doi: 10.1016/j.ensm.2019.09.037 |
24 |
Zhang Q. ; Cao D. X. ; Ma Y. ; Natan A. ; Aurora P. ; Zhu H. L. Adv. Mater. 2019, 31, 1901131.
doi: 10.1002/adma.201901131 |
25 |
Zhang Y. B. ; Chen R. J. ; Wang S. ; Liu T. ; Xu B. Q. ; Zhang X. ; Wang X. Z. ; Shen Y. ; Lin Y. H. ; Li M. ; et al Energy Storage Mater. 2020, 25, 145.
doi: 10.1016/j.ensm.2019.10.020 |
26 |
Zhang Y. B. ; Liu T. ; Zhang Q. H. ; Zhang X. ; Wang S. ; Wang X. Z. ; Li L. L. ; Fan L. Z. ; Nan C. W. ; Shen Y. J. Mater. Chem. A 2018, 6, 23345.
doi: 10.1039/c8ta08420c |
27 |
Jin C. Q. ; Xie K. ; Hong X. B. Acta Chim. Sin. 2014, 72, 11.
doi: 10.6023/A13101097 |
28 |
Cheng X. B. ; Zhang R. ; Zhao C. Z. ; Zhang Q. Chem. Rev. 2017, 117, 10403.
doi: 10.1021/acs.chemrev.7b00115 |
29 |
Yan M. ; Liang J. Y. ; Zuo T. T. ; Yin Y. X. ; Xin S. ; Tan S. J. ; Guo Y. G. ; Wan L. J. Adv. Funct. Mater. 2020, 30, 1908047.
doi: 10.1002/adfm.201908047 |
30 |
Oh D. Y. ; Kim D. H. ; Jung S. H. ; Han J. G. ; Choi N. S. ; Jung Y. S. J. Mater. Chem. A 2017, 5, 20771.
doi: 10.1039/c7ta06873e |
31 |
Chen L. ; Fan L. Z. Energy Storage Mater. 2018, 15, 37.
doi: 10.1016/j.ensm.2018.03.015 |
32 |
Fan Z. ; Ding B. ; Zhang T. ; Lin Q. ; Malgras V. ; Wang J. ; Dou H. ; Zhang X. ; Yamauchi Y. Small 2019, 15, 1903952.
doi: 10.1002/smll.201903952 |
33 |
Gao Z. ; Zhang S. ; Huang Z. ; Lu Y. ; Wang W. ; Wang K. ; Li J. ; Zhou Y. ; Huang L. ; Sun S. Chin. Chem. Lett. 2019, 30, 525.
doi: 10.1016/j.cclet.2018.05.016 |
34 |
Jiang J. H. ; Wang A. B. ; Wang W. K. ; Jin Z. Q. ; Fan L. Z. J. Energy Chem. 2020, 46, 114.
doi: 10.1016/j.jechem.2019.10.009 |
35 |
Kato Y. ; Hori S. ; Saito T. ; Suzuki K. ; Hirayama M. ; Mitsui A. ; Yonemura M. ; Iba H. ; Kanno R. Nat. Energy 2016, 1, 16030.
doi: 10.1038/nenergy.2016.30 |
36 |
Deiseroth H. J. ; Kong S. T. ; Eckert H. ; Vannahme J. ; Reiner C. ; Zaiß M. T. ; Schlosser M. Angew. Chem. Int. Ed. 2008, 47, 755.
doi: 10.1002/anie.200703900 |
37 |
Kamaya N. ; Homma K. ; Yamakawa Y. ; Hirayama M. ; Kanno R. ; Yonemura M. ; Kamiyama T. ; Kato Y. ; Hama S. ; Kawamoto K. ; Mitsui A. Nat. Mater. 2011, 10, 682.
doi: 10.1038/nmat3066 |
38 |
Manalastas W. ; Rikarte J. ; Chater R. J. ; Brugge R. ; Aguadero A. ; Buannic L. ; Llordés A. ; Aguesse F. ; Kilner J. J. Power Sources 2019, 412, 287.
doi: 10.1016/j.jpowsour.2018.11.041 |
39 | Xu X. X. ; Qiu Z. J. ; Guan Y. B. ; Huang Z. ; Jin Y. Energy Storage Sci. Technology 2013, 2, 332. |
许晓雄; 邱志军; 官亦标; 黄祯; 金翼. 储能科学与技术, 2013, 2, 332.
doi: 10.3969/j.issn.2095-4239.2013.04.001 |
|
40 |
He M. ; Cui Z. ; Han F. ; Guo X. J. Alloy. Compd. 2018, 762, 157.
doi: 10.1016/j.jallcom.2018.05.255 |
41 |
Chen W. ; Lei T. ; Wu C. ; Deng M. ; Gong C. ; Hu K. ; Ma Y. ; Dai L. ; Lv W. ; He W. ; et al Adv. Energy Mater. 2018, 8, 1702348.
doi: 10.1002/aenm.201702348 |
42 |
Miura A. ; Rosero-Navarro N. C. ; Sakuda A. ; Tadanaga K. ; Phuc N. H. H. ; Matsuda A. ; Machida N. ; Hayashi A. ; Tatsumisago M. Nat. Rev. Chem. 2019, 3, 189.
doi: 10.1038/s41570-019-0078-2 |
43 |
Liang Y. ; Zhang W. ; Wu D. ; Ni Q. Q. ; Zhang M. Q. Adv. Mater. Interfaces 2018, 5, 1800430.
doi: 10.1002/admi.201800430 |
44 |
Zhang Q. ; Ding Z. ; Liu G. ; Wan H. ; Mwizerwa J. P. ; Wu J. ; Yao X. Energy Storage Mater. 2019, 23, 168.
doi: 10.1016/j.ensm.2019.05.015 |
45 |
Chen R. ; Li Q. ; Yu X. ; Chen L. ; Li H. Chem. Rev. 2019.
doi: 10.1021/acs.chemrev.9b00268 |
46 |
Teragawa S. ; Aso K. ; Tadanaga K. ; Hayashi A. ; Tatsumisago M. J. Power Sources 2014, 248, 939.
doi: 10.1016/j.jpowsour.2013.09.117 |
47 |
Tsukasaki H. ; Mori Y. ; Otoyama M. ; Yubuchi S. ; Asano T. ; Tanaka Y. ; Ohno T. ; Mori S. ; Hayashi A. ; Tatsumisago M. Sci. Rep. 2018, 8, 6214.
doi: 10.1038/s41598-018-24524-7 |
48 |
Hayashi A. ; Noi K. ; Sakuda A. ; Tatsumisago M. Nat. Commun. 2012, 3, 856.
doi: 10.1038/ncomms1843 |
49 | Jin F. ; Li. J. ; Hu C. J. ; Dong H. C. ; Chen P. ; Shen Y. B. ; Chen L. W. Acta Phys. -Chim. Sin. 2019, 35, 1399. |
金锋; 李静; 胡晨吉; 董厚才; 陈鹏; 沈炎宾; 陈立桅. 物理化学学报, 2019, 35, 1399.
doi: 10.3866/PKU.WHXB201904085 |
|
50 | Fei H. F. ; Liu Y. P. ; Wei C. L. ; Zhang Y. C. ; Feng J. K. ; Chen C. Z. ; Yu H. J. Acta Phys. -Chim. Sin. 2020, 36, 1905015. |
费慧芳; 刘永鹏; 魏传亮; 张煜婵; 冯金奎; 陈传忠; 于慧君. 物理化学学报, 2020, 36, 1905015.
doi: 10.3866/PKU.WHXB201905015 |
|
51 | Yuan, H.; Nan, H. X.; Zhao, C. Z.; Zhu, G. L.; Lu, Y.; Cheng, X. B.; Liu, Q. B.; He, C. X.; Huang, J. Q.; Zhang, Q. Batteries & Supercaps 2020. doi: 10.1002/batt.202000051 |
52 |
Zhu G. L. ; Zhao C. Z. ; Huang J. Q. ; He C. ; Zhang J. ; Chen S. ; Xu L. ; Yuan H. ; Zhang Q. Small 2019, 15, 1805389.
doi: 10.1002/smll.201805389 |
53 |
Xu L. ; Tang S. ; Cheng Y. ; Wang K. ; Liang J. ; Liu C. ; Cao Y. C. ; Wei F. ; Mai L. Joule 2018, 2, 1991.
doi: 10.1016/j.joule.2018.07.009 |
54 |
Wenzel S. ; Weber D. A. ; Leichtweiss T. ; Busche M. R. ; Sann J. ; Janek J. Solid State Ionics 2016, 286, 24.
doi: 10.1016/j.ssi.2015.11.034 |
55 |
Wenzel S. ; Leichtweiss T. ; Krüger D. ; Sann J. ; Janek J. Solid State Ionics 2015, 278, 98.
doi: 10.1016/j.ssi.2015.06.001 |
56 |
Swamy T. ; Chen X. ; Chiang Y. M. Chem. Mater. 2019, 31, 707.
doi: 10.1021/acs.chemmater.8b03420 |
57 |
Zhang Q. ; Huang N. ; Huang Z. ; Cai L. ; Wu J. ; Yao X. J. Energy Chem. 2020, 40, 151.
doi: 10.1016/j.jechem.2019.03.006 |
58 |
Tan D. H. S. ; Wu E. A. ; Nguyen H. ; Chen Z. ; Marple M. A. T. ; Doux J. M. ; Wang X. ; Yang H. ; Banerjee A. ; Meng Y. S. ACS Energy Lett. 2019, 4, 2418.
doi: 10.1021/acsenergylett.9b01693 |
59 |
Sang L. ; Haasch R. T. ; Gewirth A. A. ; Nuzzo R. G. Chem. Mater. 2017, 29, 3029.
doi: 10.1021/acs.chemmater.7b00034 |
60 |
Zhang W. ; Leichtweiß T. ; Culver S. P. ; Koerver R. ; Das D. ; Weber D. A. ; Zeier W. G. ; Janek J. ACS Appl. Mater. Interfaces 2017, 9, 35888.
doi: 10.1021/acsami.7b11530 |
61 |
Doux J. M. ; Nguyen H. ; Tan D. H. S. ; Banerjee A. ; Wang X. ; Wu E. A. ; Jo C. ; Yang H. ; Meng Y. S. Adv. Energy Mater. 2019, 10, 1903253.
doi: 10.1002/aenm.201903253 |
62 |
Zhao C. Z. ; Zhao B. C. ; Yan C. ; Zhang X. Q. ; Huang J. Q. ; Mo Y. ; Xu X. ; Li H. ; Zhang Q. Energy Storage Mater. 2019, 24, 75.
doi: 10.1016/j.ensm.2019.07.026 |
63 |
Liu H. ; Cheng X. B. ; Huang J. Q. ; Yuan H. ; Lu Y. ; Yan C. ; Zhu G. L. ; Xu R. ; Zhao C. Z. ; Hou L.P. ; et al ACS Energy Lett. 2020, 5, 833.
doi: 10.1021/acsenergylett.9b02660 |
[1] | Yingying Zhu, Yong Wang, Miao Xu, Yongmin Wu, Weiping Tang, Di Zhu, Yu-Shi He, Zi-Feng Ma, Linsen Li. Tracking Pressure Changes and Morphology Evolution of Lithium Metal Anodes [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2110040-0. |
[2] | Wei Zhang, Haichen Liang, Kerun Zhu, Yong Tian, Yao Liu, Jiayin Chen, Wei Li. Three-Dimensional Macro-/Mesoporous C-TiC Nanocomposites for Dendrite-Free Lithium Metal Anode [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2105024-. |
[3] | Zibo Zhang, Wei Deng, Xufeng Zhou, Zhaoping Liu. LiC6 Heterogeneous Interface for Stable Lithium Plating and Stripping [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2008092-. |
[4] | Guangbin Hua, Yanchen Fan, Qianfan Zhang. Application of Computational Simulation on the Study of Lithium Metal Anodes [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2008089-. |
[5] | Xinyang Yue, Cui Ma, Jian Bao, Siyu Yang, Dong Chen, Xiaojing Wu, Yongning Zhou. Failure Mechanisms of Lithium Metal Anode and Their Advanced Characterization Technologies [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2005012-. |
[6] | Yunbo Zhang, Qiaowei Lin, Junwei Han, Zhiyuan Han, Tong Li, Feiyu Kang, Quan-Hong Yang, Wei Lü. Bacterial Cellulose-Derived Three-Dimensional Carbon Current Collectors for Dendrite-Free Lithium Metal Anodes [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2008088-. |
[7] | Guorui Zheng, Yuxuan Xiang, Yong Yang. Neutron Depth Profiling Technique for Studying Rechargeable Lithium Metal Anodes [J]. Acta Phys. -Chim. Sin., 2021, 37(1): 2008094-. |
[8] | Jinli Qin, Longtao Ren, Xin Cao, Yajun Zhao, Haijun Xu, Wen Liu, Xiaoming Sun. Porous Copper Foam Co-operation with Thiourea for Dendrite-free Lithium Metal Anode [J]. Acta Phys. -Chim. Sin., 2021, 37(1): 2009020-. |
[9] | Yuheng Sun, Mingda Gao, Hui Li, Li Xu, Qing Xue, Xinran Wang, Ying Bai, Chuan Wu. Application of Metal-Organic Frameworks to the Interface of Lithium Metal Batteries [J]. Acta Phys. -Chim. Sin., 2021, 37(1): 2007048-. |
[10] | Shichao Zhang, Zeyu Shen, Yingying Lu. Research Progress of Thermal Runaway and Safety for Lithium Metal Batteries [J]. Acta Phys. -Chim. Sin., 2021, 37(1): 2008065-. |
[11] | Hongyi Pan, Quan Li, Xiqian Yu, Hong Li. Characterization Techniques for Lithium Metal Anodes at Multiple Spatial Scales [J]. Acta Phys. -Chim. Sin., 2021, 37(1): 2008091-. |
[12] | Qin Ran, Tianyang Sun, Chongyu Han, Haonan Zhang, Jian Yan, Jinglun Wang. Natural Polyphenol Tannic Acid as an Efficient Electrolyte Additive for High Performance Lithium Metal Anode [J]. Acta Physico-Chimica Sinica, 2020, 36(11): 1912068-. |
[13] | Yan-Tao ZHANG,Zhen-Jie LIU,Jia-Wei WANG,Liang WANG,Zhang-Quan PENG. Recent Advances in Li Anode for Aprotic Li-O2 Batteries [J]. Acta Phys. -Chim. Sin., 2017, 33(3): 486-499. |
[14] | ZHANG Jing-Bo, LI Pan, YANG Hui, ZHAO Fei-Yan, TANG Guang-Shi, SUN Li-Na, LIN Yuan. Preparation of a Highly Efficient PbS Electrode and Its Application in Quantum Dots-Sensitized Solar Cells [J]. Acta Phys. -Chim. Sin., 2014, 30(8): 1495-1500. |
|