Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (2): 2005012.doi: 10.3866/PKU.WHXB202005012
Special Issue: Lithium Metal Anodes
• REVIEW • Previous Articles Next Articles
Xinyang Yue1, Cui Ma1, Jian Bao1, Siyu Yang2, Dong Chen1, Xiaojing Wu1, Yongning Zhou1,*()
Received:
2020-05-06
Accepted:
2020-06-04
Published:
2020-06-10
Contact:
Yongning Zhou
E-mail:ynzhou@fudan.edu.cn
About author:
Yongning Zhou, Email: ynzhou@fudan.edu.cn; Tel.: +86-21-65642685Supported by:
MSC2000:
Xinyang Yue, Cui Ma, Jian Bao, Siyu Yang, Dong Chen, Xiaojing Wu, Yongning Zhou. Failure Mechanisms of Lithium Metal Anode and Their Advanced Characterization Technologies[J].Acta Phys. -Chim. Sin., 2021, 37(2): 2005012.
Fig 4
(a) Schematic of high-dimensional and low-dimensional phases 27; (b) movement of one atom from the bulk phase to the surface 27; potential energy surfaces of (c) a Li adatom on Li(001) and (d) a Mg adatom on Mg(0001) 28. The contour spacing in (c) is 0.05 eV while it is 0.02 eV in (d).Adapted from Elsevier and American Institute of Physics publishers."
Fig 5
(a) Scheme of a spherical cap-shaped nucleus plated on a flat substrate immersed in an electrolyte, and regimes of behavior during the initial stages of nucleation and growth of Li dendrites 29; (b) voltage profiles of galvanostatic Li deposition on a copper and gold substrate at 10 μA·cm-2 29; (c) schematics of patterned Li deposition (Cu: blue, Au: pink) and SEM images of a gold strip array with various separations before (top) and after (bottom) Li deposition 30. Adapted from Electrochemical Society and Springer Nature publishers."
Fig 6
(a) Schematic of symmetrical battery 35; (b) profiles of ion concentration and electrostatic potential resulting from numerical simulation in the hypothetical case of uniform deposition with negligible growth of the cathode 34; (c) mechanism of lithium dendrite growth with the change of concentration polarization 36; (d) voltage curve diagram when short circuit occurs 35; (e) voltage curve of capillary simulated battery under different deposition current densities, and (f) lithium dendrite growth state 36. Adapted from American Physical Society, Elsevier and Royal Society of Chemistry publishers."
Fig 7
(a) The wave front corresponds to amorphization of SEI dendrites by Li deposition as is highlighted 37; (b) in situ TEM observation of a single Li whisker growth under -6.0 V vs. LCO biasing; (c) change in the length and the width of the lithium whisker; (d) schematic illustration explaining root growth mechanism of lithium whiskers 38. Adapted from Royal Society of Chemistry and Elsevier publishers."
Fig 10
The in situ observation of (a) electrode surface evolution under the low and high current density 52, (b) Li plating on the Li-B-Mg composite and pure Li foil 53, (c) lithium deposition process in FEC/LiNO3 and EC/DEC electrolytes 54 and (d) the electrolyte-electrode interface on lithium metal anode 7. Adapted from American Association for the Advancement of Science, Wiley and Elsevier publishers."
Fig 11
(a) Schematic diagram of the in situ SEM and the images of the electrode cycling in the ethers-based electrolyte with LiNO3 55; (b) cross section view in situ SEM images of lithium metal 56; (c) series of cross-sectional SEM images for a NMC/LiPS/Li ASSB sample and schematics for the volume change of the Li metal anode 57; (d) configuration of lithium ion microcell with three electrodes for electrochemical measurements and in situ HAADF-STEM images of Au lithiation 58. Adapted from Wiley, American Chemical Society and Royal Society of Chemistry publishers."
Fig 12
(a) Schematic diagram of the in situ AFM and the corresponding images of the Li electrode surface under different conditions 59; (b) in situ AFM images of electrode surface during the Li deposition at EC/DMC and FEC/DMC systems 60; (c) in situ AFM and adhesion mapping images of the electrode during the Li plating 61; (d) application of in situ AFM-ETEM technology in the study of lithium dendrite growth 62. Adapted from Wiley, American Chemical Society and Springer Nature publishers."
Fig 13
(a) In operando X-ray tomography characterization of the symmetric cell using Li-Al alloy electrode and corresponding 3D rendering of three samples 63; (b) schematic diagram of the research soild electrolyte/Li metal interface via in situ XPS technique, and the change of Ti 2p XPS of LLTO during the Li deposition 64; (c) in situ XRD images of GF-LiF-Li and bare Li standing in ambient atmosphere 65; (d) in situ Raman spectrum of the L-DG host during the Li plaing and stripping 66. Adapted from American Chemical Society, Elsevier and Springer Nature publishers."
Fig 14
(a) Preserving and stabilizing Li metal by cryo-EM 68; (b) cryo-TEM and ordinary TEM images of Li dendrite, and the cryo-SEM images of different cross section of Li dendrite 69; (c) low magnification, bright-field and atomic-resolution of EDLi and SEI formed in VC-containing electrolyte 66; (d) cryo-STEM and EELS images of type Ⅰ and Ⅱ dendrite 71; (e) cryo-EM images and nano-structure diagrams of dendrites growth at 20 and 60 ℃ with the 1 mol·L-1 LiTFSI salt 72. Adapted from Elsevier, American Association for the Advancement of Science, American Chemical Society and Springer Nature publishers."
Fig 15
(a) Schematic of the experimental set-up for operando NDP and time-resolved lithium concentration profiles for Li/LLZO/Cu cell 74; (b) operando NDP measurements of Li metal electrode during the cycling 75; (c) in situ NDP measurement of a Li/garnet/CNT asymmetric cell 76; (d) experimental setup for the in situ NDP measurements and in situ NDP spectra 77. Adapted from Springer Nature, American Chemical Society and Elsevier publishers."
Fig 16
(a) Illustration of the symmetric 6Li foil/composite electrolyte/6Li foil battery, possible Li+ transport pathways, comparison of the 6Li NMR spectra before (pristine) and after (cycled) cycling, and quantitative analysis of 6Li amount 78; (b) one-pulse static 7Li and 17O NMR spectra of the discharged cathode from cell A and cell B 79; (c) 17O, 1H and 13C Hahn echo spectra of cathodes at different states of charge 80. Adapted from Wiley and American Chemical Society publishers."
1 |
Armand M. ; Tarascon J. Nature 2008, 451, 652.
doi: 10.1038/451652a |
2 |
Guo Y. ; Li H. ; Zhai T. Adv. Mater. 2017, 29, 1700007.
doi: 10.1002/adma.201700007 |
3 |
Grande L. ; Paillard E. ; Hassoun J. ; Park J. U. ; Scrosati B. Adv. Mater. 2014, 27, 784.
doi: 10.1002/adma.201403064 |
4 |
Kolosnitsyn V. S. ; Karaseva E. V. Russ. J. Electrochem. 2008, 44, 506.
doi: 10.1134/s1023193508050029 |
5 |
Xu W. ; Wang J. ; Ding F. ; Chen X. ; Nasybulin E. ; Zhang Y. ; Zhang J. Energy Environ. Sci. 2014, 7, 513.
doi: 10.1039/C3EE40795K |
6 |
Lin D. ; Liu Y. ; Cui Y. Nat. Nanotechnol. 2017, 12, 194.
doi: 10.1038/nnano.2017.16 |
7 |
Chen L. ; Fan X. ; Ji X. ; Chen J. ; Hou S. ; Wang C. Joule 2019, 3, 732.
doi: 10.1016/j.joule.2018.11.025 |
8 |
Yang C. ; Yin Y. ; Zhang S. ; Li N. ; Guo Y. Nat. Commun. 2015, 6, 1.
doi: 10.1038/ncomms9058 |
9 |
Duan H. ; Zhang J. ; Chen X. ; Zhang X. ; Li J. ; Huang L. ; Zhang X. ; Shi J. ; Yin Y. ; Zhang Q. J. Am. Chem. Soc. 2018, 140, 18051.
doi: 10.1021/jacs.8b10488 |
10 |
Cheng X. ; Zhang R. ; Zhao C. ; Zhang Q. Chem. Rev. 2017, 117, 10403.
doi: 10.1021/acs.chemrev.7b00115 |
11 |
Wang D. ; Zhang W. ; Zheng W. ; Cui X. ; Rojo T. ; Zhang Q. Adv. Sci. 2017, 4, 1600168.
doi: 10.1002/advs.201600168 |
12 |
Bouchet R. Nat. Nanotechnol. 2014, 9, 572.
doi: 10.1038/nnano.2014.165 |
13 |
Jo H. ; Song D. ; Jeong Y. ; Lee Y. M. ; Ryou M. J. Power Sources 2019, 409, 132.
doi: 10.1016/j.jpowsour.2018.09.059 |
14 |
Xu R. ; Zhang X. Q. ; Cheng X. B. ; Peng H. J. ; Zhao C. Z. ; Yan C. ; Huang J. Q. Adv. Funct. Mater. 2018, 28, 1705838.
doi: 10.1002/adfm.201705838 |
15 |
Zhu J. ; Li P. ; Chen X. ; Legut D. ; Fan Y. ; Zhang R. ; Lu Y. ; Cheng X. ; Zhang Q. Energy Storage Mater. 2019, 16, 426.
doi: 10.1016/j.ensm.2018.06.023 |
16 | Zheng J. ; Li H. Energy Storage Sci. Tech. 2013, 5, 503. |
郑杰允; 李泓. 储能科学与技术, 2013, 5, 503.
doi: 10.3969/j.issn.2095-4239.2013.05.009 |
|
17 |
Goodenough J. B. ; Kim Y. Chem. Mater. 2009, 22, 587.
doi: 10.1021/cm901452z |
18 |
Joho F. ; Rykart B. ; Blome A. ; Novák P. ; Wilhelm H. ; Spahr M. E. J. Power Sources 2001, 97, 78.
doi: 10.1016/S0378-7753(01)00595-X |
19 |
Peled E. J. Electrochem. Soc. 1979, 126, 2047.
doi: 10.1149/1.2128859 |
20 |
Schlaikjer C. R. ; Liang C. C. J. Electrochem. Soc. 1971, 118, 1447.
doi: 10.1149/1.2408351 |
21 |
Peled E. ; Golodnitsky D. ; Ardel G. J. Electrochem. Soc. 1997, 144, L208.
doi: 10.1149/1.1837858 |
22 |
Zhang Q. ; Pan J. ; Lu P. ; Liu Z. ; Verbrugge M. W. ; Sheldon B. W. ; Cheng Y. ; Qi Y. ; Xiao X. Nano Lett. 2016, 16, 2011.
doi: 10.1021/acs.nanolett.5b05283 |
23 |
Aurbach D. ; Markovsky B. ; Levi M. D. ; Levi E. ; Schechter A. ; Moshkovich M. ; Cohen Y. J. Power Sources 1999, 81, 95.
doi: 10.1016/S0378-7753(99)00187-1 |
24 |
Ein-Eli Y. Electrochem. Solid-State Lett. 1999, 2, 212.
doi: 10.1149/1.1390787 |
25 |
Whittingham M. S. Science 1976, 192, 1126.
doi: 10.1126/science.192.4244.1126 |
26 |
Nishikawa K. ; Mori T. ; Nishida T. ; Fukunaka Y. ; Rosso M. ; Homma T. J. Electrochem. Soc. 2010, 157, A1212.
doi: 10.1149/1.3486468 |
27 |
Ling C. ; Banerjee D. ; Matsui M. Electrochim. Acta 2012, 76, 270.
doi: 10.1016/j.electacta.2012.05.001 |
28 |
Jäckle M. ; Groß A. J. Chem. Phys. 2014, 141, 174710.
doi: 10.1063/1.4901055 |
29 |
Ely D. R. ; García R. E. J. Electrochem. Soc. 2013, 160, A662.
doi: 10.1149/1.057304jes |
30 |
Yan K. ; Lu Z. ; Lee H. ; Xiong F. ; Hsu P. ; Li Y. ; Zhao J. ; Chu S. ; Cui Y. Nat. Energy 2016, 1, 16010.
doi: 10.1038/nenergy.2016.10 |
31 |
Liu M. ; Kutana A. ; Liu Y. ; Yakobson B. I. J. Phys. Chem. Lett. 2014, 5, 1225.
doi: 10.1021/jz500199d |
32 |
Pei A. ; Zheng G. ; Shi F. ; Li Y. ; Cui Y. Nano Lett. 2017, 17, 1132.
doi: 10.1021/acs.nanolett.6b04755 |
33 |
Fleury V. ; Chazalviel J. ; Rosso M. ; Sapoval B. J. Electroanal. Chem. 1990, 290, 249.
doi: 10.1016/0022-0728(90)87434-l |
34 |
Chazalviel J. Phys. Rev. A 1990, 42, 7355.
doi: 10.1103/PhysRevA.42.7355 |
35 |
Rosso M. ; Brissot C. ; Teyssot A. ; Dollé M. ; Sannier L. ; Tarascon J. ; Bouchet R. ; Lascaud S. Electrochim. Acta 2006, 51, 5334.
doi: 10.1016/j.electacta.2006.02.004 |
36 |
Bai P. ; Li J. ; Brushett F. R. ; Bazant M. Z. Energy Environ. Sci. 2016, 9, 3221.
doi: 10.1039/c6ee01674j |
37 |
Sacci R. L. ; Dudney N. J. ; More K. L. ; Parent L. R. ; Arslan I. ; Browning N. D. ; Unocic R. R. Chem. Commun. 2014, 50, 2104.
doi: 10.1039/C3CC49029G |
38 |
Kushima A. ; So K. P. ; Su C. ; Bai P. ; Kuriyama N. ; Maebashi T. ; Fujiwara Y. ; Bazant M. Z. ; Li J. Nano Energy 2017, 32, 271.
doi: 10.1016/j.nanoen.2016.12.001 |
39 |
Bieker G. ; Winter M. ; Bieker P. Phys. Chem. Chem. Phys. 2015, 17, 8670.
doi: 10.1039/C4CP05865H |
40 |
Wu B. ; Lochala J. ; Taverne T. ; Xiao J. Nano Energy 2017, 40, 34.
doi: 10.1016/j.nanoen.2017.08.005 |
41 |
Liu G. ; Lu W. J. Electrochem. Soc. 2017, 164, A1826.
doi: 10.1149/2.0381709jes |
42 | Chen L. ; Li X. L. ; Zhao Q. ; Cai W. B. ; Jiang Z. Y. Acta Phys. -Chim. Sin. 2006, 22, 1155. |
陈玲; 李雪莉; 赵强; 蔡文斌; 江志裕. 物理化学学报, 2006, 22, 1155.
doi: 10.3866/PKU.WHXB20060924 |
|
43 |
Hong Z. ; Viswanathan V. ACS Energy Lett. 2019, 4, 1012.
doi: 10.1021/acsenergylett.9b00433 |
44 |
Zou P. ; Wang Y. ; Chiang S. ; Wang X. ; Kang F. ; Yang C. Nat. Commun. 2018, 9, 1.
doi: 10.1038/s41467-018-02888-8 |
45 |
Wang C. ; Appleby A. J. ; Little F. E. J. Electroanal. Chem. 2002, 519, 9.
doi: 10.1016/S0022-0728(01)00708-2 |
46 |
Wu H. ; Cui Y. Nano Today 2012, 7, 414.
doi: 10.1016/j.nantod.2012.08.004 |
47 |
Li Z. ; Huang J. ; Liaw B. Y. ; Metzler V. ; Zhang J. J. Power Sources 2014, 254, 168.
doi: 10.1016/j.jpowsour.2013.12.099 |
48 |
Chen K. ; Wood K. N. ; Kazyak E. ; LePage W. S. ; Davis A. L. ; Sanchez A. J. ; Dasgupta N. P. J. Mater. Chem. A 2017, 5, 11671.
doi: 10.1039/C7TA00371D |
49 |
Gireaud L. ; Grugeon S. ; Laruelle S. ; Yrieix B. ; Tarascon J. Electrochem. Commun. 2006, 8, 1639.
doi: 10.1016/j.elecom.2006.07.037 |
50 |
Yue X. ; Li X. ; Wang W. ; Chen D. ; Qiu Q. ; Wang Q. ; Wu X. ; Fu Z. ; Shadike Z. ; Yang X. Nano Energy 2019, 60, 257.
doi: 10.1016/j.nanoen.2019.03.057 |
51 |
Yue X. ; Bao J. ; Yang S. ; Luo R. ; Wang Q. ; Wu X. ; Shadike Z. ; Yang X. ; Zhou Y. Nano Energy 2020, 71, 104614.
doi: 10.1016/j.nanoen.2020.104614 |
52 |
Li L. ; Basu S. ; Wang Y. ; Chen Z. ; Hundekar P. ; Wang B. ; Shi J. ; Shi Y. ; Narayanan S. ; Koratkar N. Science 2018, 359, 1513.
doi: 10.1126/science.aap8787 |
53 |
Wu C. ; Huang H. ; Lu W. ; Wei Z. ; Ni X. ; Sun F. ; Qing P. ; Liu Z. ; Ma J. ; Wei W. Adv. Sci. 2020, 7, 1902643.
doi: 10.1002/advs.201902643 |
54 |
Zhang X. Q. ; Chen X. ; Cheng X. B. ; Li B. Q. ; Shen X. ; Yan C. ; Huang J. Q. ; Zhang Q. Angew. Chem. Int. Ed. 2018, 57, 5301.
doi: 10.1002/ange.201803003 |
55 |
Rong G. ; Zhang X. ; Zhao W. ; Qiu Y. ; Liu M. ; Ye F. ; Xu Y. ; Chen J. ; Hou Y. ; Li W. Adv. Mater. 2017, 29, 1606187.
doi: 10.1002/adma.201606187 |
56 |
Golozar M. ; Hovington P. ; Paolella A. ; Bessette S. ; Lagacé M. ; Bouchard P. ; Demers H. ; Gauvin R. ; Zaghib K. Nano Lett. 2018, 18, 7583.
doi: 10.1021/acs.nanolett.8b03148 |
57 |
Kim S. H. ; Kim K. ; Choi H. ; Im D. ; Heo S. ; Choi H. S. J. Mater. Chem. A 2019, 7, 13650.
doi: 10.1039/C9TA02614B |
58 |
Hou C. ; Han J. ; Liu P. ; Yang C. ; Huang G. ; Fujita T. ; Hirata A. ; Chen M. Adv. Energy Mater. 2019, 9, 1902675.
doi: 10.1002/aenm.201902675 |
59 |
Liu B. ; Xu W. ; Tao J. ; Yan P. ; Zheng J. ; Engelhard M. H. ; Lu D. ; Wang C. ; Zhang J. G. Adv. Energy Mater. 2018, 8, 1702340.
doi: 10.1002/aenm.201702340 |
60 |
Shen C. ; Hu G. ; Cheong L. Z. ; Huang S. ; Zhang J. G. ; Wang D. Small Methods 2018, 2, 1700298.
doi: 10.1002/smtd.201700298 |
61 |
Kitta M. ; Sano H. Langmuir 2017, 33, 1861.
doi: 10.1021/acs.langmuir.6b04651 |
62 |
Zhang L. ; Yang T. ; Du C. ; Liu Q. ; Tang Y. ; Zhao J. ; Wang B. ; Chen T. ; Sun Y. ; Jia P. Nat. Nanotechnol. 2020, 15, 94.
doi: 10.1038/s41565-019-0604-x |
63 |
Sun F. ; Zhou D. ; He X. ; Osenberg M. ; Dong K. ; Chen L. ; Mei S. ; Hilger A. ; Markötter H. ; Lu Y. ACS Energy Lett. 2020, 5, 152.
doi: 10.1021/acsenergylett.9b02424 |
64 |
Wenzel S. ; Leichtweiss T. ; Krüger D. ; Sann J. ; Janek J. Solid State Ion. 2015, 278, 98.
doi: 10.1016/j.ssi.2015.06.001 |
65 |
Shen X. ; Li Y. ; Qian T. ; Liu J. ; Zhou J. ; Yan C. ; Goodenough J. B. Nat. Commun. 2019, 10, 1.
doi: 10.1038/s41467-019-08767-0 |
66 |
Li H. ; Chao D. ; Chen B. ; Chen X. ; Chuah C. ; Tang Y. ; Jiao Y. ; Jaroniec M. ; Qiao S. J. Am. Chem. Soc. 2020, 142, 2012.
doi: 10.1021/jacs.9b11774 |
67 | Zhang X. ; Zhang C. ; Liu Z. ; Liu L. ; Xia L. Sci. Tech. Eng. 2019, 19, 9. |
张晓凯; 张丛丛; 刘忠民; 刘力嘉; 夏蕾. 科学技术与工程, 2019, 19, 9. | |
68 |
Wang X. ; Li Y. ; Meng Y. S. Joule 2018, 2, 2225.
doi: 10.1016/j.joule.2018.10.005 |
69 |
Li Y. ; Li Y. ; Pei A. ; Yan K. ; Sun Y. ; Wu C. ; Joubert L. ; Chin R. ; Koh A. L. ; Yu Y. Science 2017, 358, 506.
doi: 10.1126/science.aam6014 |
70 |
Xu Y. ; Wu H. ; He Y. ; Chen Q. ; Zhang J. G. ; Xu W. ; Wang C. Nano Lett. 2020, 20, 418.
doi: 10.1021/acs.nanolett.9b04111 |
71 |
Zachman M. J. ; Tu Z. ; Choudhury S. ; Archer L. A. ; Kourkoutis L. F. Nature 2018, 560, 345.
doi: 10.1038/s41586-018-0397-3 |
72 |
Wang J. ; Huang W. ; Pei A. ; Li Y. ; Shi F. ; Yu X. ; Cui Y. Nat. Energy 2019, 4, 664.
doi: 10.1038/s41560-019-0413-3 |
73 |
Downing R. G. ; Lamaze G. P. ; Langland J. K. ; Hwang S. T. J. Res. Natl. Inst. Stand Technol. 1993, 98, 109.
doi: 10.6028/jres.098.008 |
74 |
Han F. ; Westover A. S. ; Yue J. ; Fan X. ; Wang F. ; Chi M. ; Leonard D. N. ; Dudney N. J. ; Wang H. ; Wang C. Nat. Energy 2019, 4, 187.
doi: 10.1038/s41560-018-0312-z |
75 |
Lv S. ; Verhallen T. ; Vasileiadis A. ; Ooms F. ; Xu Y. ; Li Z. ; Li Z. ; Wagemaker M. Nat. Commun. 2018, 9, 1.
doi: 10.1038/s41467-018-04394-3 |
76 |
Wang C. ; Gong Y. ; Dai J. ; Zhang L. ; Xie H. ; Pastel G. ; Liu B. ; Wachsman E. ; Wang H. ; Hu L. J. Am. Chem. Soc. 2017, 139, 14257.
doi: 10.1021/jacs.7b07904 |
77 |
Li Q. ; Yi T. ; Wang X. ; Pan H. ; Quan B. ; Liang T. ; Guo X. ; Yu X. ; Wang H. ; Huang X. Nano Energy 2019, 63, 103895.
doi: 10.1016/j.nanoen.2019.103895 |
78 |
Zheng J. ; Tang M. ; Hu Y. Y. Angew. Chem. Int. Ed. 2016, 55, 12538.
doi: 10.1002/anie.201607539 |
79 |
Leskes M. ; Drewett N. E. ; Hardwick L. J. ; Bruce P. G. ; Goward G. R. ; Grey C. P. Angew. Chem. Int. Ed. 2012, 51, 8560.
doi: 10.1002/anie.201202183 |
80 |
Leskes M. ; Moore A. J. ; Goward G. R. ; Grey C. P. J. Phys. Chem. C 2013, 117, 26929.
doi: 10.1021/jp410429k |
[1] | Yingying Zhu, Yong Wang, Miao Xu, Yongmin Wu, Weiping Tang, Di Zhu, Yu-Shi He, Zi-Feng Ma, Linsen Li. Tracking Pressure Changes and Morphology Evolution of Lithium Metal Anodes [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2110040-0. |
[2] | Wei Zhang, Haichen Liang, Kerun Zhu, Yong Tian, Yao Liu, Jiayin Chen, Wei Li. Three-Dimensional Macro-/Mesoporous C-TiC Nanocomposites for Dendrite-Free Lithium Metal Anode [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2105024-. |
[3] | Yunbo Zhang, Qiaowei Lin, Junwei Han, Zhiyuan Han, Tong Li, Feiyu Kang, Quan-Hong Yang, Wei Lü. Bacterial Cellulose-Derived Three-Dimensional Carbon Current Collectors for Dendrite-Free Lithium Metal Anodes [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2008088-. |
[4] | Zibo Zhang, Wei Deng, Xufeng Zhou, Zhaoping Liu. LiC6 Heterogeneous Interface for Stable Lithium Plating and Stripping [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2008092-. |
[5] | Guangbin Hua, Yanchen Fan, Qianfan Zhang. Application of Computational Simulation on the Study of Lithium Metal Anodes [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2008089-. |
[6] | Gaolong Zhu, Chenzi Zhao, Hong Yuan, Haoxiong Nan, Bochen Zhao, Lipeng Hou, Chuangxin He, Quanbing Liu, Jiaqi Huang. Liquid Phase Therapy with Localized High-Concentration Electrolytes for Solid-State Li Metal Pouch Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2005003-. |
[7] | Haodong Shi, Yaguang Li, Pengfei Lu, Zhong-Shuai Wu. Single-Atom Cobalt Coordinated to Oxygen Sites on Graphene for Stable Lithium Metal Anodes [J]. Acta Phys. -Chim. Sin., 2021, 37(11): 2008033-. |
[8] | Yi Yang, Chong Yan, Jiaqi Huang. Research Progress of Solid Electrolyte Interphase in Lithium Batteries [J]. Acta Phys. -Chim. Sin., 2021, 37(11): 2010076-. |
[9] | Guorui Zheng, Yuxuan Xiang, Yong Yang. Neutron Depth Profiling Technique for Studying Rechargeable Lithium Metal Anodes [J]. Acta Phys. -Chim. Sin., 2021, 37(1): 2008094-. |
[10] | Jinli Qin, Longtao Ren, Xin Cao, Yajun Zhao, Haijun Xu, Wen Liu, Xiaoming Sun. Porous Copper Foam Co-operation with Thiourea for Dendrite-free Lithium Metal Anode [J]. Acta Phys. -Chim. Sin., 2021, 37(1): 2009020-. |
[11] | Shichao Zhang, Zeyu Shen, Yingying Lu. Research Progress of Thermal Runaway and Safety for Lithium Metal Batteries [J]. Acta Phys. -Chim. Sin., 2021, 37(1): 2008065-. |
[12] | Hongyi Pan, Quan Li, Xiqian Yu, Hong Li. Characterization Techniques for Lithium Metal Anodes at Multiple Spatial Scales [J]. Acta Phys. -Chim. Sin., 2021, 37(1): 2008091-. |
[13] | Yuheng Sun, Mingda Gao, Hui Li, Li Xu, Qing Xue, Xinran Wang, Ying Bai, Chuan Wu. Application of Metal-Organic Frameworks to the Interface of Lithium Metal Batteries [J]. Acta Phys. -Chim. Sin., 2021, 37(1): 2007048-. |
[14] | Qin Ran, Tianyang Sun, Chongyu Han, Haonan Zhang, Jian Yan, Jinglun Wang. Natural Polyphenol Tannic Acid as an Efficient Electrolyte Additive for High Performance Lithium Metal Anode [J]. Acta Physico-Chimica Sinica, 2020, 36(11): 1912068-. |
[15] | Feng GUO, Peng CHEN, Tuo KANG, Yalong WANG, Chenghao LIU, Yanbin SHEN, Wei LU, Liwei CHEN. Silicon-loaded Lithium-Carbon Composite Microspheres as Lithium Secondary Battery Anodes [J]. Acta Physico-Chimica Sinica, 2019, 35(12): 1365-1371. |
|