Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (3): 2005013.doi: 10.3866/PKU.WHXB202005013
• REVIEW • Previous Articles Next Articles
Yongli Heng1, Zhenyi Gu2, Jinzhi Guo2, Xinglong Wu1,2,*()
Received:
2020-05-06
Accepted:
2020-06-11
Published:
2020-06-17
Contact:
Xinglong Wu
E-mail:xinglong@nenu.edu.cn
About author:
Xinglong Wu. Email: xinglong@nenu.edu.cn. Tel.: +86-431-85099128Supported by:
MSC2000:
Yongli Heng, Zhenyi Gu, Jinzhi Guo, Xinglong Wu. Research Progresses on Vanadium-Based Cathode Materials for Aqueous Zinc-Ion Batteries[J].Acta Phys. -Chim. Sin., 2021, 37(3): 2005013.
Fig 2
Electrochemical performance of Zn/V2O5 in Zn(CF3SO3)2-LiTFSI electrolyte and Zn(CF3SO3)2 electrolyte 33. (a) CV curves of Zn/V2O5 batteries at 0.1 mV·s-1, (b) the 15th cycle charge/discharge curves of Zn/V2O5 batteries at 100 mA·g-1, cycling stability of the V2O5 at (c) 100 mA·g-1 and (d) 500 mA·g-1."
Fig 4
(a) Strategies of adding AB spacer to prepare spaced V2O5 and without adding AB to prepare stacked V2O5; SEM images of (b) spaced and (c) stacked V2O5; (d) XRD patterns of spaced and stacked V2O5; (e) Raman spectra of spaced and stacked V2O5; electrochemical performance of AZIBs: (f) rate performance and (g) cycling performance 41."
Fig 6
(a–c) XRD patterns of Cu0.05VO/Cu0.1VO/Cu0.2VO-0/100/200/300/400 composites; (d) corresponding calculated d-spacing of (001) plane; (e) cycling performance comparison of CuVO-300 and VO-300; (f) average discharge capacity of TVO-300 between 0.5 and 20 A·g-1; (g) cycling performance of TVO-300 and VO-300 at 10 A·g-1 52."
Table 1
Several vanadium-based cathode materials for AZIBs reported in recent years."
Materials morphology | Structure (space group) | Electrolyte | Ion (de-) intercalation mechanism | Discharge plateaus/V | Specific capacity/(mAh·g-1) | Cycle number | Ref. |
Bulk V2O5 | Pmmn | 3 mol·L-1 Zn(CF3SO3)2 | Zn2+, H2O | 0.42 and 0.85 | 470 (0.2 A·g-1) | 4000 (91.1%, 5 A·g-1) | |
Porous V2O5 | Pmmn | 21 mol·L-1 LiTFSI-1 mol·L-1 Zn(CF3SO3)2 | Li+, Zn2+ | 0.90 and 1.10 | 238 (50 mA·g-1) | 2000 (80%, 2000 mA·g-1) | |
V2O5 hollow nanospheres | Pmmn | 3 mol·L-1 Zn(SO4)2 | Zn2+ | 0.56 and 0.85 | 327 (0.1 A·g-1) | 6000 (69.7%, 10 A·g-1) | |
V2O5 nanosheets | Pmmn | 3 mol·L-1 Zn(CF3SO3)2 | Zn2+ | 0.47 and 0.88 | 503.1 (100 mA·g-1) | 700 (86%, 500 mA·g-1) | |
V2O5@AB nanosheets | Pmmn | 3 mol·L-1 Zn(CF3SO3)2 | Zn2+ | 0.50 and 0.90 | 452 (0.1 A·g-1) | 5000 (92%, 10 A·g-1) | |
V2O5·nH2O nanowires/graphene (n = 1.29) | P1 | 3 mol·L-1 Zn(CF3SO3)2 | Zn2+ | 0.54 and 0.91 | 372 (0.3 A·g-1) | 900 (71%, 6 A·g-1) | |
V2O5·1.6H2O nanosheets | P1 | 3 mol·L-1 Zn(CF3SO3)2 | Zn2+ | 0.50 and 0.90 | 426 (0.1 A·g-1) | 5000 (95%, 10 A·g-1) | |
Zn0.25V2O5·nH2O nanobelts | P${\rm{\bar 1}}$ | 1 mol·L-1 Zn(SO4)2 | Zn2+, H2O | ≈ 0.6, 0.8 and 1.0 | 282 (300 mA·g-1) | 1000 (80%, 3000 mA·g-1) | |
LixV2O5·nH2O nanosheets | P1 | 2 mol·L-1 Zn(SO4)2 | Zn2+ | 0.59, 0.82 and 0.96 | 407.6 (1 A·g-1) | 500 (76%, 5 A·g-1) | |
Ca0.25V2O5·nH2O nanobelts | P1 | 1 mol·L-1 Zn(SO4)2 | Zn2+ | ≈ 0.7, 1.1 and 1.3 | 340 (0.05 A·g-1) | 3000 (96%, 20 A·g-1) | |
Porous Mg0.34V2O5·nH2O nanobelts | P1 | 3 mol·L-1 Zn(CF3SO3)2 | Zn2+, Mg2+ | ≈ 0.4, 0.7 and 1.3 | 353 (50 mA·g-1) | 2000 (97%, 5000 mA·g-1) | |
Cu0.1V2O5·nH2O nanosheets | P1 | 2 mol·L-1 Zn(SO4)2 | Zn2+ | 0.59, 0.81 and 0.96 | 359 (1 A·g-1) | 10000 (98%, 10 A·g-1) | |
Ag0.33V2O5 nanorods | C2/m | 2 mol·L-1 Zn(CF3SO3)2 | Zn2+ | 0.604, 0.915 and 1.082 | 200 (0.2 A·g-1) | 700 (3 A·g-1) | |
VO2(B) nanorods | C2/m | 1 mol·L-1 Zn(SO4)2 | Zn2+ | 0.42, 0.51 and 0.74 | 325.6 (0.05 A·g-1) | 5000 (86%, 3 A·g-1) | |
VO2(B) nanorods/rGO | C2/m | 1 mol·L-1 Zn(SO4)2 | Zn2+ | 0.55 and 0.78 | 365 (50 mA·g-1) | 200 (80%, 50 mA·g-1) | |
VO2(B)·0.2H2O nanocuboids/graphene | C2/m | 2 mol·L-1 Zn(SO4)2 | Zn2+ | 0.44 and 0.58 | 423 (0.25 A·g-1) | 1000 (87%, 8 A·g-1) | |
VO2(A) hollow spheres | P42/nmc | 3 mol·L-1 Zn(CF3SO3)2 | Zn2+ | 0.44, 0.52 and 0.90 | 357 (0.1 A·g-1) | 500 (76%, 5 A·g-1) | |
VO2(D) hollow nanospheres | P21/c | 3 mol·L-1 Zn(SO4)2 | Zn2+, H2O, H+ | 0.57 and 0.92 | 408 (0.1 A·g-1) | 10000 (58.2%, 10 A·g-1) | |
Porous VO2(M)/CNTs | P21/c | 2 mol·L-1 Zn(SO4)2 | H+ | 0.55 and 0.85 | 248 (2 A·g-1) | 5000 (84.5%, 20 A·g-1) | |
Na3V2(PO4)3/C nanoparticles | R3${\bar c}$ | 0.5 mol·L-1 Zn(CH3COO)2 | Zn2+ | 1.1 | 97 (50 mA·g-1) | 100 (74%, 50 mA·g-1) | |
Na3V2(PO4)3@rGO microspheres | R3${\bar c}$ | 2 mol·L-1 Zn(CF3SO3)2 | Na+, Zn2+ | 1.02 and 1.26 | 114 (50 mA·g-1) | 200 (75%, 500 mA·g-1) | |
Na3V2(PO4)2F3@C microparticles | P42/mnm | 2 mol·L-1 Zn(CF3SO3)2 | Zn2+ | 1.25 and 1.62 | 60 (0.2 A·g-1) | 4000 (95%, 1 A·g-1) | |
VOPO4 microsheets | Pbam | 21 mol·L-1 LiTFSI-1 mol·L-1 Zn(CF3SO3)2 | Zn2+ | 1.20, 1.34, 1.53 and 1.82 | 139 (0.05 A·g-1) | 1000 (93%, 5 A·g-1) | |
VS2 nanosheets | P${\rm{\bar 3}}$ml | 1 mol·L-1 Zn(SO4)2 | Zn2+, H2O | 0.63 and 0.72 | 190.3 (0.05 A·g-1) | 200 (98%, 0.5 A·g-1) | |
VS4@rGO nanoparticles | I2/a | 1 mol·L-1 Zn(CF3SO3)2 | Zn2+ (and conversion mechanism) | 0.54 and 0.89 | 180 (1 A·g-1) | 165 (83.3%, 1 A·g-1) |
Fig 7
Bond-valence sum energy map of VO2(B) for the (a) a–b, (b) a–c, (c) b–c planes show all possible zinc sites in the VO2(B) crystal structure; (d) formation energy of ZnxVO2(B) (0 ≤ x ≤ 0.5); (e) calculated average redox potential and experimentally measured charge/discharge curve of ZnxVO2(B); (f) predicted mechanism of Zn2+ intercalation into VO2(B) 60."
Fig 10
(a) XRD pattern and SEM image of N3VPF@C; (b) CV curves in the potential range of 0.8–1.9 V at a scan rate of 0.2 mV·s-1 and (c) initial three charge/discharge profiles at 0.08 A·g-1 for CFF-Zn/2 mol·L-1 Zn(CF3SO3)2/N3VPF@C battery; (d) battery structure and Zn storage mechanism illustrations 66."
1 |
Chu S. ; Majumdar A. Nature 2012, 488, 294.
doi: 10.1038/nature11475 |
2 |
Stougie L. ; Giustozzi N. ; van der Kooi H. ; Stoppato A. Int. J. Energy Res. 2018, 42, 2916.
doi: 10.1002/er.4037 |
3 |
Yang Y. Q. ; Bremner S. ; Menictas C. ; Kay M. Renew. Sust. Energy Rev. 2018, 91, 109.
doi: 10.1016/j.rser.2018.03.047 |
4 |
Abraham K. M. J. Phys. Chem. Lett. 2015, 6, 830.
doi: 10.1021/jz5026273 |
5 |
Li M. ; Lu J. ; Chen Z. W. ; Amine K. Adv. Mater. 2018, 30, 1800561.
doi: 10.1002/adma.201800561 |
6 |
Sarma D. D. ; Shukla A. K. ACS Energy Lett. 2018, 3, 2841.
doi: 10.1021/acsenergylett.8b01966 |
7 |
Yoshino A. Angew. Chem. Int. Ed. 2012, 51, 5798.
doi: 10.1002/anie.201105006 |
8 |
Liu Z. Y. ; Huang Y. ; Huang Y. ; Yang Q. ; Li X. L. ; Huang Z. D. ; Zhi C. Y. Chem. Soc. Rev. 2020, 49, 180.
doi: 10.1039/c9cs00131j |
9 |
Wang Y. G. ; Yi J. ; Xia Y. Y. Adv. Energy Mater. 2012, 2, 830.
doi: 10.1002/aenm.201200065 |
10 |
Fang G. Z. ; Zhou J. ; Pan A. Q. ; Liang S. Q. ACS Energy Lett. 2018, 3, 2480.
doi: 10.1021/acsenergylett.8b01426 |
11 |
Li H. F. ; Ma L. T. ; Han C. P. ; Wang Z. F. ; Liu Z. X. ; Tang Z. J. ; Zhi C. Y. Nano Energy 2019, 62, 550.
doi: 10.1016/j.nanoen.2019.05.059 |
12 |
Ming J. ; Guo J. ; Xia C. ; Wang W. X. ; Alshareef H. N. Mater. Sci. Eng. R 2019, 135, 58.
doi: 10.1016/j.mser.2018.10.002 |
13 |
Selvakumaran D. ; Pan A. Q. ; Liang S. Q. ; Cao G. Z. J. Mater. Chem. A 2019, 7, 18209.
doi: 10.1039/c9ta05053a |
14 |
Song M. ; Tan H. ; Chao D. L. ; Fan H. J. Adv. Funct. Mater. 2018, 28, 1802564.
doi: 10.1002/adfm.201802564 |
15 |
Xu C. J. ; Li B. H. ; Du H. D. ; Kang F. Y. Angew. Chem. Int. Ed. 2012, 51, 933.
doi: 10.1002/anie.201106307 |
16 |
Alfaruqi M. H. ; Mathew V. ; Gim J. ; Kim S. ; Song J. ; Baboo J. P. ; Choi S. H. ; Kim J. Chem. Mater. 2015, 27, 3609.
doi: 10.1021/cm504717p |
17 |
Guo C. ; Liu H. M. ; Li J. F. ; Hou Z. G. ; Liang J. W. ; Zhou J. ; Zhu Y. C. ; Qian Y. T. Electrochim. Acta 2019, 304, 370.
doi: 10.1016/j.electacta.2019.03.008 |
18 |
Islam S. ; Alfaruqi M. H. ; Mathew V. ; Song J. ; Kim S. ; Kim S. ; Jo J. ; Baboo J. P. ; Pham D. T. ; Putro D. Y. ; et al J. Mater. Chem. A 2017, 5, 23299.
doi: 10.1039/c7ta07170a |
19 |
Khamsanga S. ; Pornprasertsuk R. ; Yonezawa T. ; Mohamad A. A. ; Kheawhom S. Sci. Rep. 2019, 9, 8441.
doi: 10.1038/s41598-019-44915-8 |
20 |
Wang C. Y. ; Wang M. Q. ; He Z. C. ; Liu L. ; Huang Y. D. ACS Appl. Energy Mater. 2020, 3, 1742.
doi: 10.1021/acsaem.9b02220 |
21 |
Wei C. G. ; Xu C. J. ; Li B. H. ; Du H. D. ; Kang F. Y. J. Phys. Chem. Solids 2012, 73, 1487.
doi: 10.1016/j.jpcs.2011.11.038 |
22 |
Trocoli R. ; La Mantia F. ChemSusChem 2015, 8, 481.
doi: 10.1002/cssc.201403143 |
23 |
Zhang L. Y. ; Chen L. ; Zhou X. F. ; Liu Z. P. Adv. Energy Mater. 2015, 5, 1400930.
doi: 10.1002/aenm.201400930 |
24 |
Zhang L. Y. ; Chen L. ; Zhou X. F. ; Liu Z. P. Sci. Rep. 2015, 5, 18263.
doi: 10.1038/srep18263 |
25 |
Kundu D. ; Adams B. D. ; Duffort V. ; Vajargah S. H. ; Nazar L. F. Nat. Energy 2016, 1, 16119.
doi: 10.1038/nenergy.2016.119 |
26 |
Xu X. M. ; Xiong F. Y. ; Meng J. S. ; Wang X. P. ; Niu C. J. ; An Q. Y. ; Mai L. Q. Adv. Funct. Mater. 2020, 30, 1904398.
doi: 10.1002/adfm.201904398 |
27 |
Zhang N. ; Dong Y. ; Jia M. ; Bian X. ; Wang Y. Y. ; Qiu M. D. ; Xu J. Z. ; Liu Y. C. ; Jiao L. F. ; Cheng F. Y. ACS Energy Lett. 2018, 3, 1366.
doi: 10.1021/acsenergylett.8b00565 |
28 |
Li Y. K. ; Huang Z. M. ; Kalambate P. K. ; Zhong Y. ; Huang Z. M. ; Xie M. L. ; Shen Y. ; Huang Y. H. Nano Energy 2019, 60, 752.
doi: 10.1016/j.nanoen.2019.04.009 |
29 |
Zhou J. ; Shan L. T. ; Wu Z. X. ; Guo X. ; Fang G. Z. ; Liang S. Q. Chem. Commun. 2018, 54, 4457.
doi: 10.1039/c8cc02250j |
30 |
Kühnel R. S. ; Reber D. ; Battaglia C. ACS Energy Lett. 2017, 2, 2005.
doi: 10.1021/acsenergylett.7b00623 |
31 |
Zhang N. ; Cheng F. Y. ; Liu Y. C. ; Zhao Q. ; Lei K. X. ; Chen C. C. ; Liu X. S. ; Chen J. J. Am. Chem. Soc. 2016, 138, 12894.
doi: 10.1021/jacs.6b05958 |
32 |
Huang S. ; Zhu J. C. ; Tian J. L. ; Niu Z. Q. Chem. Eur. J. 2019, 25, 14480.
doi: 10.1002/chem.201902660 |
33 |
Hu P. ; Yan M. Y. ; Zhu T. ; Wang X. P. ; Wei X. J. ; Li J. T. ; Zhou L. ; Li Z. H. ; Chen L. N. ; Mai L. Q. ACS Appl. Mater. Interfaces 2017, 9, 42717.
doi: 10.1021/acsami.7b13110 |
34 |
Chen X. L. ; Wang L. B. ; Li H. ; Cheng F. Y. ; Chen J. J. Energy Chem. 2019, 38, 20.
doi: 10.1016/j.jechem.2018.12.023 |
35 |
Dong Y. ; Di S. L. ; Zhang F. B. ; Bian X. ; Wang Y. Y. ; Xu J. Z. ; Wang L. B. ; Cheng F. Y. ; Zhang N. J. Mater. Chem. A 2020, 8, 3252.
doi: 10.1039/c9ta13068c |
36 |
Zhang N. ; Cheng F. Y. ; Liu J. X. ; Wang L. B. ; Long X. H. ; Liu X. S. ; Li F. J. ; Chen J. Nat. Commun. 2017, 8, 405.
doi: 10.1038/s41467-017-00467-x |
37 |
Zhang N. ; Dong Y. ; Wang Y. Y. ; Wang Y. X. ; Li J. J. ; Xu J. Z. ; Liu Y. C. ; Jiao L. F. ; Cheng F. Y. ACS Appl. Mater. Interfaces 2019, 11, 32978.
doi: 10.1021/acsami.9b10399 |
38 |
Zhang N. ; Jia M. ; Dong Y. ; Wang Y. Y. ; Xu J. Z. ; Liu Y. C. ; Jiao L. F. ; Cheng F. Y. Adv. Funct. Mater. 2019, 29, 1807331.
doi: 10.1002/adfm.201807331 |
39 |
Chen L. L. ; Yang Z. H. ; Cui F. ; Meng J. L. ; Chen H. Z. ; Zeng X. Appl. Surf. Sci. 2020, 507, 145137.
doi: 10.1016/j.apsusc.2019.145137 |
40 |
Javed M. S. ; Lei H. ; Wang Z. L. ; Liu B. T. ; Cai X. ; Mai W. J. Nano Energy 2020, 70, 104573.
doi: 10.1016/j.nanoen.2020.104573 |
41 |
Wang X. Y. ; Ma L. W. ; Sun J. K. ACS Appl. Mater. Interfaces 2019, 11, 41297.
doi: 10.1021/acsami.9b13103 |
42 |
Wang X. Y. ; Ma L. W. ; Zhang P. C. ; Wang H. Y. ; Li S. ; Ji S. J. ; Wen Z. S. ; Sun J. K. Appl. Surf. Sci. 2020, 502, 144207.
doi: 10.1016/j.apsusc.2019.144207 |
43 |
Chen D. ; Rui X. H. ; Zhang Q. ; Geng H. B. ; Gan L. Y. ; Zhang W. ; Li C. C. ; Huang S. M. ; Yu Y. Nano Energy 2019, 60, 171.
doi: 10.1016/j.nanoen.2019.03.034 |
44 |
Ding Y. C. ; Peng Y. Q. ; Chen W. Y. ; Niu Y. J. ; Wu S. G. ; Zhang X. X. ; Hu L. H. Appl. Surf. Sci. 2019, 493, 368.
doi: 10.1016/j.apsusc.2019.07.026 |
45 |
Wang H. L. ; Bi X. X. ; Bai Y. ; Wu C. ; Gu S. C. ; Chen S. ; Wu F. ; Amine K. ; Lu J. Adv. Energy Mater. 2017, 7, 1602720.
doi: 10.1002/aenm.201602720 |
46 |
Yan M. Y. ; He P. ; Chen Y. ; Wang S. Y. ; Wei Q. L. ; Zhao K. N. ; Xu X. ; An Q. Y. ; Shuang Y. ; Shao Y. Y. ; et al Adv. Mater. 2018, 30, 1703725.
doi: 10.1002/adma.201703725 |
47 |
Yang Y. Q. ; Tang Y. ; Fang G. Z. ; Shan L. T. ; Guo J. S. ; Zhang W. Y. ; Wang C. ; Wang L. B. ; Zhou J. ; Liang S. Q. Energy Environ. Sci. 2018, 11, 3157.
doi: 10.1039/c8ee01651h |
48 |
Xu G. B. ; Liu X. ; Huang S. J. ; Li L. ; Wei X. L. ; Cao J. X. ; Yang L. W. ; Chu P. K. ACS Appl. Mater. Interfaces 2020, 12, 706.
doi: 10.1021/acsami.9b17653 |
49 |
Xia C. ; Guo J. ; Li P. ; Zhang X. X. ; Alshareef H. N. Angew. Chem. Int. Ed. 2018, 57, 3943.
doi: 10.1002/anie.201713291 |
50 |
Lan B. X. ; Peng Z. ; Chen L. N. ; Tang C. ; Dong S. J. ; Chen C. ; Zhou M. ; Chen C. ; An Q. Y. ; Luo P. J. Alloys Compd. 2019, 787, 9.
doi: 10.1016/j.jallcom.2019.02.078 |
51 |
Ming F. W. ; Liang H. F. ; Lei Y. J. ; Kandambeth S. ; Eddaoudi M. ; Alshareef H. N. ACS Energy Lett. 2018, 3, 2602.
doi: 10.1021/acsenergylett.8b01423 |
52 |
Yang Y. Q. ; Tang Y. ; Liang S. Q. ; Wu Z. X. ; Fang G. Z. ; Cao X. X. ; Wang C. ; Lin T. Q. ; Pan A. Q. ; Zhou J. Nano Energy 2019, 61, 617.
doi: 10.1016/j.nanoen.2019.05.005 |
53 |
Geng H. B. ; Cheng M. ; Wang B. ; Yang Y. ; Zhang Y. F. ; Li C. C. Adv. Funct. Mater. 2020, 30, 1907684.
doi: 10.1002/adfm.201907684 |
54 |
Liu F. ; Chen Z. X. ; Fang G. Z. ; Wang Z. Q. ; Cai Y. S. ; Tang B. Y. ; Zhou J. ; Liang S. Q. Nanomicro Lett. 2019, 11, 25.
doi: 10.1007/s40820-019-0256-2 |
55 |
Liu S. C. ; Zhu H. ; Zhang B. H. ; Li G. ; Zhu H. K. ; Ren Y. ; Geng H. B. ; Yang Y. ; Liu Q. ; Li C. C. Adv. Mater. 2020, e2001113.
doi: 10.1002/adma.202001113 |
56 |
Li R. X. ; Yu X. ; Bian X. F. ; Hu F. RSC Adv. 2019, 9, 35117.
doi: 10.1039/c9ra07340j |
57 |
Lee S. ; Ivanov I. N. ; Keum J. K. ; Lee H. N. Sci. Rep. 2016, 6, 19621.
doi: 10.1038/srep19621 |
58 |
Ni J. ; Jiang W. T. ; Yu K. ; Sun F. ; Zhu Z. Q. Cryst. Res. Technol. 2011, 46, 507.
doi: 10.1002/crat.201100110 |
59 |
Chen L. N. ; Ruan Y. S. ; Zhang G. B. ; Wei Q. L. ; Jiang Y. L. ; Xiong T. F. ; He P. ; Yang W. ; Yan M. Y. ; An Q. Y. ; et al Chem. Mater. 2019, 31, 699.
doi: 10.1021/acs.chemmater.8b03409 |
60 |
Park J. S. ; Jo J. H. ; Aniskevich Y. ; Bakavets A. ; Ragoisha G. ; Streltsov E. ; Kim J. ; Myung S. T. Chem. Mater. 2018, 30, 6777.
doi: 10.1021/acs.chemmater.8b02679 |
61 |
Jia D. D. ; Zheng K. ; Song M. ; Tan H. ; Zhang A. T. ; Wang L. H. ; Yue L. J. ; Li D. ; Li C. W. ; Liu J. Q. Nano Res. 2020, 13, 215.
doi: 10.1007/s12274-019-2603-5 |
62 |
Chen L. L. ; Yang Z. H. ; Huang Y. G. Nanoscale 2019, 11, 13032.
doi: 10.1039/c9nr03129d |
63 |
Zhang L. S. ; Miao L. ; Zhang B. ; Wang J. S. ; Liu J. ; Tan Q. Y. ; Wan H. Z. ; Jiang J. J. J. Mater. Chem. A 2020, 8, 1731.
doi: 10.1039/c9ta11031c |
64 |
Li G. L. ; Yang Z. ; Jiang Y. ; Jin C. H. ; Huang W. ; Ding X. L. ; Huang Y. H. Nano Energy 2016, 25, 211.
doi: 10.1016/j.nanoen.2016.04.051 |
65 |
Hu P. ; Zhu T. ; Wang X. P. ; Zhou X. F. ; Wei X. J. ; Yao X. H. ; Luo W. ; Shi C. W. ; Owusu K. A. ; Zhou L. ; et al Nano Energy 2019, 58, 492.
doi: 10.1016/j.nanoen.2019.01.068 |
66 |
Li W. ; Wang K. L. ; Cheng S. J. ; Jiang K. Energy Stor. Mater. 2018, 15, 14.
doi: 10.1016/j.ensm.2018.03.003 |
67 |
Wan F. ; Zhang Y. ; Zhang L. L. ; Liu D. B. ; Wang C. D. ; Song L. ; Niu Z. Q. ; Chen J. Angew. Chem. Int. Ed. 2019, 58, 7062.
doi: 10.1002/anie.201902679 |
68 |
He P. ; Yan M. Y. ; Zhang G. B. ; Sun R. M. ; Chen L. N. ; An Q. Y. ; Mai L. Q. Adv. Energy Mater. 2017, 7, 1601920.
doi: 10.1002/aenm.201601920 |
69 |
Qin H. G. ; Yang Z. H. ; Chen L. L. ; Chen X. ; Wang L. M. J. Mater. Chem. A 2018, 6, 23757.
doi: 10.1039/c8ta08133f |
70 |
Dai X. ; Wan F. ; Zhang L. L. ; Cao H. M. ; Niu Z. Q. Energy Stor. Mater. 2019, 17, 143.
doi: 10.1016/j.ensm.2018.07.022 |
71 |
Wei T. Y. ; Li Q. ; Yang G. Z. ; Wang C. X. J. Mater. Chem. A 2018, 6, 8006.
doi: 10.1039/c8ta02090f |
72 | Song W. X. ; Hou H. S. ; Ji X. B. Acta Phys. -Chim. Sin. 2017, 33, 103. |
宋维鑫; 侯红帅; 纪效波. 物理化学学报, 2017, 33, 103.
doi: 10.3866/PKU.WHXB201608303 |
|
73 |
Jian Z. L. ; Zhao L. ; Pan H. L. ; Hu Y. S. ; Li H. ; Chen W. ; Chen L. Q. Electrochem. Commun. 2012, 14, 86.
doi: 10.1016/j.elecom.2011.11.009 |
74 | Gu Z. Y. ; Guo J. Z. ; Yang Y. ; Zhao X. X. ; Yang X. ; Nie X. J. ; He X. Y. ; Wu X. L. Chin. J. Inorg. Chem. 2019, 35, 1535. |
谷振一; 郭晋芝; 杨洋; 赵欣欣; 杨旭; 聂雪娇; 何晓燕; 吴兴隆. 无机化学学报, 2019, 35, 1535.
doi: 10.11862/CJIC.2019.188 |
|
75 | Guo J. Z. ; Wan F. ; Wu X. L. ; Zhang J. P. J. Mol. Sci. 2016, 32, 265. |
郭晋芝; 万放; 吴兴隆; 张景萍. 分子科学学报, 2016, 32, 265.
doi: 10.13563/j.cnki.jmolsci.2016.04.001 |
|
76 |
Hu P. ; Zou Z. Y. ; Sun X. W. ; Wang D. ; Ma J. ; Kong Q. Y. ; Xiao D. D. ; Gu L. ; Zhou X. H. ; Zhao J. W. ; et al Adv. Mater. 2020, 32, 1907526.
doi: 10.1002/adma.201907526 |
[1] | Hao-Tian Teng, Wen-Tao Wang, Xiao-Feng Han, Xiang Hao, Ruizhi Yang, Jing-Hua Tian. Recent Development and Perspectives of Flexible Zinc-Air Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2107017-0. |
[2] | Feng Wu, Qing Li, Lai Chen, Zirun Wang, Gang Chen, Liying Bao, Yun Lu, Shi Chen, Yuefeng Su. An Optimized Synthetic Process for the Substitution of Cobalt in Nickel-Rich Cathode Materials [J]. Acta Phys. -Chim. Sin., 2022, 38(5): 2007017-. |
[3] | Zheng Bo, Jing Kong, Huachao Yang, Zhouwei Zheng, Pengpeng Chen, Jianhua Yan, Kefa Cen. Ultra-Low-Temperature Supercapacitor Based on Holey Graphene and Mixed-Solvent Organic Electrolyte [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2005054-. |
[4] | Xinrun Yu, Jun Ma, Chunbo Mou, Guanglei Cui. Percolation Structure Design of Organic-inorganic Composite Electrolyte with High Lithium-Ion Conductivity [J]. Acta Phys. -Chim. Sin., 2022, 38(3): 1912061-. |
[5] | Zixu He, Yawei Chen, Fanyang Huang, Yulin Jie, Xinpeng Li, Ruiguo Cao, Shuhong Jiao. Fluorinated Solvents for Lithium Metal Batteries [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2205005-. |
[6] | Yuanhao Shen, Qingyu Wang, Jie Liu, Cheng Zhong, Wenbin Hu. Spontaneous Reduction and Adsorption of K3[Fe(CN)6] on Zn Anodes in Alkaline Electrolytes: Enabling a Long-Life Zn-Ni Battery [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2204048-0. |
[7] | Jujia Zhang, Jin Zhang, Haining Wang, Yan Xiang, Shanfu Lu. Advancement in Distribution and Control Strategy of Phosphoric Acid in Membrane Electrode Assembly of High-Temperature Polymer Electrolyte Membrane Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2010071-. |
[8] | Liliang Tian, Weiqi Zhang, Zheng Xie, Kai Peng, Qiang Ma, Qian Xu, Sivakumar Pasupathi, Huaneng Su. Enhanced Performance and Durability of High-Temperature Polymer Electrolyte Membrane Fuel Cell by Incorporating Covalent Organic Framework into Catalyst Layer [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2009049-. |
[9] | Jiangtao Huang, Jiang Zhou, Shuquan Liang. Guest Pre-Intercalation Strategy to Boost the Electrochemical Performance of Aqueous Zinc-Ion Battery Cathodes [J]. Acta Phys. -Chim. Sin., 2021, 37(3): 2005020-. |
[10] | Yuefeng Su, Qiyu Zhang, Lai Chen, Liying Bao, Yun Lu, Shi Chen, Feng Wu. Effects of ZrO2 Coating on Ni-Rich LiNi0.8Co0.1Mn0.1O2 Cathodes with Enhanced Cycle Stabilities [J]. Acta Phys. -Chim. Sin., 2021, 37(3): 2005062-. |
[11] | Gaolong Zhu, Chenzi Zhao, Hong Yuan, Haoxiong Nan, Bochen Zhao, Lipeng Hou, Chuangxin He, Quanbing Liu, Jiaqi Huang. Liquid Phase Therapy with Localized High-Concentration Electrolytes for Solid-State Li Metal Pouch Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2005003-. |
[12] | Jun Guan, Nianwu Li, Le Yu. Artificial Interphase Layers for Lithium Metal Anode [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2009011-. |
[13] | Zhida Wang, Yuancheng Feng, Songtao Lu, Rui Wang, Wei Qin, Xiaohong Wu. Improvement in Performance of Three-Dimensional SnLi/Carbon Paper Anode in Lean Electrolyte with In Situ Fluorinated Protection Layer [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2008082-. |
[14] | Guangbin Hua, Yanchen Fan, Qianfan Zhang. Application of Computational Simulation on the Study of Lithium Metal Anodes [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2008089-. |
[15] | Chen Wu, Ying Zhou, Xiaolong Zhu, Minzhi Zhan, Hanxi Yang, Jiangfeng Qian. Research Progress on High Concentration Electrolytes for Li Metal Batteries [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2008044-. |
|