Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (5): 2006080.doi: 10.3866/PKU.WHXB202006080
Special Issue: CO2 Reduction
• REVIEW • Previous Articles Next Articles
Received:
2020-06-30
Accepted:
2020-07-25
Published:
2020-07-31
Contact:
Xinjiang Cui,Feng Shi
E-mail:xinjiangcui@licp.cas.cn;fshi@licp.cas.cn
About author:
Email: fshi@licp.cas.cn (F.S.); Tel.: +86-931-4968142 (F.S.)Supported by:
MSC2000:
Xinjiang Cui, Feng Shi. Selective Conversion of CO2 by Single-Site Catalysts[J].Acta Phys. -Chim. Sin., 2021, 37(5): 2006080.
1 |
Flytzani-Stephanopoulos M. Acc. Chem. Res. 2014, 47, 783.
doi: 10.1021/ar4001845 |
2 |
Aresta M. ; Dibenedetto A. ; Angelini A. Chem. Rev. 2014, 114, 1709.
doi: 10.1021/cr4002758 |
3 |
Ding M. L. ; Flaig R. W. ; Jiang H. L. ; Yaghi O. M. Chem. Soc. Rev. 2019, 48, 2783.
doi: 10.1039/c8cs00829a |
4 |
Zhou W. ; Cheng K. ; Kang J. C. ; Zhou C. ; Subramanian V. ; Zhang Q. H. ; Wang Y. Chem. Soc. Rev. 2019, 48, 3193.
doi: 10.1039/c8cs00502h |
5 |
Nugent P. ; Belmabkhout Y. ; Burd S. D. ; Cairns A. J. ; Luebke R. ; Forrest K. ; Pham T. ; Ma S. Q. ; Space B. ; Wojtas L. ; et al Nature 2013, 495, 80.
doi: 10.1038/nature11893 |
6 |
Li T. ; Sullivan J. E. ; Rosi N. L. J. Am. Chem. Soc. 2013, 135, 9984.
doi: 10.1021/ja403008j |
7 |
Sarshar Z. ; Sun Z. K. ; Zhao D. Y. ; Kaliaguine S. Energy Fuels 2012, 26, 3091.
doi: 10.1021/ef3003137 |
8 |
Cai R. L. ; You B. ; Chen M. ; Wu L. M. Carbon 2019, 150, 43.
doi: 10.1016/j.carbon.2019.05.001 |
9 |
Ma X. T. ; Li Y. J. ; Duan L. B. ; Anthony E. ; Liu H. T. Appl. Energ. 2018, 225, 402.
doi: 10.1016/j.apenergy.2018.05.008 |
10 |
Chen W. C. ; Shen J. S. ; Jurca T. ; Peng C. J. ; Lin Y. H. ; Wang Y. P. ; Shih W. C. ; Yap G. P. A. ; Ong T. G. Angew. Chem. Int. Ed. 2015, 54, 15207.
doi: 10.1002/anie.201507921 |
11 |
Guo X. P. ; Peng Z. J. ; Traitangwong A. ; Wang G. ; Xu H. Y. ; Meeyoo V. ; Li C. S. ; Zhang S. J. Green Chem. 2018, 20, 4932.
doi: 10.1039/c8gc02337a |
12 |
Sakpal T. ; Lefferts L. J. Catal. 2018, 367, 171.
doi: 10.1016/j.jcat.2018.08.027 |
13 |
Wang X. ; Hong Y. C. ; Shi H. ; Szanyi J. J. Catal. 2016, 343, 185.
doi: 10.1016/j.jcat.2016.02.001 |
14 |
Wang F. ; He S. ; Chen H. ; Wang B. ; Zheng L. R. ; Wei M. ; Evans D. G. ; Duan X. J. Am. Chem. Soc. 2016, 138, 6298.
doi: 10.1021/jacs.6b02762 |
15 |
Gao P. ; Li S. G. ; Bu X. N. ; Dang S. S. ; Liu Z. Y. ; Wang H. ; Zhong L. S. ; Qiu M. H. ; Yang C. G. ; Cai J. ; et al Nat. Chem. 2017, 9, 1019.
doi: 10.1038/Nchem.2794 |
16 |
Dinh C. T. ; Burdyny T. ; Kibria M. G. ; Seifitokaldani A. ; Gabardo C. M. ; de Arquer F. P. G. ; Kiani A. ; Edwards J. P. ; De Luna P. ; Bushuyev O. S. ; et al Science 2018, 360, 783.
doi: 10.1126/science.aas9100 |
17 |
Rao H. ; Chmidt L. C. S. ; Bonin J. ; Robert M. Nature 2017, 548, 74.
doi: 10.1038/nature23016 |
18 |
Olah G. A. ; Prakash G. K. S. ; Goeppert A. J. Am. Chem. Soc. 2011, 133, 12881.
doi: 10.1021/ja202642y |
19 |
Blondiaux E. ; Pouessel J. ; Cantat T. Angew. Chem. Int. Ed. 2014, 53, 12186.
doi: 10.1002/anie.201407357 |
20 |
Liu X. F. ; Li X. Y. ; Qiao C. ; Fu H. C. ; He L. N. Angew. Chem. Int. Ed. 2017, 56, 7425.
doi: 10.1002/anie.201702734 |
21 |
Nguyen T. V. Q. ; Yoo W. J. ; Kobayashi S. Angew. Chem. Int. Ed. 2015, 54, 9209.
doi: 10.1002/anie.201504072 |
22 |
Klankermayer J. ; Wesselbaum S. ; Beydoun K. ; Leitner W. Angew. Chem. Int. Ed. 2016, 55, 7296.
doi: 10.1002/anie.201507458 |
23 |
Das U. K. ; Kumar A. ; Ben-David Y. ; Iron M. A. ; Milstein D. J. Am. Chem. Soc. 2019, 141, 12962.
doi: 10.1021/jacs.9b05591 |
24 |
Kar S. ; Sen R. ; Goeppert A. ; Prakash G. K. S. J. Am. Chem. Soc. 2018, 140, 1580.
doi: 10.1021/jacs.7b12183 |
25 |
Kar S. ; Sen R. ; Kothandaraman J. ; Goeppert A. ; Chowdhury R. ; Munoz S. B. ; Haiges R. ; Prakash G. K. S. J. Am. Chem. Soc. 2019, 141, 3160.
doi: 10.1021/jacs.8b12763 |
26 |
Wang L. ; Yan T. J. ; Song R. ; Sun W. ; Dong Y. C. ; Guo J. L. ; Zhang Z. Z. ; Wang X. X. ; Ozin G. A. Angew. Chem. Int. Ed. 2019, 58, 9501.
doi: 10.1002/anie.201904568 |
27 |
Scott D. J. ; Fuchter M. J. ; Ashley A. E. Chem. Soc. Rev. 2017, 46, 5689.
doi: 10.1039/c7cs00154a |
28 |
Mo Z. B. ; Pit A. ; Campos J. ; Kolychev E. L. ; Aldridge S. J. Am. Chem. Soc. 2016, 138, 3306.
doi: 10.1021/jacs.6b01170 |
29 |
Rokob T. A. ; Hamza A. ; Papai I. J. Am. Chem. Soc. 2009, 131, 10701.
doi: 10.1021/ja903878z |
30 |
Lee H. K. ; Lee Y. H. ; Morabito J. V. ; Liu Y. J. ; Koh C. S. L. ; Phang I. Y. ; Pedireddy S. ; Han X. M. ; Chou L. Y. ; Tsung C. K. ; et al J. Am. Chem. Soc. 2017, 139, 11513.
doi: 10.1021/jacs.7b04936 |
31 |
Li Z. H. ; Rayder T. M. ; Luo L. S. ; Byers J. A. ; Tsung C. K. J. Am. Chem. Soc. 2018, 140, 8082.
doi: 10.1021/jacs.8b04047 |
32 |
Moses-DeBusk M. ; Yoon M. ; Allard L. F. ; Mullins D. R. ; Wu Z. L. ; Yang X. F. ; Veith G. ; Stocks G. M. ; Narula C. K. J. Am. Chem. Soc. 2013, 135, 12634.
doi: 10.1021/ja401847c |
33 |
Qiao B. T. ; Wang A. Q. ; Yang X. F. ; Allard L. F. ; Jiang Z. ; Cui Y. T. ; Liu J. Y. ; Li J. ; Zhang T. Nat. Chem. 2011, 3, 634.
doi: 10.1038/Nchem.1095 |
34 |
Ding K. ; Gulec A. ; Johnson A. M. ; Schweitzer N. M. ; Stucky G. D. ; Marks L. D. ; Stair P. C. Science 2015, 350, 189.
doi: 10.1126/science.aac6368 |
35 |
Yang S. ; Kim J. ; Tak Y. J. ; Soon A. ; Lee H. Angew. Chem. Int. Ed. 2016, 55, 2058.
doi: 10.1002/anie.201509241 |
36 |
Cheng N. C. ; Stambula S. ; Wang D. ; Banis M. N. ; Liu J. ; Riese A. ; Xiao B. W. ; Li R. Y. ; Sham T. K. ; Liu L. M. ; et al Nat. Commun. 2016, 7, 13638.
doi: 10.1038/Ncomms13638 |
37 |
Gu J. ; Hsu C. S. ; Bai L. C. ; Chen H. M. ; Hu X. L. Science 2019, 364, 1091.
doi: 10.1126/science.aaw7515 |
38 |
Lucci F. R. ; Liu J. L. ; Marcinkowski M. D. ; Yang M. ; Allard L. F. ; Flytzani-Stephanopoulos M. ; Sykes E. C. H. Nat. Commun. 2015, 6, 8550.
doi: 10.1038/Ncomms9550 |
39 |
Cui X. J. ; Li W. ; Ryabchuk P. ; Junge K. ; Beller M. Nat. Catal. 2018, 1, 385.
doi: 10.1038/s41929-018-0090-9 |
40 |
Cui X. J. ; Junge K. ; Dai X. C. ; Kreyenschulte C. ; Pohl M. M. ; Wohlrab S. ; Shi F. ; Bruckner A. ; Beller M. ACS Cent. Sci. 2017, 3, 580.
doi: 10.1021/acscentsci.7b00105 |
41 |
Li Q. ; Fu J. J. ; Zhu W. L. ; Chen Z. Z. ; Shen B. ; Wu L. H. ; Xi Z. ; Wang T. Y. ; Lu G. ; Zhu J. J. ; et al J. Am. Chem. Soc. 2017, 139, 4290.
doi: 10.1021/jacs.7b00261 |
42 |
Luc W. ; Collins C. ; Wang S. W. ; Xin H. L. ; He K. ; Kang Y. J. ; Jiao F. J. Am. Chem. Soc. 2017, 139, 1885.
doi: 10.1021/jacs.6b10435 |
43 |
Cored J. ; Garcia-Ortiz A. ; Iborra S. ; Climent M. J. ; Liu L. C. ; Chuang C. H. ; Chan T. S. ; Escudero C. ; Concepcion P. ; Corma A. J. Am. Chem. Soc. 2019, 141, 19304.
doi: 10.1021/jacs.9b07088 |
44 |
Zhai Q. G. ; Xie S. J. ; Fan W. Q. ; Zhang Q. H. ; Wang Y. ; Deng W. P. ; Wang Y. Angew. Chem. Int. Ed. 2013, 52, 5776.
doi: 10.1002/anie.201301473 |
45 |
O'Mara P. B. ; Wilde P. ; Benedetti T. M. ; Andronescu C. ; Cheong S. ; Gooding J. J. ; Tilley R. D. ; Schuhmann W. J. Am. Chem. Soc. 2019, 141, 14093.
doi: 10.1021/jacs.9b07310 |
46 |
Sanchez-Contador M. S. ; Ateka A. ; Aguayo A. T. ; Bilbao J. Fuel Process. Technol. 2018, 179, 258.
doi: 10.1016/j.fuproc.2018.07.009 |
47 |
Wang X. X. ; Yang G. H. ; Zhang J. F. ; Chen S. Y. ; Wu Y. Q. ; Zhang Q. D. ; Wang J. W. ; Han Y. Z. ; Tan Y. S. Chem. Commun. 2016, 52, 7352.
doi: 10.1039/c6cc01965j |
48 |
Humphrey J. J. L. ; Plana D. ; Celorrio V. ; Sadasivan S. ; Tooze R. P. ; Rodriguez P. ; Fermin D. J. ChemCatChem 2016, 8, 952.
doi: 10.1002/cctc.201501260 |
49 |
Ren D. ; Gao J. ; Pan L. F. ; Wang Z. W. ; Luo J. S. ; Zakeeruddin S. M. ; Hagfeldt A. ; Gratzel M. Angew. Chem. Int. Ed. 2019, 58, 15036.
doi: 10.1002/anie.201909610 |
50 |
Zhao C. M. ; Dai X. Y. ; Yao T. ; Chen W. X. ; Wang X. Q. ; Wang J. ; Yang J. ; Wei S. Q. ; Wu Y. E. ; Li Y. D. J. Am. Chem. Soc. 2017, 139, 8078.
doi: 10.1021/jacs.7b02736 |
51 |
Cheng Y. ; Zhao S. Y. ; Johannessen B. ; Veder J. P. ; Saunders M. ; Rowles M. R. ; Cheng M. ; Liu C. ; Chisholm M. F. ; De Marco R. ; et al Adv. Mater. 2018, 30, 1706287.
doi: 10.1002/adma.201706287 |
52 |
Jeong H. Y. ; Balamurugan M. ; Choutipalli V. S. K. ; Jo J. ; Baik H. ; Subramanian V. ; Kim M. ; Sim U. ; Nam K. T. Chem. Eur. J. 2018, 24, 18444.
doi: 10.1002/chem.201803615 |
53 |
Jiang K. ; Siahrostami S. ; Zheng T. T. ; Hu Y. F. ; Hwang S. ; Stavitski E. ; Peng Y. D. ; Dynes J. ; Gangisetty M. ; Su D. ; et al Energy Environ. Sci. 2018, 11, 893.
doi: 10.1039/c7ee03245e |
54 |
Yang H. B. ; Hung S. F. ; Liu S. ; Yuan K. D. ; Miao S. ; Zhang L. P. ; Huang X. ; Wang H. Y. ; Cai W. Z. ; Chen R. ; et al Nat. Energ. 2018, 3, 140.
doi: 10.1038/s41560-017-0078-8 |
55 |
Mou K. W. ; Chen Z. P. ; Zhang X. X. ; Jiao M. Y. ; Zhang X. P. ; Ge X. ; Zhang W. ; Liu L. C. Small 2019, 15, 1903668.
doi: 10.1002/smll.201903668 |
56 |
Yuan C. Z. ; Liang K. ; Xia X. M. ; Yang Z. K. ; Jiang Y. F. ; Zhao T. ; Lin C. ; Cheang T. Y. ; Zhong S. L. ; Xu A. W. Catal. Sci. Technol. 2019, 9, 3669.
doi: 10.1039/c9cy00363k |
57 |
Gong Y. N. ; Jiao L. ; Qian Y. Y. ; Pan C. Y. ; Zheng L. R. ; Cai X. C. ; Liu B. ; Yu S. H. ; Jiang H. L. Angew. Chem. Int. Ed. 2020, 59, 2705.
doi: 10.1002/anie.201914977 |
58 |
Rong X. ; Wang H. J. ; Lu X. L. ; Si R. ; Lu T. B. Angew. Chem. Int. Ed. 2020, 59, 1961.
doi: 10.1002/anie.201912458 |
59 |
Liu S. ; Yang H. B. ; Hung S. F. ; Ding J. ; Cai W. Z. ; Liu L. H. ; Gao J. J. ; Li X. N. ; Ren X. Y. ; Kuang Z. C. ; et al Angew. Chem. Int. Ed. 2019, 59, 789.
doi: 10.1002/anie.201911995 |
60 |
Zhao C. M. ; Wang Y. ; Li Z. J. ; Chen W. X. ; Xu Q. ; He D. S. ; Xi D. S. ; Zhang Q. H. ; Yuan T. W. ; Qu Y. T. ; et al Joule 2019, 3, 584.
doi: 10.1016/j.joule.2018.11.008 |
61 |
Zheng T. T. ; Jiang K. ; Ta N. ; Hu Y. F. ; Zeng J. ; Liu J. Y. ; Wang H. T. Joule 2019, 3, 265.
doi: 10.1016/j.joule.2018.10.015 |
62 |
Pan Y. ; Lin R. ; Chen Y. J. ; Liu S. J. ; Zhu W. ; Cao X. ; Chen W. X. ; Wu K. L. ; Cheong W. C. ; Wang Y. ; et al J. Am. Chem. Soc. 2018, 140, 4218.
doi: 10.1021/jacs.8b00814 |
63 |
Wang X. Q. ; Chen Z. ; Zhao X. Y. ; Yao T. ; Chen W. X. ; You R. ; Zhao C. M. ; Wu G. ; Wang J. ; Huang W. X. ; et al Angew. Chem. Int. Ed. 2018, 57, 1944.
doi: 10.1002/anie.201712451 |
64 |
Han J. Y. ; An P. F. ; Liu S. H. ; Zhang X. F. ; Wang D. W. ; Yuan Y. ; Guo J. ; Qiu X. Y. ; Hou K. ; Shi L. ; et al Angew. Chem. Int. Ed. 2019, 58, 12711.
doi: 10.1002/anie.201907399 |
65 |
He Q. ; Liu D. B. ; Lee J. H. ; Liu Y. M. ; Xie Z. H. ; Hwang S. ; Kattel S. ; Song L. ; Chen J. G. G. Angew. Chem. Int. Ed. 2020, 59, 3033.
doi: 10.1002/anie.201912719 |
66 |
Qin X. P. ; Zhu S. Q. ; Xiao F. ; Zhang L. L. ; Shao M. H. ACS Energy Lett. 2019, 4, 1778.
doi: 10.1021/acsenergylett.9b01015 |
67 |
Sun X. H. ; Wang R. M. ; Ould-Chikh S. ; Osadchii D. ; Li G. N. ; Aguilar A. ; Hazemann J. L. ; Kapteijn F. ; Gascon J. J. Catal. 2019, 378, 320.
doi: 10.1016/j.jcat.2019.09.013 |
68 |
Zhang H. N. ; Li J. ; Xi S. B. ; Du Y. H. ; Hai X. ; Wang J. Y. ; Xu H. M. ; Wu G. ; Zhang J. ; Lu J. ; Wang J. Z. Angew. Chem. Int. Ed. 2019, 58, 14871.
doi: 10.1002/anie.201906079 |
69 |
Chen X. ; Ma D. D. ; Chen B. ; Zhang K. X. ; Zou R. Q. ; Wu X. T. ; Zhu Q. L. Appl. Catal. B-Environ. 2020, 267, 118720.
doi: 10.1016/j.apcatb.2020.118720 |
70 |
Zhang Z. ; Ma C. ; Tu Y. C. ; Si R. ; Wei J. ; Zhang S. H. ; Wang Z. ; Li J. F. ; Wang Y. ; Deng D. H. Nano Res. 2019, 12, 2313.
doi: 10.1007/s12274-019-2316-9 |
71 |
Pan F. P. ; Zhang H. G. ; Liu K. X. ; Cullen D. ; More K. ; Wang M. Y. ; Feng Z. X. ; Wang G. F. ; Wu G. ; Li Y. ACS Catal. 2018, 8, 3116.
doi: 10.1021/acscatal.8b00398 |
72 |
Yang F. ; Song P. ; Liu X. Z. ; Mei B. B. ; Xing W. ; Jiang Z. ; Gu L. ; Xu W. L. Angew. Chem. Int. Ed. 2018, 57, 12303.
doi: 10.1002/anie.201805871 |
73 |
Jia M. W. ; Hong S. ; Wu T. S. ; Li X. ; Soo Y. L. ; Sun Z. Y. Chem. Commun. 2019, 55, 12024.
doi: 10.1039/c9cc06178a |
74 |
Zhang E. H. ; Wang T. ; Yu K. ; Liu J. ; Chen W. X. ; Li A. ; Rong H. P. ; Lin R. ; Ji S. F. ; Zhene X. S. ; et al J. Am. Chem. Soc. 2019, 141, 16569.
doi: 10.1021/jacs.9b08259 |
75 |
He Q. ; Lee J. H. ; Liu D. B. ; Liu Y. M. ; Lin Z. X. ; Xie Z. H. ; Hwang S. ; Kattel S. ; Song L. ; Chen J. G. Adv. Funct. Mater. 2020, 2000407.
doi: 10.1002/adfm.202000407 |
76 |
Huang P. C. ; Cheng M. ; Zhang H. H. ; Zuo M. ; Xiao C. ; Xie Y. Nano Energy 2019, 61, 428.
doi: 10.1016/j.nanoen.2019.05.003 |
77 |
Karapinar D. ; Huan N. T. ; Sahraie N. R. ; Li J. K. ; Wakerley D. ; Touati N. ; Zanna S. ; Taverna D. ; Tizei L. H. G. ; Zitolo A. ; et al Angew. Chem. Int. Ed. 2019, 58, 15098.
doi: 10.1002/anie.201907994 |
78 |
Lee D. K. ; Choi J. I. ; Lee G. H. ; Kim Y. H. ; Kang J. K. Adv. Energy Mater. 2016, 6, 1600583.
doi: 10.1002/aenm.201600583 |
79 |
Guo Q. S. ; Zhang Q. H. ; Wang H. Z. ; Liu Z. F. ; Zhao Z. Catal. Commun. 2016, 77, 118.
doi: 10.1016/j.catcom.2016.01.019 |
80 |
Dong Y. C. ; Ghuman K. K. ; Popescu R. ; Duchesne P. N. ; Zhou W. J. ; Loh J. Y. Y. ; Jelle A. A. ; Jia J. ; Wang D. ; Mu X. K. ; et al Adv. Sci. 2018, 5, 700732.
doi: 10.1002/Advs.201700732 |
81 |
Das S. ; Pexrez-Ramıxrez J. ; Gong J. L. ; Dewangan N. ; Hidajat K. ; Gates B. C. ; Kawi S. Chem. Soc. Rev. 2020, 49, 2937.
doi: 10.1039/C9CS00713J |
82 |
Pougin A. ; Dodekatos G. ; Dilla M. ; Tuysuz H. ; Strunk J. Chem. Eur. J. 2018, 24, 12416.
doi: 10.1002/chem.201801796 |
83 |
Gao G. P. ; Jiao Y. ; Waclawik E. R. ; Du A. J. J. Am. Chem. Soc. 2016, 138, 6292.
doi: 10.1021/jacs.6b02692 |
84 |
Yan Z. H. ; Du M. H. ; Liu J. X. ; Jin S. Y. ; Wang C. ; Zhuang G. L. ; Kong X. J. ; Long L. S. ; Zheng L. S. Nat. Commun. 2018, 9, 3353.
doi: 10.1038/s41467-018-05659-7 |
85 |
Zhang H. B. ; Wei J. ; Dong J. C. ; Liu G. G. ; Shi L. ; An P. F. ; Zhao G. X. ; Kong J. T. ; Wang X. J. ; Meng X. G. ; et al Angew. Chem. Int. Ed. 2016, 55, 14308.
doi: 10.1002/anie.201608597 |
86 |
Gao C. ; Chen S. M. ; Wang Y. ; Wang J. W. ; Zheng X. S. ; Zhu J. F. ; Song L. ; Zhang W. K. ; Xiong Y. J. Adv. Mater. 2018, 30, 1704624.
doi: 10.1002/adma.201704624 |
87 |
Huang P. P. ; Huang J. H. ; Pantovich S. A. ; Carl A. D. ; Fenton T. G. ; Caputo C. A. ; Grimm R. L. ; Frenkel A. I. ; Li G. H. J. Am. Chem. Soc. 2018, 140, 16042.
doi: 10.1021/jacs.8b10380 |
88 |
Di J. ; Chen C. ; Yang S. Z. ; Chen S. M. ; Duan M. L. ; Xiong J. ; Zhu C. ; Long R. ; Hao W. ; Chi Z. ; et a Nat. Commun. 2019, 10, 2840.
doi: 10.1038/s41467-019-10392-w |
89 |
Liu M. ; Mu Y. F. ; Yao S. ; Guo S. ; Guo X. W. ; Zhang Z. M. ; Lu T. B. Appl. Catal. B-Environ. 2019, 245, 496.
doi: 10.1016/j.apcatb.2019.01.014 |
90 |
Jiang Z. Y. ; Sun W. ; Miao W. K. ; Yuan Z. M. ; Yang G. H. ; Kong F. G. ; Yan T. J. ; Chen J. C. ; Huang B. B. ; An C. H. ; Ozin G. A. Adv. Sci. 2019, 6, 1900289.
doi: 10.1002/advs.201900289 |
91 |
Yuan L. ; Hung S. F. ; Tang Z. R. ; Chen H. M. ; Xiong Y. J. ; Xu Y. J. ACS Catal. 2019, 9, 4824.
doi: 10.1021/acscatal.9b00862 |
92 |
Zhong W. F. ; Sa R. J. ; Li L. Y. ; He Y. J. ; Li L. Y. ; Bi J. H. ; Zhuang Z. Y. ; Yu Y. ; Zou Z. G. J. Am. Chem. Soc. 2019, 141, 7615.
doi: 10.1021/jacs.9b02997 |
93 |
Ji S. F. ; Qu Y. ; Wang T. ; Chen Y. J. ; Wang G. F. ; Li X. ; Dong J. C. ; Chen Q. Y. ; Zhang W. Y. ; Zhang Z. D. ; et al Angew. Chem. Int. Ed. 2020, 59, 10651.
doi: 10.1002/anie.202003623 |
94 |
Yang D. R. ; Yu H. D. ; He T. ; Zuo S. W. ; Liu X. Z. ; Yang H. Z. ; Ni B. ; Li H. Y. ; Gu L. ; Wang D. ; Wang X. Nat. Commun. 2019, 10, 3844.
doi: 10.1038/s41467-019-11817-2 |
95 |
Fang C. ; Lu C. L. ; Liu M. H. ; Zhu Y. L. ; Fu Y. ; Lin B. L. ACS Catal. 2016, 6, 7876.
doi: 10.1021/acscatal.6b01856 |
96 |
Lee W. T. ; van Muyden A. P. ; Bobbink F. D. ; Huang Z. J. ; Dyson P. J. Angew. Chem. Int. Ed. 2019, 58, 557.
doi: 10.1002/anie.201811086 |
97 |
Shyshkanov S. ; Nguyen T. N. ; Ebrahim F. M. ; Stylianou K. C. ; Dyson P. J. Angew. Chem. Int. Ed. 2019, 58, 5371.
doi: 10.1002/anie.201901171 |
98 |
Zhu J. ; Usov P. M. ; Xu W. Q. ; Celis-Salazar P. J. ; Lin S. Y. ; Kessinger M. C. ; Landaverde-Alvarado C. ; Cai M. ; May A. M. ; Slebodnick C. ; et al J. Am. Chem. Soc. 2018, 140, 993.
doi: 10.1021/jacs.7b10643 |
99 |
Rochelle G. T. Science 2009, 325, 1652.
doi: 10.1126/science.1176731 |
100 |
Wang Y. ; Arandiyan H. ; Scott J. ; Aguey-Zinsou K. F. ; Amal R. ACS Appl. Energy Mater. 2018, 1, 6781.
doi: 10.1021/acsaem.8b00817 |
101 |
Kwak J. H. ; Kovarik L. ; Szanyi J. ACS Catal. 2013, 3, 2094.
doi: 10.1021/cs4001392 |
102 |
Guo Y. ; Mei S. ; Yuan K. ; Wang D. J. ; Liu H. C. ; Yan C. H. ; Zhang Y. W. ACS Catal. 2018, 8, 6203.
doi: 10.1021/acscatal.7b04469 |
103 |
Shao X. Z. ; Yang X. F. ; Xu J. M. ; Liu S. ; Miao S. ; Liu X. Y. ; Su X. ; Duan H. M. ; Huang Y. Q. ; Zhang T. Chem 2019, 5, 693.
doi: 10.1016/j.chempr.2018.12.014 |
104 |
Millet M. M. ; Algara-Siller G. ; Wrabetz S. ; Mazheika A. ; Girgsdies F. ; Teschner D. ; Seitz F. ; Tarasov A. ; Leychenko S. V. ; Schlogl R. ; et al J. Am. Chem. Soc. 2019, 141, 2451.
doi: 10.1021/jacs.8b11729 |
105 |
Li Y. G. ; Hao J. C. ; Song H. ; Zhang F. Y. ; Bai X. H. ; Meng X. G. ; Zhang H. Y. ; Wang S. F. ; Hu Y. ; Ye J. H. Nat. Commun. 2019, 10, 2359.
doi: 10.1038/s41467-019-10304-y |
106 |
Caparros F. J. ; Soler L. ; Rossell M. D. ; Angurell I. ; Piccolo L. ; Rossell O. ; Llorca J. ChemCatChem 2018, 10, 2365.
doi: 10.1002/cctc.201800362 |
107 |
Zhao D. ; Chen Z. ; Yang W. J. ; Liu S. J. ; Zhang X. ; Yu Y. ; Cheong W. C. ; Zheng L. R. ; Ren F. Q. ; Ying G. B. ; et al J. Am. Chem. Soc. 2019, 141, 4086.
doi: 10.1021/jacs.8b13579 |
108 | Cui, X. J.; Dai, X. C.; Surkus, A. E.; Junge, K.; Kreyenschulte, C.; Agostini, G.; Rockstroh, N.; Beller, M. Chin. J. Catal. 2019, 40, 1679. doi: S1872-2067(19)63316-4 |
[1] | Xiaohui Li, Xiaodong Li, Quanhu Sun, Jianjiang He, Ze Yang, Jinchong Xiao, Changshui Huang. Synthesis and Applications of Graphdiyne Derivatives [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2206029-0. |
[2] | Mingliang Wu, Yehui Zhang, Zhanzhao Fu, Zhiyang Lyu, Qiang Li, Jinlan Wang. Structure-Activity Relationship of Atomic-Scale Cobalt-Based N-C Catalysts in the Oxygen Evolution Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2207007-0. |
[3] | Zhuang Xiong, Yidong Hou, Rusheng Yuan, Zhengxin Ding, Wee-Jun Ong, Sibo Wang. Hollow NiCo2S4 Nanospheres as a Cocatalyst to Support ZnIn2S4 Nanosheets for Visible-Light-Driven Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2111021-. |
[4] | Liang Zhou, Yunfeng Li, Yongkang Zhang, Liewei Qiu, Yan Xing. A 0D/2D Bi4V2O11/g-C3N4 S-Scheme Heterojunction with Rapid Interfacial Charges Migration for Photocatalytic Antibiotic Degradation [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2112027-. |
[5] | Wenliang Wang, Haochun Zhang, Yigang Chen, Haifeng Shi. Efficient Degradation of Tetracycline via Coupling of Photocatalysis and Photo-Fenton Processes over a 2D/2D α-Fe2O3/g-C3N4 S-Scheme Heterojunction Catalyst [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2201008-. |
[6] | Bichen Zhu, Xiaoyang Hong, Liyong Tang, Qinqin Liu, Hua Tang. Enhanced Photocatalytic CO2 Reduction over 2D/1D BiOBr0.5Cl0.5/WO3 S-Scheme Heterostructure [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2111008-. |
[7] | Yuke Song, Wenfu Xie, Mingfei Shao. Recent Advances in Integrated Electrode for Electrocatalytic Carbon Dioxide Reduction [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2101028-. |
[8] | Mingjun Ma, Zhichao Feng, Xiaowei Zhang, Chaoyue Sun, Haiqing Wang, Weijia Zhou, Hong Liu. Progress in the Preparation and Application of Electrocatalysts Based on Microorganisms as Intelligent Templates [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2106003-. |
[9] | Xiaoxiong Huang, Yingjie Ma, Linjie Zhi. Ultrathin Nitrogenated Carbon Nanosheets with Single-Atom Nickel as an Efficient Catalyst for Electrochemical CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2011050-. |
[10] | Yadong Du, Xiangtong Meng, Zhen Wang, Xin Zhao, Jieshan Qiu. Graphene-Based Catalysts for CO2 Electroreduction [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2101009-. |
[11] | Hongying Li, Haiming Gong, Zhiliang Jin. In2O3-Modified Three-Dimensional Nanoflower MoSx Form S-scheme Heterojunction for Efficient Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2022, 38(12): 2201037-. |
[12] | Kelin He, Rongchen Shen, Lei Hao, Youji Li, Peng Zhang, Jizhou Jiang, Xin Li. Advances in Nanostructured Silicon Carbide Photocatalysts [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2201021-. |
[13] | Yongxia Shi, Man Hou, Junjun Li, Li Li, Zhicheng Zhang. Cu-Based Tandem Catalysts for Electrochemical CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2206020-. |
[14] | Yuxin Chen, Lijun Wang, Zhibo Yao, Leiduan Hao, Xinyi Tan, Justus Masa, Alex W. Robertson, Zhenyu Sun. Tuning the Coordination Structure of Single Atoms and Their Interaction with the Support for Carbon Dioxide Electroreduction [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2207024-0. |
[15] | Jiashun Liang, Xuan Liu, Qing Li. Principles, Strategies, and Approaches for Designing Highly Durable Platinum-based Catalysts for Proton Exchange Membrane Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2010072-. |
|