Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (1): 2007048.doi: 10.3866/PKU.WHXB202007048
Special Issue: Lithium Metal Anodes
• REVIEW • Previous Articles Next Articles
Yuheng Sun1, Mingda Gao1, Hui Li2, Li Xu2, Qing Xue2, Xinran Wang1,*(), Ying Bai1, Chuan Wu1,3,*(
)
Received:
2020-07-20
Accepted:
2020-08-23
Published:
2020-08-31
Contact:
Xinran Wang,Chuan Wu
E-mail:wangxinran@bit.edu.cn;chuanwu@bit.edu.cn
About author:
Chuan Wu. Emails: chuanwu@bit.edu.cn (C.W.)Supported by:
MSC2000:
Yuheng Sun, Mingda Gao, Hui Li, Li Xu, Qing Xue, Xinran Wang, Ying Bai, Chuan Wu. Application of Metal-Organic Frameworks to the Interface of Lithium Metal Batteries[J].Acta Phys. -Chim. Sin., 2021, 37(1): 2007048.
Fig 1
The porosity and structural changes of MOF derived from different organic ligands and central ions. (a) Schematic diagram of ZIF-100 29, (b) schematic diagram of CPL 31, (c) schematic diagram of MIL-79 32, (d) schematic diagram of PCN-14 33, (e) schematic diagram of UiO-67 34, (f) schematic diagram of IRMOF 35, (g–i) schematic diagram of internal dimensions of UiO-66, UiO-66-NH2 and UiO-66-NHCOCH3 36, (j) schematic diagram of {CuBr(L)·(OH)·7H2O}n, (k) schematic diagram of [Pd(HL)(Br)2(NO2)2(OH2)2], (l) schematic diagram of {[ZnCl2(L)0.5]·0.33H2O}n, (m) schematic diagram of {[Cu2(3-pzc)2(L)(OH2)]·5H2O}n, (n) schematic diagram of {[M4(L)6(OH2)12]·2Br·3(bdc)·33H2O}n M is Mn, Co and Ni, (o) schematic diagram of {[M(bdc)(L)1.5·9H2O]}n M is Cd, Zn. Reproduced from Ref. 39 with permission from the Royal Society of Chemistry."
Fig 5
(a) Preparation process of ZnO/C/Li composite electrode 65, (b) morphological evolution during the electroplating/stripping process of nitrogen-doped porous graphene electrode (Co@N-G) 67, (c) schematic diagram of LZNF synthesis 68, (d) schematic diagram of growing MOF-derived CN-Co nanosheet arrays on the carbon cloth substrate 69, (e) schematic diagram of making CFC/Co-NC@Li electrode 70."
Fig 6
(a) Schematic diagram of preparing a composite interface film of PVA and MOF 71, (b) schematic diagram of copper foil protected by composite SEI film 71, (c) schematic diagram of the surface structure of copper electrodes and copper electrodes with MOF-199 coating during cycling 72, (d) schematic diagram of the biomimetic Li+ channel constructed by grafting anionic sulfonate groups on the pore channels of UN 73, (e) Schematic diagram of the UN-SLi bionic ion channel 73."
Fig 10
(a) Schematic diagram of the synthesis of three Co nanostructure materials using ZIF-67 as a template 109, (b) schematic diagram of growing Co3O4 nanosheets on a carbon substrate 110, (c) schematic diagram of the electrochemical process of reversibly forming discharge products on two-dimensional Mn-MOF 111."
1 |
Goodenough J. B. ; Kim Y. Chem. Mater. 2010, 22, 587.
doi: 10.1021/cm901452z |
2 |
Cheng X. B. ; Zhang R. ; Zhao C. Z. ; Zhang Q. Chem. Rev. 2017, 117, 10403.
doi: 10.1021/acs.chemrev.7b00115 |
3 |
Xu R. C. ; Xia X. H. ; Zhang S. Z. ; Xie D. ; Wang X. L. ; Tu J. P. Electrochim. Acta 2018, 284, 177.
doi: 10.1016/j.electacta.2018.07.191 |
4 |
Yu X. ; Manthiram A. Acc. Chem. Res. 2017, 50, 2653.
doi: 10.1021/acs.accounts.7b00460 |
5 |
Chen D. ; Huang S. ; Zhong L. ; Wang S. ; Xiao M. ; Han D. ; Meng Y. Adv. Funct. Mater 2020, 30
doi: 10.1002/adfm.201907717 |
6 |
Dong D. ; Zhang H. ; Zhou B. ; Sun Y. ; Zhang H. ; Cao M. ; Li J. ; Zhou H. ; Qian H. ; Lin Z. ; Chen H. Chem. Commun. 2019, 55, 1458.
doi: 10.1039/c8cc08725c |
7 |
Yang X. ; Dong B. ; Zhang H. ; Ge R. ; Gao Y. ; Zhang H. RSC Adv. 2015, 5, 86137.
doi: 10.1039/c5ra16235a |
8 |
Eddaoudi M. ; Kim J. ; Rosi N. L. ; David V. ; Joseph W. Science 2002, 295, 469.
doi: 10.1126/science.1067208 |
9 |
Zhang T. ; Lin W. B. Chem. Soc. Rev. 2014, 43, 5982.
doi: 10.1039/C4CS00103F |
10 |
Petit C. Curr. Opin. Chem. Eng 2018, 20, 132.
doi: 10.1016/j.coche.2018.04.004 |
11 |
Uzun A. ; Keskin S. Prog. Surf. Sci. 2014, 89, 56.
doi: 10.1016/j.progsurf.2013.11.001 |
12 | Mu W. ; Liu D. H. ; Yang Q. Y. ; Zhong C. L. Acta Phys. -Chim. Sin. 2010, 26, 1657. |
穆韡; 刘大欢; 阳庆元; 仲崇立. 物理化学学报, 2010, 26, 1657.
doi: 10.3866/PKU.WHXB20100616 |
|
13 |
Adatoz E. ; Avci A. K. ; Keskin S. Sep. Purif. Technol. 2015, 152, 207.
doi: 10.1016/j.seppur.2015.08.020 |
14 |
Chen Z. ; Chen J. ; Li Y. Chin. J. Catal. 2017, 38, 1108.
doi: 10.1016/s1872-2067(17)62852-3 |
15 |
Yang L. ; Zeng X. ; Wang W. ; Cao D. Adv. Funct. Mater. 2018, 28, 1704537.
doi: 10.1002/adfm.201704537 |
16 | Xuan C. J. ; Wang J. ; Zhu J. ; Wang D. L. Acta Phys. -Chim. Sin. 2017, 33, 149. |
玄翠娟; 王杰; 朱静; 王得丽. 物理化学学报, 2017, 33, 149.
doi: 10.3866/PKU.WHXB201609143 |
|
17 |
Wang Y. ; Yan J. ; Wen N. ; Xiong H. ; Cai S. ; He Q. ; Liu Y. Biomaterials 2020, 230, 119619.
doi: 10.1016/j.biomaterials.2019.119619 |
18 |
Liu Y. ; Zhao Y. ; Chen X. Theranostics 2019, 9, 3122.
doi: 10.7150/thno.31918 |
19 |
Zheng Y. ; Zheng S. ; Xue H. ; Pang H. J. Mater. Chem. A 2019, 7, 3469.
doi: 10.1039/C8TA11075A |
20 |
Li H. L. ; Eddaoudi M. M. ; O'Keeffe M. ; Yaghi O. M. Nature 1999, 402, 276.
doi: 10.1038/46248 |
21 |
Li X. ; Cheng F. ; Zhang S. ; Chen J. J. Power Sources 2006, 160, 542.
doi: 10.1016/j.jpowsour.2006.01.015 |
22 |
Furukawa H. ; Ko N. ; Go Y. B. ; Aratani N. ; Choi S. B. ; Choi E. ; Yaghi O. M. Science 2010, 329, 424.
doi: 10.1126/science.1192160 |
23 |
Jiang H. Q. ; Liu X.C. ; Wu Y.S. ; Shu Y. F. ; Gong X. ; Ke F. S. ; Deng H. X. Angew. Chem. Int. Ed. 2018, 57, 3916.
doi: 10.1002/ange.201712872 |
24 |
Li K. ; Lv X. X. ; Shi L. L. ; Liu L. ; Li B. L. ; Wu B. Dalton Trans. 2016, 45, 15078.
doi: 10.1039/C6DT02895K |
25 |
Chen Y. X. ; Ni D. ; Yang X. W. ; Liu C. C. ; Yin J. L. ; Cai K. F. Electrochim. Acta 2018, 278, 114.
doi: 10.1016/j.electacta.2018.05.024 |
26 |
Martinez Joaristi A. ; Juan-Alcañiz A. ; Serra-Crespo P. ; Kapteijn F. ; Gascon J. Cryst. Growth Des. 2012, 12, 3489.
doi: 10.1021/cg300552w |
27 |
Garcia Marquez A. ; Horcajada P. ; Grosso D. ; Ferey G. ; Serre C. ; Sanchez C. ; Boissiere C. Chem. Commun. 2013, 49, 3848.
doi: 10.1039/C3CC39191D |
28 |
Wang B. ; Côté A. P. ; Furukawa H. ; O'Keeffe M. ; Yaghi O. M. Nature 2008, 453, 207.
doi: 10.1038/nature06900 |
29 |
Anh P. ; Christian J. D. ; Rernando J. U. ; Carolyn B. K. ; Michael O. ; Omar M. Y. Acc. Chem. Res. 2010, 43, 58.
doi: 10.1021/ar900116g |
30 |
Tanaka D. ; Nakagawa K. ; Giguchi M. ; Horike S. ; Kubota Y. ; Kobayashi T. C. ; Takata M. ; Kitagewa S. Angew. Chem. Int. Ed. 2008, 47, 3914d.
doi: 10.1002/anie.200705822 |
31 |
Matsuda R. ; Kitaura R. ; Kitagawa S. ; Kubota Y. ; Kobayashi T. C. ; Horike S. ; Takata M. J. Am. Chem. Soc. 2004, 126, 14063.
doi: 10.1021/ja046925m |
32 |
Serre C. ; Pelle F. ; Gardant N. ; Ferey G. Chem. Mater. 2004, 16, 1177.
doi: 10.1021/cm035045o |
33 |
Ma S. ; Sun D. ; Ambrogio M. ; Fillinger J. A. ; Parkin S. ; Zhou H. J. Am. Chem. Soc. 2007, 129, 1858.
doi: 10.1021/ja0771639 |
34 |
Cavka J.H. ; Jakobsen S. ; Olsbye U. ; Guillou N. ; Lamberti C. ; Bordiga S. ; Lillerud K. P. J. Am. Chem. Soc. 2008, 130, 13850.
doi: 10.1021/ja8057953 |
35 |
Ding M. ; Flaig R. W. ; Jiang H. L. ; Yaghi O. M. Chem. Soc. Rev. 2019, 48, 2783.
doi: 10.1039/C8CS00829A |
36 |
Lin S. ; Bediako J. K. ; Cho C.W. ; Song M. H. ; Zhao Y. F. ; Kim J. A. ; Choi J. W. ; Yun Y. S. Chem. Eng. J. 2018, 345, 337.
doi: 10.1016/j.cej.2018.03.173 |
37 |
Pauling L. C. Proc. R. Soc. Lond. A 1949, 196, 343.
doi: 10.1098/rspa.1949.0032 |
38 |
Murugavel R. ; Karambelkar V. V. ; Anantharaman G. ; Walawalkar M. G. Inorg. Chem. 2000, 39, 1381.
doi: 10.1021/ic990895k |
39 |
Aulakh D. ; Nicoletta A. P. ; Varghese J. R. ; Wriedt M. CrystEngComm 2016, 18, 2189.
doi: 10.1039/C6CE00284F |
40 |
Chen B. ; Eddaoudi M. ; Reineke T. M. ; Kampf J. W. ; Keeffe M. O. ; Yaghi O. M. J. Am. Chem. Soc. 2000, 122, 11559.
doi: 10.1021/ja003159k |
41 |
Hall J. N. ; Bollini P. React. Chem. Eng. 2019, 4, 207.
doi: 10.1039/C8RE00228B |
42 |
Kokcam-Demir U. ; Goldman A. ; Esrafili L. ; Gharib M. ; Morsali A. ; Weingart O. ; Janiak C. Chem. Soc. Rev. 2020, 49, 2751.
doi: 10.1039/c9cs00609e |
43 |
Fu Y. Y. ; Yang C. X. ; Yan X. P. Langmuir 2012, 28, 6794.
doi: 10.1021/la300298 |
44 |
Park H. ; Siegel D. J. Chem. Mater. 2017, 29, 4932.
doi: 10.1021/acs.chemmater.7b01166 |
45 |
Wu D. ; Guo Z. ; Yin X. ; Pang Q. ; Tu B. ; Zhang L. ; Wang Y. G. ; Li Q. Adv Mater. 2014, 26, 3258.
doi: 10.1002/adma.201305492 |
46 |
Zhang C. ; Shen L. ; Shen J. Q. ; Liu F. ; Chen G. ; Tao R. ; Ma S. X. ; Peng Y. T. ; Lu Y. F. Adv Mater. 2019, 31, 1808338.
doi: 10.1002/adma.201808338 |
47 |
Peng Z. ; Yi X. ; Liu Z. ; Shang J. ; Wang D. ACS Appl. Mater. Interfaces 2016, 8, 14578.
doi: 10.1021/acsami.6b03418 |
48 |
Zhong H. ; Ly K. H. ; Wang M. ; Krupskaya Y. ; Han X. ; Zhang J. ; Feng X. Angew. Chem. Int. Ed. 2019, 58, 10677.
doi: 10.1002/anie.201907002 |
49 |
Xia W. ; Mahmood A. ; Zou R. Q. ; Xu Q. Energy Environ. Sci. 2015, 8, 1837.
doi: 10.1039/c5ee00762c |
50 |
Wu S. ; Liu J. ; Wang H. ; Yan H. Int. J. Energy Res. 2018, 43, 697.
doi: 10.1002/er.4232 |
51 |
Zou G. ; Hou H. ; Ge P. ; Huang Z. ; Zhao G. ; Yin D. ; Ji X. J. Energy Storage 2017, 14, 1702648.
doi: 10.1002/smll.201702648 |
52 |
Tong P. ; Liang J. ; Jiang X. ; Li J. Crit. Rev. Anal. Chem. 2020, 50, 376.
doi: 10.1080/10408347.2019.1642732 |
53 |
Meilikhov M. ; Yusenko K. ; Esken D. ; Turner S. ; Van Tendeloo G. ; Fischer R. Eur. J. Inorg. Chem. 2010, 24, 3701.
doi: 10.1002/ejic.201000473 |
54 |
Dang S. ; Zhu Q. L. ; Xu Q. Nat. Rev. Mater. 2017, 3, 17075.
doi: 10.1038/natrevmats.2017.75 |
55 |
Yi Q. ; Du M. ; Shen B. ; Ji J. ; Dong C. ; Xing M. ; Zhang J. Sci. Bull. 2020, 65, 233.
doi: 10.1016/j.scib.2019.11.004 |
56 |
Zhao S. ; Yin H. ; Du L. ; He L. ; Zhao K. ; Chang L. ; Tang Z. ACS Nano 2014, 8, 12660.
doi: 10.1021/nn505582e |
57 |
Xu W. ; Wang J. ; Ding F. ; Chen X. ; Nasybulin E. ; Zhang Y. ; Zhang J. G. Energy Environ. Sci. 2014, 7, 513.
doi: 10.1039/c3ee40795k |
58 |
Lin D. ; Liu Y. ; Cui Y. Nat. Nanotechnol. 2017, 12, 194.
doi: 10.1038/nnano.2017.16 |
59 |
Aryanfar A. ; Brooks D. J. ; Colussi A. J. ; Merinov B. V. ; Goddard Ⅲ W. A. ; Hoffmann M. R. Phys. Chem. 2015, 17, 8000.
doi: 10.1039/C4CP05786D |
60 |
Xu C. ; Ahmad Z. ; Aryanfar A. ; Viswanathan V. ; Greer J. R. Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 57.
doi: 10.1073/pnas.1615733114 |
61 |
Pei A. ; Zheng G. ; Shi F. F. ; Li Y. Z. ; Cui Y. Nano Lett. 2017, 17, 1132.
doi: 10.1021/acs.nanolett.6b04755 |
62 |
Monroe C. ; Newman J. J. Electrochem. Soc. 2003, 150, A1377.
doi: 10.1149/1.1606686 |
63 |
Kushima A. ; So K. P. ; Su C. ; Bai P. ; Kuriyama N. ; Maebashi T. ; Fujiwara Y. ; Bazant M. Z. ; Li J. Nano Energy 2017, 32, 271.
doi: 10.1016/j.nanoen.2016.12.001 |
64 |
Wang X. ; Zeng W. ; Hong L. ; Xu W. W. ; Yang H. K. ; Wang F. ; Duan H. G. ; Tang M. ; Jiang H. Q. Nat. Energy 2018, 3, 227.
doi: 10.1038/s41560-018-0104-5 |
65 |
Wang L. ; Zhu X. ; Guan Y. P. ; Zhang J. L. ; Ai F. ; Zhang W. F. ; Xiang Y. ; Vigayan S. ; Li G. D. ; Huang Y. L. ; et al Energy Stor. Mater. 2018, 11, 191d.
doi: 10.1016/j.ensm.2017.10.016 |
66 |
Lyu Z. ; Lim G. J. H. ; Guo R. ; Pan Z. H. ; Zhang X. ; Zhang H. ; He Z. M. ; Adams S. ; Chen W. ; Ding J. Energy Stor. Mater. 2020, 24, 336.
doi: 10.1016/j.ensm.2019.07.041 |
67 |
Wang T. S. ; Liu X. ; Zhao X. ; He P. ; Nan C. W. ; Fan L. Z. Adv. Funct. Mater. 2020, 30, 2000786.
doi: 10.1002/adfm.202000786 |
68 |
Zhao F. ; Zhou X. ; Deng W. ; Liu Z. Nano Energy 2019, 62, 55.
doi: 10.1016/j.nanoen.2019.04.087 |
69 |
Zhou T. ; Shen J. ; Wang Z. ; Liu J. ; Hu R. ; Ouyang L. ; Zhu M. Adv. Funct. Mater. 2020, 30, 1909159.
doi: 10.1002/adfm.201909159 |
70 |
Jiang G. ; Jiang N. ; Zheng N. ; Chen X. ; Mao J. ; Ding G. ; Li Y. Energy Stor. Mater. 2019, 23, 181.
doi: 10.1016/j.ensm.2019.05.014 |
71 |
Fan L. ; Guo Z. ; Zhang Y. ; Wu X. ; Zhao C. ; Sun X. ; Zhang N. J. Mater. Chem. A 2020, 8, 251.
doi: 10.1039/c9ta10405d |
72 |
Qian J. ; Li Y. ; Zhang M. ; Luo R. ; Wang F. ; Ye Y. ; Chen R. Nano Energy 2019, 60, 866.
doi: 10.1016/j.nanoen.2019.04.030 |
73 |
Shi W. Y. ; Shen J. J. ; Shen L. ; Hu W. ; Xu P. C. ; Baucom J. A. ; Ma S. X. ; Yang S. X. ; Chen X. M. ; Lu Y. F. Nano Lett. 2020, 20, 5435.
doi: 10.1021/acs.nanolett.0c01910 |
74 |
Li B. ; Wen H. M. ; Cui Y. ; Zhou W. ; Qian G. ; Chen B. Adv. Mater. 2016, 28, 8819.
doi: 10.1002/adma.201601133 |
75 |
Chu F. ; Hu J. ; Wu C. ; Yao Z. ; Tian J. ; Li Z. ; Li C. ACS Appl. Mater. Interfaces 2019, 11, 3869.
doi: 10.1021/acsami.8b17924 |
76 |
Fu X. T. ; Yu D. N. ; Zhou J. W. ; Li S. W. ; Gao X. ; Han Y. Z. ; Qi P. F. ; Feng X. ; Wang B. CrystEngComm 2016, 18, 4236.
doi: 10.1039/C6CE00171H |
77 |
Angulakshmi N. ; Zhou Y. ; Suriyakumar S. ; Dhanalakshmi R. B. ; Satishrajan M. ; Alwarappan S. ; Stephan A. M. ACS Omega 2020, 5, 7885.
doi: 10.1021/acsomega.9b04133 |
78 |
Yuan C. F. ; Li J. ; Han P. F. ; Lai Y. Q. ; Zhang Z. A. ; Liu J. J. Power Sources 2013, 240, 653.
doi: 10.1016/j.jpowsour.2013.05.030 |
79 |
Angulakshmi N. ; Kumar R. S. ; Kulandainathan M. A. ; Stephan A. M. J. Phys. Chem. C 2014, 118, 24240.
doi: 10.1021/jp506464v |
80 |
Zhu F. ; Bao H. ; Wu X. ; Tao Y. ; Qin C. ; Su Z. ; Kang Z. ACS Appl. Mater. Interfaces 2019, 11, 43206.
doi: 10.1021/acsami.9b15374 |
81 |
Zhang Z. ; Huang Y. ; Gao H. ; Hang J. ; Li C. ; Liu P. J. Membr. Sci. 2020, 598, 11780.
doi: 10.1016/j.memsci.2019.117800 |
82 |
Wu J. ; Guo X. J. Mater. Chem. A 2019, 7, 2653.
doi: 10.1039/C8TA10124H |
83 |
Yu Z. ; Mackanic D. G. ; Michaels W. ; Lee M. ; Pei A. ; Feng D. ; Bao Z. Joule 2019, 3, 2761.
doi: 10.1016/j.joule.2019.07.025 |
84 |
Zhang S. S. J. Power Sources 2007, 164, 351.
doi: 10.1016/j.jpowsour.2006.10.065 |
85 |
Bai S. ; Liu X. ; Zhu K. ; Wu S. ; Zhou H. Nat. Energy 2016, 1, 16094.
doi: 10.1038/nenergy.2016.94 |
86 |
Zang Y. ; Pei F. ; Huang J. ; Fu Z. ; Xu G. ; Fang X. Adv. Energy Mater. 2018, 8, 1802052.
doi: 10.1002/aenm.201802052 |
87 |
Han J. G. ; Kim K. ; Lee Y. ; Choi N. S. Adv. Mater. 2019, 31, 1804822.
doi: 10.1002/adma.201804822 |
88 |
Chang Z. ; Qiao Y. ; Deng H. ; Yang H. J. ; He P. ; Zhou H. S. Energy Environ. Sci. 2020, 13, 1197.
doi: 10.1039/D0EE00060D |
89 |
Li Q. ; Wang Y. ; Wang X. ; Sun X. R. ; Zhang J. N. ; Yu X. Q. ; Li H. ACS Appl. Mater. Interfaces 2020, 12, 2319.
doi: 10.1021/acsami.9b16727 |
90 |
Xie Y. ; Chen S. ; Lin Z. ; Yang W. ; Zou H. B. ; Sun R. W. Y. Electrochem. Commun. 2019, 99, 65.
doi: 10.1016/j.elecom.2019.01.005 |
91 |
Lin J. ; Zeng C. ; Chen Y. ; Lin C. ; Xu C. ; Su C. J. Mater. Chem. A 2020, 8, 6607.
doi: 10.1039/D0TA00679C |
92 |
Zhong Y. J. ; Xu X. M. ; Liu Y. ; Wang W. ; Shao Z. P. Polyhedron 2018, 155, 464.
doi: 10.1016/j.poly.2018.08.067 |
93 |
Manthiram A. ; Fu Y. ; Chung S. H. ; Zu C. X. ; Sun Y. S. Chem. Rev. 2014, 114, 11751.
doi: 10.1021/cr500062v |
94 |
Mikhaylik Y. V. ; Akridge J. R. J. Electrochem. Soc. 2004, 151, A1969.
doi: 10.1149/1.1806394 |
95 |
Zhou J. ; Li R. ; Fan X. ; Chen Y. ; Han R. ; Li W. ; Li X. Energy Environ. Sci. 2014, 7, 8.
doi: 10.1039/c4ee01382d |
96 |
Liu G. ; Feng K. ; Cui H. ; Li J. ; Liu Y. ; Wang M. Chem. Eng. J. 2020, 381, 122652.
doi: 10.1016/j.cej.2019.122652 |
97 |
Walle M. D. ; Zhang M. ; Zeng K. ; Li Y. ; Liu Y. N. Appl. Surf. Sci. 2019, 497, 143773.
doi: 10.1016/j.apsusc.2019.143773 |
98 |
Han J. ; Gao S. ; Wang R. ; Wang K. ; Jiang M. ; Yan J. ; Jin Q. ; Jiang K. J. Mater. Chem. A 2020, 8, 6661.
doi: 10.1039/D0TA00533A |
99 |
Xi K. ; Cao S. ; Peng X. ; Ducati C. ; Kumar R. V. ; Cheetham A. K. Electrochem. Commun. 2013, 49, 2192.
doi: 10.1039/c3cc38009b |
100 |
Li Y. ; Lin S. ; Wang D. ; Gao T. ; Song J. ; Zhou P. ; Guo S. Adv. Mater. 2020, 32, 1906722.
doi: 10.1002/adma.201906722 |
101 |
Abraham K. M. ; Jiang Z. J. Electrochem. Soc. 1996, 143, 1.
doi: 10.1149/1.1836378 |
102 |
Kumar J. ; Kumar B. J. Power Sources 2009, 194, 1113.
doi: 10.1016/j.jpowsour.2009.06.020 |
103 |
Cai C. X. ; Xue K. H. ; Xu X. Y. ; Luo Q. H. J. Appl. Electrochem. 1997, 27, 793.
doi: 10.1023/A:1018416610935 |
104 |
Mukerjee S. ; Srinivasan S. J. Electroanal. Chem. 1993, 357, 201.
doi: 10.1016/0022-0728(93)80380-Z |
105 |
Toda T. ; Igarashi H. ; Uchida H. ; Watanabe M. J. Electrochem. Soc. 1999, 146, 3750.
doi: 10.1149/1.1392544 |
106 |
Toda T. ; Igarashi H. ; Watanabe M. J. Electroanal. Chem. 1999, 460, 258.
doi: 10.1016/S0022-0728(98)00361-1 |
107 |
Streinz C. C. ; Moran P. J. ; Wagner J. W. ; Kruger J. J. Electrochem. Soc. 1994, 141, 1132.
doi: 10.1149/1.2054885 |
108 |
Pyun S. I. ; Lee S. B. J. Power Sources 1999, 77, 170.
doi: 10.1016/S0378-7753(98)00191-8 |
109 |
Jiang Z. ; Sun H. ; Shi W. ; Zhou T. ; Hu J. ; Cheng J. ; Sun S. Nano Res. 2019, 12, 1555.
doi: 10.1007/s12274-019-2388-6 |
110 |
Gong H. ; Wang T. ; Xue H. ; Lu X. ; Xia W. ; Song L. ; Ma R. Nano Res. 2019, 12, 2528.
doi: 10.1007/s12274-019-2480-y |
111 |
Yuan M. ; Wang R. ; Fu W. ; Lin L. ; Sun Z. ; Long X. ; Ma S. ACS Appl. Mater. Interfaces 2019, 11, 11403.
doi: 10.1021/acsami.8b21808 |
[1] | Yingying Zhu, Yong Wang, Miao Xu, Yongmin Wu, Weiping Tang, Di Zhu, Yu-Shi He, Zi-Feng Ma, Linsen Li. Tracking Pressure Changes and Morphology Evolution of Lithium Metal Anodes [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2110040-0. |
[2] | Hao-Tian Teng, Wen-Tao Wang, Xiao-Feng Han, Xiang Hao, Ruizhi Yang, Jing-Hua Tian. Recent Development and Perspectives of Flexible Zinc-Air Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2107017-0. |
[3] | Ying Mo, Kuikui Xiao, Jianfang Wu, Hui Liu, Aiping Hu, Peng Gao, Jilei Liu. Lithium-Ion Battery Separator: Functional Modification and Characterization [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2107030-. |
[4] | Wei Zhang, Haichen Liang, Kerun Zhu, Yong Tian, Yao Liu, Jiayin Chen, Wei Li. Three-Dimensional Macro-/Mesoporous C-TiC Nanocomposites for Dendrite-Free Lithium Metal Anode [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2105024-. |
[5] | Zheng Bo, Jing Kong, Huachao Yang, Zhouwei Zheng, Pengpeng Chen, Jianhua Yan, Kefa Cen. Ultra-Low-Temperature Supercapacitor Based on Holey Graphene and Mixed-Solvent Organic Electrolyte [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2005054-. |
[6] | Xinrun Yu, Jun Ma, Chunbo Mou, Guanglei Cui. Percolation Structure Design of Organic-inorganic Composite Electrolyte with High Lithium-Ion Conductivity [J]. Acta Phys. -Chim. Sin., 2022, 38(3): 1912061-. |
[7] | Zixu He, Yawei Chen, Fanyang Huang, Yulin Jie, Xinpeng Li, Ruiguo Cao, Shuhong Jiao. Fluorinated Solvents for Lithium Metal Batteries [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2205005-. |
[8] | Yuanhao Shen, Qingyu Wang, Jie Liu, Cheng Zhong, Wenbin Hu. Spontaneous Reduction and Adsorption of K3[Fe(CN)6] on Zn Anodes in Alkaline Electrolytes: Enabling a Long-Life Zn-Ni Battery [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2204048-0. |
[9] | Liliang Tian, Weiqi Zhang, Zheng Xie, Kai Peng, Qiang Ma, Qian Xu, Sivakumar Pasupathi, Huaneng Su. Enhanced Performance and Durability of High-Temperature Polymer Electrolyte Membrane Fuel Cell by Incorporating Covalent Organic Framework into Catalyst Layer [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2009049-. |
[10] | Jujia Zhang, Jin Zhang, Haining Wang, Yan Xiang, Shanfu Lu. Advancement in Distribution and Control Strategy of Phosphoric Acid in Membrane Electrode Assembly of High-Temperature Polymer Electrolyte Membrane Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2010071-. |
[11] | Yongli Heng, Zhenyi Gu, Jinzhi Guo, Xinglong Wu. Research Progresses on Vanadium-Based Cathode Materials for Aqueous Zinc-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2021, 37(3): 2005013-. |
[12] | Gaolong Zhu, Chenzi Zhao, Hong Yuan, Haoxiong Nan, Bochen Zhao, Lipeng Hou, Chuangxin He, Quanbing Liu, Jiaqi Huang. Liquid Phase Therapy with Localized High-Concentration Electrolytes for Solid-State Li Metal Pouch Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2005003-. |
[13] | Chen Wu, Ying Zhou, Xiaolong Zhu, Minzhi Zhan, Hanxi Yang, Jiangfeng Qian. Research Progress on High Concentration Electrolytes for Li Metal Batteries [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2008044-. |
[14] | Xinyang Yue, Cui Ma, Jian Bao, Siyu Yang, Dong Chen, Xiaojing Wu, Yongning Zhou. Failure Mechanisms of Lithium Metal Anode and Their Advanced Characterization Technologies [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2005012-. |
[15] | Zibo Zhang, Wei Deng, Xufeng Zhou, Zhaoping Liu. LiC6 Heterogeneous Interface for Stable Lithium Plating and Stripping [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2008092-. |
|