Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (1): 2007048.doi: 10.3866/PKU.WHXB202007048
Special Issue: Lithium Metal Anodes
• REVIEW • Previous Articles Next Articles
Yuheng Sun1, Mingda Gao1, Hui Li2, Li Xu2, Qing Xue2, Xinran Wang1,*(), Ying Bai1, Chuan Wu1,3,*(
)
Received:
2020-07-20
Accepted:
2020-08-23
Published:
2020-08-31
Contact:
Xinran Wang,Chuan Wu
E-mail:wangxinran@bit.edu.cn;chuanwu@bit.edu.cn
About author:
Chuan Wu. Emails: chuanwu@bit.edu.cn (C.W.)Supported by:
MSC2000:
Yuheng Sun, Mingda Gao, Hui Li, Li Xu, Qing Xue, Xinran Wang, Ying Bai, Chuan Wu. Application of Metal-Organic Frameworks to the Interface of Lithium Metal Batteries[J].Acta Phys. -Chim. Sin., 2021, 37(1): 2007048.
Fig 1
The porosity and structural changes of MOF derived from different organic ligands and central ions. (a) Schematic diagram of ZIF-100 29, (b) schematic diagram of CPL 31, (c) schematic diagram of MIL-79 32, (d) schematic diagram of PCN-14 33, (e) schematic diagram of UiO-67 34, (f) schematic diagram of IRMOF 35, (g–i) schematic diagram of internal dimensions of UiO-66, UiO-66-NH2 and UiO-66-NHCOCH3 36, (j) schematic diagram of {CuBr(L)·(OH)·7H2O}n, (k) schematic diagram of [Pd(HL)(Br)2(NO2)2(OH2)2], (l) schematic diagram of {[ZnCl2(L)0.5]·0.33H2O}n, (m) schematic diagram of {[Cu2(3-pzc)2(L)(OH2)]·5H2O}n, (n) schematic diagram of {[M4(L)6(OH2)12]·2Br·3(bdc)·33H2O}n M is Mn, Co and Ni, (o) schematic diagram of {[M(bdc)(L)1.5·9H2O]}n M is Cd, Zn. Reproduced from Ref. 39 with permission from the Royal Society of Chemistry."
Fig 5
(a) Preparation process of ZnO/C/Li composite electrode 65, (b) morphological evolution during the electroplating/stripping process of nitrogen-doped porous graphene electrode (Co@N-G) 67, (c) schematic diagram of LZNF synthesis 68, (d) schematic diagram of growing MOF-derived CN-Co nanosheet arrays on the carbon cloth substrate 69, (e) schematic diagram of making CFC/Co-NC@Li electrode 70."
Fig 6
(a) Schematic diagram of preparing a composite interface film of PVA and MOF 71, (b) schematic diagram of copper foil protected by composite SEI film 71, (c) schematic diagram of the surface structure of copper electrodes and copper electrodes with MOF-199 coating during cycling 72, (d) schematic diagram of the biomimetic Li+ channel constructed by grafting anionic sulfonate groups on the pore channels of UN 73, (e) Schematic diagram of the UN-SLi bionic ion channel 73."
Fig 10
(a) Schematic diagram of the synthesis of three Co nanostructure materials using ZIF-67 as a template 109, (b) schematic diagram of growing Co3O4 nanosheets on a carbon substrate 110, (c) schematic diagram of the electrochemical process of reversibly forming discharge products on two-dimensional Mn-MOF 111."
1 |
Goodenough J. B. ; Kim Y. Chem. Mater. 2010, 22, 587.
doi: 10.1021/cm901452z |
2 |
Cheng X. B. ; Zhang R. ; Zhao C. Z. ; Zhang Q. Chem. Rev. 2017, 117, 10403.
doi: 10.1021/acs.chemrev.7b00115 |
3 |
Xu R. C. ; Xia X. H. ; Zhang S. Z. ; Xie D. ; Wang X. L. ; Tu J. P. Electrochim. Acta 2018, 284, 177.
doi: 10.1016/j.electacta.2018.07.191 |
4 |
Yu X. ; Manthiram A. Acc. Chem. Res. 2017, 50, 2653.
doi: 10.1021/acs.accounts.7b00460 |
5 |
Chen D. ; Huang S. ; Zhong L. ; Wang S. ; Xiao M. ; Han D. ; Meng Y. Adv. Funct. Mater 2020, 30
doi: 10.1002/adfm.201907717 |
6 |
Dong D. ; Zhang H. ; Zhou B. ; Sun Y. ; Zhang H. ; Cao M. ; Li J. ; Zhou H. ; Qian H. ; Lin Z. ; Chen H. Chem. Commun. 2019, 55, 1458.
doi: 10.1039/c8cc08725c |
7 |
Yang X. ; Dong B. ; Zhang H. ; Ge R. ; Gao Y. ; Zhang H. RSC Adv. 2015, 5, 86137.
doi: 10.1039/c5ra16235a |
8 |
Eddaoudi M. ; Kim J. ; Rosi N. L. ; David V. ; Joseph W. Science 2002, 295, 469.
doi: 10.1126/science.1067208 |
9 |
Zhang T. ; Lin W. B. Chem. Soc. Rev. 2014, 43, 5982.
doi: 10.1039/C4CS00103F |
10 |
Petit C. Curr. Opin. Chem. Eng 2018, 20, 132.
doi: 10.1016/j.coche.2018.04.004 |
11 |
Uzun A. ; Keskin S. Prog. Surf. Sci. 2014, 89, 56.
doi: 10.1016/j.progsurf.2013.11.001 |
12 | Mu W. ; Liu D. H. ; Yang Q. Y. ; Zhong C. L. Acta Phys. -Chim. Sin. 2010, 26, 1657. |
穆韡; 刘大欢; 阳庆元; 仲崇立. 物理化学学报, 2010, 26, 1657.
doi: 10.3866/PKU.WHXB20100616 |
|
13 |
Adatoz E. ; Avci A. K. ; Keskin S. Sep. Purif. Technol. 2015, 152, 207.
doi: 10.1016/j.seppur.2015.08.020 |
14 |
Chen Z. ; Chen J. ; Li Y. Chin. J. Catal. 2017, 38, 1108.
doi: 10.1016/s1872-2067(17)62852-3 |
15 |
Yang L. ; Zeng X. ; Wang W. ; Cao D. Adv. Funct. Mater. 2018, 28, 1704537.
doi: 10.1002/adfm.201704537 |
16 | Xuan C. J. ; Wang J. ; Zhu J. ; Wang D. L. Acta Phys. -Chim. Sin. 2017, 33, 149. |
玄翠娟; 王杰; 朱静; 王得丽. 物理化学学报, 2017, 33, 149.
doi: 10.3866/PKU.WHXB201609143 |
|
17 |
Wang Y. ; Yan J. ; Wen N. ; Xiong H. ; Cai S. ; He Q. ; Liu Y. Biomaterials 2020, 230, 119619.
doi: 10.1016/j.biomaterials.2019.119619 |
18 |
Liu Y. ; Zhao Y. ; Chen X. Theranostics 2019, 9, 3122.
doi: 10.7150/thno.31918 |
19 |
Zheng Y. ; Zheng S. ; Xue H. ; Pang H. J. Mater. Chem. A 2019, 7, 3469.
doi: 10.1039/C8TA11075A |
20 |
Li H. L. ; Eddaoudi M. M. ; O'Keeffe M. ; Yaghi O. M. Nature 1999, 402, 276.
doi: 10.1038/46248 |
21 |
Li X. ; Cheng F. ; Zhang S. ; Chen J. J. Power Sources 2006, 160, 542.
doi: 10.1016/j.jpowsour.2006.01.015 |
22 |
Furukawa H. ; Ko N. ; Go Y. B. ; Aratani N. ; Choi S. B. ; Choi E. ; Yaghi O. M. Science 2010, 329, 424.
doi: 10.1126/science.1192160 |
23 |
Jiang H. Q. ; Liu X.C. ; Wu Y.S. ; Shu Y. F. ; Gong X. ; Ke F. S. ; Deng H. X. Angew. Chem. Int. Ed. 2018, 57, 3916.
doi: 10.1002/ange.201712872 |
24 |
Li K. ; Lv X. X. ; Shi L. L. ; Liu L. ; Li B. L. ; Wu B. Dalton Trans. 2016, 45, 15078.
doi: 10.1039/C6DT02895K |
25 |
Chen Y. X. ; Ni D. ; Yang X. W. ; Liu C. C. ; Yin J. L. ; Cai K. F. Electrochim. Acta 2018, 278, 114.
doi: 10.1016/j.electacta.2018.05.024 |
26 |
Martinez Joaristi A. ; Juan-Alcañiz A. ; Serra-Crespo P. ; Kapteijn F. ; Gascon J. Cryst. Growth Des. 2012, 12, 3489.
doi: 10.1021/cg300552w |
27 |
Garcia Marquez A. ; Horcajada P. ; Grosso D. ; Ferey G. ; Serre C. ; Sanchez C. ; Boissiere C. Chem. Commun. 2013, 49, 3848.
doi: 10.1039/C3CC39191D |
28 |
Wang B. ; Côté A. P. ; Furukawa H. ; O'Keeffe M. ; Yaghi O. M. Nature 2008, 453, 207.
doi: 10.1038/nature06900 |
29 |
Anh P. ; Christian J. D. ; Rernando J. U. ; Carolyn B. K. ; Michael O. ; Omar M. Y. Acc. Chem. Res. 2010, 43, 58.
doi: 10.1021/ar900116g |
30 |
Tanaka D. ; Nakagawa K. ; Giguchi M. ; Horike S. ; Kubota Y. ; Kobayashi T. C. ; Takata M. ; Kitagewa S. Angew. Chem. Int. Ed. 2008, 47, 3914d.
doi: 10.1002/anie.200705822 |
31 |
Matsuda R. ; Kitaura R. ; Kitagawa S. ; Kubota Y. ; Kobayashi T. C. ; Horike S. ; Takata M. J. Am. Chem. Soc. 2004, 126, 14063.
doi: 10.1021/ja046925m |
32 |
Serre C. ; Pelle F. ; Gardant N. ; Ferey G. Chem. Mater. 2004, 16, 1177.
doi: 10.1021/cm035045o |
33 |
Ma S. ; Sun D. ; Ambrogio M. ; Fillinger J. A. ; Parkin S. ; Zhou H. J. Am. Chem. Soc. 2007, 129, 1858.
doi: 10.1021/ja0771639 |
34 |
Cavka J.H. ; Jakobsen S. ; Olsbye U. ; Guillou N. ; Lamberti C. ; Bordiga S. ; Lillerud K. P. J. Am. Chem. Soc. 2008, 130, 13850.
doi: 10.1021/ja8057953 |
35 |
Ding M. ; Flaig R. W. ; Jiang H. L. ; Yaghi O. M. Chem. Soc. Rev. 2019, 48, 2783.
doi: 10.1039/C8CS00829A |
36 |
Lin S. ; Bediako J. K. ; Cho C.W. ; Song M. H. ; Zhao Y. F. ; Kim J. A. ; Choi J. W. ; Yun Y. S. Chem. Eng. J. 2018, 345, 337.
doi: 10.1016/j.cej.2018.03.173 |
37 |
Pauling L. C. Proc. R. Soc. Lond. A 1949, 196, 343.
doi: 10.1098/rspa.1949.0032 |
38 |
Murugavel R. ; Karambelkar V. V. ; Anantharaman G. ; Walawalkar M. G. Inorg. Chem. 2000, 39, 1381.
doi: 10.1021/ic990895k |
39 |
Aulakh D. ; Nicoletta A. P. ; Varghese J. R. ; Wriedt M. CrystEngComm 2016, 18, 2189.
doi: 10.1039/C6CE00284F |
40 |
Chen B. ; Eddaoudi M. ; Reineke T. M. ; Kampf J. W. ; Keeffe M. O. ; Yaghi O. M. J. Am. Chem. Soc. 2000, 122, 11559.
doi: 10.1021/ja003159k |
41 |
Hall J. N. ; Bollini P. React. Chem. Eng. 2019, 4, 207.
doi: 10.1039/C8RE00228B |
42 |
Kokcam-Demir U. ; Goldman A. ; Esrafili L. ; Gharib M. ; Morsali A. ; Weingart O. ; Janiak C. Chem. Soc. Rev. 2020, 49, 2751.
doi: 10.1039/c9cs00609e |
43 |
Fu Y. Y. ; Yang C. X. ; Yan X. P. Langmuir 2012, 28, 6794.
doi: 10.1021/la300298 |
44 |
Park H. ; Siegel D. J. Chem. Mater. 2017, 29, 4932.
doi: 10.1021/acs.chemmater.7b01166 |
45 |
Wu D. ; Guo Z. ; Yin X. ; Pang Q. ; Tu B. ; Zhang L. ; Wang Y. G. ; Li Q. Adv Mater. 2014, 26, 3258.
doi: 10.1002/adma.201305492 |
46 |
Zhang C. ; Shen L. ; Shen J. Q. ; Liu F. ; Chen G. ; Tao R. ; Ma S. X. ; Peng Y. T. ; Lu Y. F. Adv Mater. 2019, 31, 1808338.
doi: 10.1002/adma.201808338 |
47 |
Peng Z. ; Yi X. ; Liu Z. ; Shang J. ; Wang D. ACS Appl. Mater. Interfaces 2016, 8, 14578.
doi: 10.1021/acsami.6b03418 |
48 |
Zhong H. ; Ly K. H. ; Wang M. ; Krupskaya Y. ; Han X. ; Zhang J. ; Feng X. Angew. Chem. Int. Ed. 2019, 58, 10677.
doi: 10.1002/anie.201907002 |
49 |
Xia W. ; Mahmood A. ; Zou R. Q. ; Xu Q. Energy Environ. Sci. 2015, 8, 1837.
doi: 10.1039/c5ee00762c |
50 |
Wu S. ; Liu J. ; Wang H. ; Yan H. Int. J. Energy Res. 2018, 43, 697.
doi: 10.1002/er.4232 |
51 |
Zou G. ; Hou H. ; Ge P. ; Huang Z. ; Zhao G. ; Yin D. ; Ji X. J. Energy Storage 2017, 14, 1702648.
doi: 10.1002/smll.201702648 |
52 |
Tong P. ; Liang J. ; Jiang X. ; Li J. Crit. Rev. Anal. Chem. 2020, 50, 376.
doi: 10.1080/10408347.2019.1642732 |
53 |
Meilikhov M. ; Yusenko K. ; Esken D. ; Turner S. ; Van Tendeloo G. ; Fischer R. Eur. J. Inorg. Chem. 2010, 24, 3701.
doi: 10.1002/ejic.201000473 |
54 |
Dang S. ; Zhu Q. L. ; Xu Q. Nat. Rev. Mater. 2017, 3, 17075.
doi: 10.1038/natrevmats.2017.75 |
55 |
Yi Q. ; Du M. ; Shen B. ; Ji J. ; Dong C. ; Xing M. ; Zhang J. Sci. Bull. 2020, 65, 233.
doi: 10.1016/j.scib.2019.11.004 |
56 |
Zhao S. ; Yin H. ; Du L. ; He L. ; Zhao K. ; Chang L. ; Tang Z. ACS Nano 2014, 8, 12660.
doi: 10.1021/nn505582e |
57 |
Xu W. ; Wang J. ; Ding F. ; Chen X. ; Nasybulin E. ; Zhang Y. ; Zhang J. G. Energy Environ. Sci. 2014, 7, 513.
doi: 10.1039/c3ee40795k |
58 |
Lin D. ; Liu Y. ; Cui Y. Nat. Nanotechnol. 2017, 12, 194.
doi: 10.1038/nnano.2017.16 |
59 |
Aryanfar A. ; Brooks D. J. ; Colussi A. J. ; Merinov B. V. ; Goddard Ⅲ W. A. ; Hoffmann M. R. Phys. Chem. 2015, 17, 8000.
doi: 10.1039/C4CP05786D |
60 |
Xu C. ; Ahmad Z. ; Aryanfar A. ; Viswanathan V. ; Greer J. R. Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 57.
doi: 10.1073/pnas.1615733114 |
61 |
Pei A. ; Zheng G. ; Shi F. F. ; Li Y. Z. ; Cui Y. Nano Lett. 2017, 17, 1132.
doi: 10.1021/acs.nanolett.6b04755 |
62 |
Monroe C. ; Newman J. J. Electrochem. Soc. 2003, 150, A1377.
doi: 10.1149/1.1606686 |
63 |
Kushima A. ; So K. P. ; Su C. ; Bai P. ; Kuriyama N. ; Maebashi T. ; Fujiwara Y. ; Bazant M. Z. ; Li J. Nano Energy 2017, 32, 271.
doi: 10.1016/j.nanoen.2016.12.001 |
64 |
Wang X. ; Zeng W. ; Hong L. ; Xu W. W. ; Yang H. K. ; Wang F. ; Duan H. G. ; Tang M. ; Jiang H. Q. Nat. Energy 2018, 3, 227.
doi: 10.1038/s41560-018-0104-5 |
65 |
Wang L. ; Zhu X. ; Guan Y. P. ; Zhang J. L. ; Ai F. ; Zhang W. F. ; Xiang Y. ; Vigayan S. ; Li G. D. ; Huang Y. L. ; et al Energy Stor. Mater. 2018, 11, 191d.
doi: 10.1016/j.ensm.2017.10.016 |
66 |
Lyu Z. ; Lim G. J. H. ; Guo R. ; Pan Z. H. ; Zhang X. ; Zhang H. ; He Z. M. ; Adams S. ; Chen W. ; Ding J. Energy Stor. Mater. 2020, 24, 336.
doi: 10.1016/j.ensm.2019.07.041 |
67 |
Wang T. S. ; Liu X. ; Zhao X. ; He P. ; Nan C. W. ; Fan L. Z. Adv. Funct. Mater. 2020, 30, 2000786.
doi: 10.1002/adfm.202000786 |
68 |
Zhao F. ; Zhou X. ; Deng W. ; Liu Z. Nano Energy 2019, 62, 55.
doi: 10.1016/j.nanoen.2019.04.087 |
69 |
Zhou T. ; Shen J. ; Wang Z. ; Liu J. ; Hu R. ; Ouyang L. ; Zhu M. Adv. Funct. Mater. 2020, 30, 1909159.
doi: 10.1002/adfm.201909159 |
70 |
Jiang G. ; Jiang N. ; Zheng N. ; Chen X. ; Mao J. ; Ding G. ; Li Y. Energy Stor. Mater. 2019, 23, 181.
doi: 10.1016/j.ensm.2019.05.014 |
71 |
Fan L. ; Guo Z. ; Zhang Y. ; Wu X. ; Zhao C. ; Sun X. ; Zhang N. J. Mater. Chem. A 2020, 8, 251.
doi: 10.1039/c9ta10405d |
72 |
Qian J. ; Li Y. ; Zhang M. ; Luo R. ; Wang F. ; Ye Y. ; Chen R. Nano Energy 2019, 60, 866.
doi: 10.1016/j.nanoen.2019.04.030 |
73 |
Shi W. Y. ; Shen J. J. ; Shen L. ; Hu W. ; Xu P. C. ; Baucom J. A. ; Ma S. X. ; Yang S. X. ; Chen X. M. ; Lu Y. F. Nano Lett. 2020, 20, 5435.
doi: 10.1021/acs.nanolett.0c01910 |
74 |
Li B. ; Wen H. M. ; Cui Y. ; Zhou W. ; Qian G. ; Chen B. Adv. Mater. 2016, 28, 8819.
doi: 10.1002/adma.201601133 |
75 |
Chu F. ; Hu J. ; Wu C. ; Yao Z. ; Tian J. ; Li Z. ; Li C. ACS Appl. Mater. Interfaces 2019, 11, 3869.
doi: 10.1021/acsami.8b17924 |
76 |
Fu X. T. ; Yu D. N. ; Zhou J. W. ; Li S. W. ; Gao X. ; Han Y. Z. ; Qi P. F. ; Feng X. ; Wang B. CrystEngComm 2016, 18, 4236.
doi: 10.1039/C6CE00171H |
77 |
Angulakshmi N. ; Zhou Y. ; Suriyakumar S. ; Dhanalakshmi R. B. ; Satishrajan M. ; Alwarappan S. ; Stephan A. M. ACS Omega 2020, 5, 7885.
doi: 10.1021/acsomega.9b04133 |
78 |
Yuan C. F. ; Li J. ; Han P. F. ; Lai Y. Q. ; Zhang Z. A. ; Liu J. J. Power Sources 2013, 240, 653.
doi: 10.1016/j.jpowsour.2013.05.030 |
79 |
Angulakshmi N. ; Kumar R. S. ; Kulandainathan M. A. ; Stephan A. M. J. Phys. Chem. C 2014, 118, 24240.
doi: 10.1021/jp506464v |
80 |
Zhu F. ; Bao H. ; Wu X. ; Tao Y. ; Qin C. ; Su Z. ; Kang Z. ACS Appl. Mater. Interfaces 2019, 11, 43206.
doi: 10.1021/acsami.9b15374 |
81 |
Zhang Z. ; Huang Y. ; Gao H. ; Hang J. ; Li C. ; Liu P. J. Membr. Sci. 2020, 598, 11780.
doi: 10.1016/j.memsci.2019.117800 |
82 |
Wu J. ; Guo X. J. Mater. Chem. A 2019, 7, 2653.
doi: 10.1039/C8TA10124H |
83 |
Yu Z. ; Mackanic D. G. ; Michaels W. ; Lee M. ; Pei A. ; Feng D. ; Bao Z. Joule 2019, 3, 2761.
doi: 10.1016/j.joule.2019.07.025 |
84 |
Zhang S. S. J. Power Sources 2007, 164, 351.
doi: 10.1016/j.jpowsour.2006.10.065 |
85 |
Bai S. ; Liu X. ; Zhu K. ; Wu S. ; Zhou H. Nat. Energy 2016, 1, 16094.
doi: 10.1038/nenergy.2016.94 |
86 |
Zang Y. ; Pei F. ; Huang J. ; Fu Z. ; Xu G. ; Fang X. Adv. Energy Mater. 2018, 8, 1802052.
doi: 10.1002/aenm.201802052 |
87 |
Han J. G. ; Kim K. ; Lee Y. ; Choi N. S. Adv. Mater. 2019, 31, 1804822.
doi: 10.1002/adma.201804822 |
88 |
Chang Z. ; Qiao Y. ; Deng H. ; Yang H. J. ; He P. ; Zhou H. S. Energy Environ. Sci. 2020, 13, 1197.
doi: 10.1039/D0EE00060D |
89 |
Li Q. ; Wang Y. ; Wang X. ; Sun X. R. ; Zhang J. N. ; Yu X. Q. ; Li H. ACS Appl. Mater. Interfaces 2020, 12, 2319.
doi: 10.1021/acsami.9b16727 |
90 |
Xie Y. ; Chen S. ; Lin Z. ; Yang W. ; Zou H. B. ; Sun R. W. Y. Electrochem. Commun. 2019, 99, 65.
doi: 10.1016/j.elecom.2019.01.005 |
91 |
Lin J. ; Zeng C. ; Chen Y. ; Lin C. ; Xu C. ; Su C. J. Mater. Chem. A 2020, 8, 6607.
doi: 10.1039/D0TA00679C |
92 |
Zhong Y. J. ; Xu X. M. ; Liu Y. ; Wang W. ; Shao Z. P. Polyhedron 2018, 155, 464.
doi: 10.1016/j.poly.2018.08.067 |
93 |
Manthiram A. ; Fu Y. ; Chung S. H. ; Zu C. X. ; Sun Y. S. Chem. Rev. 2014, 114, 11751.
doi: 10.1021/cr500062v |
94 |
Mikhaylik Y. V. ; Akridge J. R. J. Electrochem. Soc. 2004, 151, A1969.
doi: 10.1149/1.1806394 |
95 |
Zhou J. ; Li R. ; Fan X. ; Chen Y. ; Han R. ; Li W. ; Li X. Energy Environ. Sci. 2014, 7, 8.
doi: 10.1039/c4ee01382d |
96 |
Liu G. ; Feng K. ; Cui H. ; Li J. ; Liu Y. ; Wang M. Chem. Eng. J. 2020, 381, 122652.
doi: 10.1016/j.cej.2019.122652 |
97 |
Walle M. D. ; Zhang M. ; Zeng K. ; Li Y. ; Liu Y. N. Appl. Surf. Sci. 2019, 497, 143773.
doi: 10.1016/j.apsusc.2019.143773 |
98 |
Han J. ; Gao S. ; Wang R. ; Wang K. ; Jiang M. ; Yan J. ; Jin Q. ; Jiang K. J. Mater. Chem. A 2020, 8, 6661.
doi: 10.1039/D0TA00533A |
99 |
Xi K. ; Cao S. ; Peng X. ; Ducati C. ; Kumar R. V. ; Cheetham A. K. Electrochem. Commun. 2013, 49, 2192.
doi: 10.1039/c3cc38009b |
100 |
Li Y. ; Lin S. ; Wang D. ; Gao T. ; Song J. ; Zhou P. ; Guo S. Adv. Mater. 2020, 32, 1906722.
doi: 10.1002/adma.201906722 |
101 |
Abraham K. M. ; Jiang Z. J. Electrochem. Soc. 1996, 143, 1.
doi: 10.1149/1.1836378 |
102 |
Kumar J. ; Kumar B. J. Power Sources 2009, 194, 1113.
doi: 10.1016/j.jpowsour.2009.06.020 |
103 |
Cai C. X. ; Xue K. H. ; Xu X. Y. ; Luo Q. H. J. Appl. Electrochem. 1997, 27, 793.
doi: 10.1023/A:1018416610935 |
104 |
Mukerjee S. ; Srinivasan S. J. Electroanal. Chem. 1993, 357, 201.
doi: 10.1016/0022-0728(93)80380-Z |
105 |
Toda T. ; Igarashi H. ; Uchida H. ; Watanabe M. J. Electrochem. Soc. 1999, 146, 3750.
doi: 10.1149/1.1392544 |
106 |
Toda T. ; Igarashi H. ; Watanabe M. J. Electroanal. Chem. 1999, 460, 258.
doi: 10.1016/S0022-0728(98)00361-1 |
107 |
Streinz C. C. ; Moran P. J. ; Wagner J. W. ; Kruger J. J. Electrochem. Soc. 1994, 141, 1132.
doi: 10.1149/1.2054885 |
108 |
Pyun S. I. ; Lee S. B. J. Power Sources 1999, 77, 170.
doi: 10.1016/S0378-7753(98)00191-8 |
109 |
Jiang Z. ; Sun H. ; Shi W. ; Zhou T. ; Hu J. ; Cheng J. ; Sun S. Nano Res. 2019, 12, 1555.
doi: 10.1007/s12274-019-2388-6 |
110 |
Gong H. ; Wang T. ; Xue H. ; Lu X. ; Xia W. ; Song L. ; Ma R. Nano Res. 2019, 12, 2528.
doi: 10.1007/s12274-019-2480-y |
111 |
Yuan M. ; Wang R. ; Fu W. ; Lin L. ; Sun Z. ; Long X. ; Ma S. ACS Appl. Mater. Interfaces 2019, 11, 11403.
doi: 10.1021/acsami.8b21808 |
[1] | Yongli Heng, Zhenyi Gu, Jinzhi Guo, Xinglong Wu. Research Progresses on Vanadium-Based Cathode Materials for Aqueous Zinc-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2021, 37(3): 2005013-0. |
[2] | Gaolong Zhu, Chenzi Zhao, Hong Yuan, Haoxiong Nan, Bochen Zhao, Lipeng Hou, Chuangxin He, Quanbing Liu, Jiaqi Huang. Liquid Phase Therapy with Localized High-Concentration Electrolytes for Solid-State Li Metal Pouch Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2005003-0. |
[3] | Chen Wu, Ying Zhou, Xiaolong Zhu, Minzhi Zhan, Hanxi Yang, Jiangfeng Qian. Research Progress on High Concentration Electrolytes for Li Metal Batteries [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2008044-0. |
[4] | Xinyang Yue, Cui Ma, Jian Bao, Siyu Yang, Dong Chen, Xiaojing Wu, Yongning Zhou. Failure Mechanisms of Lithium Metal Anode and Their Advanced Characterization Technologies [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2005012-0. |
[5] | Jun Guan, Nianwu Li, Le Yu. Artificial Interphase Layers for Lithium Metal Anode [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2009011-0. |
[6] | Zibo Zhang, Wei Deng, Xufeng Zhou, Zhaoping Liu. LiC6 Heterogeneous Interface for Stable Lithium Plating and Stripping [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2008092-0. |
[7] | Zhida Wang, Yuancheng Feng, Songtao Lu, Rui Wang, Wei Qin, Xiaohong Wu. Improvement in Performance of Three-Dimensional SnLi/Carbon Paper Anode in Lean Electrolyte with In Situ Fluorinated Protection Layer [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2008082-0. |
[8] | Guangbin Hua, Yanchen Fan, Qianfan Zhang. Application of Computational Simulation on the Study of Lithium Metal Anodes [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2008089-0. |
[9] | Yumeng Zhao, Lingxiao Ren, Aoxuan Wang, Jiayan Luo. Composite Anodes for Lithium Metal Batteries [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2008090-0. |
[10] | Yunbo Zhang, Qiaowei Lin, Junwei Han, Zhiyuan Han, Tong Li, Feiyu Kang, Quan-Hong Yang, Wei Lü. Bacterial Cellulose-Derived Three-Dimensional Carbon Current Collectors for Dendrite-Free Lithium Metal Anodes [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2008088-0. |
[11] | Mingli Cai, Liu Yao, Jun Jin, Zhaoyin Wen. In situ Lithiophilic ZnO Layer Constructed using Aqueous Strategy for a Stable Li-Garnet Interface [J]. Acta Phys. -Chim. Sin., 2021, 37(1): 2009006-0. |
[12] | Xiaoguang Qiu, Wei Liu, Jiuding Liu, Junzhi Li, Kai Zhang, Fangyi Cheng. Nucleation Mechanism and Substrate Modification of Lithium Metal Anode [J]. Acta Phys. -Chim. Sin., 2021, 37(1): 2009012-0. |
[13] | Hongyi Pan, Quan Li, Xiqian Yu, Hong Li. Characterization Techniques for Lithium Metal Anodes at Multiple Spatial Scales [J]. Acta Phys. -Chim. Sin., 2021, 37(1): 2008091-0. |
[14] | Fanyang Huang, Yulin Jie, Xinpeng Li, Yawei Chen, Ruiguo Cao, Genqiang Zhang, Shuhong Jiao. Correlation between Li Plating Morphology and Reversibility of Li Metal Anode [J]. Acta Phys. -Chim. Sin., 2021, 37(1): 2008081-0. |
[15] | Fanfan Liu, Zhiwen Zhang, Shufen Ye, Yu Yao, Yan Yu. Challenges and Improvement Strategies Progress of Lithium Metal Anode [J]. Acta Phys. -Chim. Sin., 2021, 37(1): 2006021-0. |
|