Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (5): 2007052.doi: 10.3866/PKU.WHXB202007052
Special Issue: CO2 Reduction
• REVIEW • Previous Articles Next Articles
Xuehua Zhang1,2, Yanwei Cao2, Qiongyao Chen2, Chaoren Shen2, Lin He2,3,*()
Received:
2020-07-20
Accepted:
2020-08-03
Published:
2020-08-06
Contact:
Lin He
E-mail:helin@licp.cas.cn
About author:
Lin He, Email: helin@licp.cas.cn. Tel.: +86-512-88180906Supported by:
MSC2000:
Xuehua Zhang, Yanwei Cao, Qiongyao Chen, Chaoren Shen, Lin He. Recent Progress in Homogeneous Reductive Carbonylation of Carbon Dioxide with Hydrogen[J].Acta Phys. -Chim. Sin., 2021, 37(5): 2007052.
1 |
Dowell N. M. ; Fennell P. S. ; Shah N. ; Maitland G. C. Nat. Clim. Change 2017, 7, 243.
doi: 10.1038/nclimate3231 |
2 |
Xu Y. Y. ; Ramanathan V. ; Victor D. G. Nature 2018, 564, 30.
doi: 10.1038/d41586-018-07586-5 |
3 |
Thomas J. M. ; Harris K. D. M. Energy Environ. Sci. 2016, 9, 687.
doi: 10.1039/c5ee03461b |
4 |
Artz J. ; Müller T. E. ; Thenert K. ; Kleinekorte J. ; Raoul M. ; Sternberg A. ; Bardow A. ; Leitner W. Chem. Rev. 2018, 118, 434.
doi: 10.1021/acs.chemrev.7b00435 |
5 | Zhou Y. ; Han N. ; Li Y. Acta Phys. -Chim. Sin. 2020, 36, 2001041. |
周远; 韩娜; 李彦光. 物理化学学报, 2020, 36, 2001041.
doi: 10.3866/PKU.WHXB202001041 |
|
6 |
North M. ; Pasquale R. ; Young C. Green Chem. 2010, 12, 1514.
doi: 10.1039/C0GC00065E |
7 |
Lindsey A. S. ; Jeskey H. Chem. Rev. 1957, 57, 583.
doi: 10.1021/cr50016a001 |
8 |
Otto A. ; Grube T. ; Schiebahn S. ; Stolten D. Energy Environ. Sci. 2015, 8, 3283.
doi: 10.1039/C5EE02591E |
9 |
Aresta M. ; Dibenedetto A. ; Angelini A. Chem. Rev. 2013, 114, 1709.
doi: 10.1021/cr4002758 |
10 |
Martin C. ; Fiorani G. ; Kleij A. W. ACS Catal. 2015, 5, 1353.
doi: 10.1021/cs5018997 |
11 |
Li Y. ; Wang Z. ; Liu Q. Chin. J. Org. Chem. 2017, 37, 1978.
doi: 10.6023/cjoc201702038 |
12 |
Liu Q. ; Wu L. ; Jackstell R. ; Beller M. Nat. Commun. 2015, 6, 5933.
doi: 10.1038/ncomms6933 |
13 |
Klankermayer J. ; Wesselbaum S. ; Beydoun K. ; Leitner W. Angew. Chem. Int. Ed. 2016, 55, 7296.
doi: 10.1002/ange.201507458 |
14 |
Aresta M. ; Dibenedetto A. ; Angelini A. Chem. Rev. 2014, 114, 1709.
doi: 10.1021/cr4002758 |
15 |
Wang L. ; Sun W. ; Liu C. Chin. J. Chem. 2018, 36, 353.
doi: 10.1002/cjoc.201700746 |
16 |
Sakakura T. ; Choi J. ; Yasuda H. Chem. Rev. 2007, 107, 2365.
doi: 10.1021/cr068357u |
17 |
Wu L. ; Liu Q. ; Jackstell R. ; Beller M. Angew. Chem. Int. Ed. 2014, 53, 6310.
doi: 10.1002/anie.201400793 |
18 |
Dabral S. ; Schaub T. Adv. Synth. Catal. 2019, 361, 223.
doi: 10.1002/adsc.201801215 |
19 |
Liu X. ; Li X. ; He L. Eur. J. Org. Chem. 2019, 14, 2437.
doi: 10.1002/ejoc.201801833 |
20 |
Dong K. ; Razzaq R. ; Hu Y. ; Ding K. Top. Curr. Chem. 2017, 375, 23.
doi: 10.1007/s41061-017-0107-x |
21 | Zhou W. ; Guo J. ; Shen S ; Pan J. ; Tang J. ; Chen L. ; Au C. ; Yin S. Acta Phys. -Chim. Sin. 2020, 36, 1906048. |
周威; 郭君康; 申升; 潘金波; 唐杰; 陈浪; 区泽堂; 尹双凤. 物理化学学报, 2020, 36, 1906048.
doi: 10.3866/PKU.WHXB201906048 |
|
22 |
Franke R. ; Selent D. ; Börner A. Chem. Rev. 2012, 112, 5675.
doi: 10.1021/cr3001803 |
23 |
Vilches-Herrera M. ; Domke L. ; Börner A. ACS Catal. 2014, 4, 1706.
doi: 10.1021/cs500273d |
24 |
Pospech J. ; Fleischer I. ; Frank R. ; Buchholz S. ; Beller M. Angew. Chem. Int. Ed. 2013, 52, 2852.
doi: 10.1002/anie.201208330 |
25 |
Cornils B. ; Herrmann W. A. ; Rasch M. Angew. Chem. Int. Ed. 1994, 33, 2144.
doi: 10.1002/anie.199423481 |
26 |
Yang J. ; Liu J. W. ; Helfried H. ; Franke R. ; Jackstell R. ; Beller M. Science 2019, 366, 1514.
doi: 10.1126/science.aaz1293 |
27 |
Hood D. ; Johnson R. ; Carpenter A. ; Younker J. ; Vinyard D. ; Stanley G. Science 2020, 367, 542.
doi: 10.1126/science.aaw7742 |
28 |
Wang W. ; Wang S. ; Ma X. ; Gong. J. Chem. Soc. Rev. 2011, 40, 3703.
doi: 10.1039/C1CS15008A |
29 |
Laine R. M. ; Rinker R. G. ; Ford P. C. J. Am. Chem. Soc. 1977, 99, 252.
doi: 10.1021/ja00443a049 |
30 |
Tominaga K. ; Sasaki Y. ; Kawai M. ; Watanabe T. ; Saito M. J. Chem. Soc., Chem. Commun. 1993, 629.
doi: 10.1039/C39930000629 |
31 |
Tominaga K. ; Sasaki Y. ; Saito M. ; Hagihara K. ; Watanabe T. J. Mol. Catal. 1994, 89, 51.
doi: 10.1016/0304-5102(93)E0287-Q |
32 |
Koinuma H. ; Yoshida Y. ; Hirai H. Chem. Lett. 1975, 4, 1223.
doi: 10.1246/cl.1975.1223 |
33 |
Cheng C. ; Hendriksen D. E. ; Eisenberg R. J. Am. Chem. Soc. 1977, 99, 2791.
doi: 10.1021/ja00450a062 |
34 |
Tominaga K. ; Sasaki Y. ; Watanabe T. ; Saito M. J. Chem. Soc., Chem. Commun. 1995, 1489.
doi: 10.1039/C39950001489 |
35 |
Tsuchiya K. ; Huang J. D. ; Tominaga K. ACS Catal. 2013, 3, 2865.
doi: 10.1021/cs400809k |
36 |
Yasuda T. ; Uchiage E. ; Fujitani T. ; Tominaga. K. ; Nishida M. Appl. Catal. B: Environ. 2018, 232, 299.
doi: 10.1016/j.apcatb.2018.03.057 |
37 |
Tominaga K. ; Sasaki Y. Catal. Commun. 2000, 1, 1.
doi: 10.1016/S1566-7367(00)00006-6 |
38 |
Tominaga K. ; Sasaki Y. J. Mol. Catal. A: Chem. 2004, 220, 159.
doi: 10.1016/j.molcata.2004.06.009 |
39 |
Tominaga K. Catal. Today 2006, 115, 70.
doi: 10.1016/j.cattod.2006.02.019 |
40 |
Jääskeläinen S. ; Haukka M. Appl. Catal. A: Gen. 2003, 247, 9.
doi: 10.1016/S0926-860X(03)00063-2 |
41 |
Kontkanen M. ; Oresmaa L. ; Moreno M. A. ; Jänis J. ; Laurila E. ; Haukka M. Appl. Catal. A: Gen. 2009, 365, 130.
doi: 10.1016/j.apcata.2009.06.006 |
42 |
Liu Q. ; Wu L. ; Fleischer I. ; Selent D. ; Franke R. ; Beller M. Chem. Eur. J. 2014, 20, 6888.
doi: 10.1002/chem.201400358 |
43 |
Ali M. ; Gual A. ; Ebeling G. ; Dupont J. ChemCatChem 2014, 6, 2224.
doi: 10.1002/cctc.201402226 |
44 |
Ren X. ; Zheng Z. ; Zhang L. ; Wang Z. ; Xia C. ; Ding K. Angew. Chem. Int. Ed. 2017, 56, 310.
doi: 10.1002/ange.201608628 |
45 |
Zhang X. ; Tian X. ; Shen C. ; Xia C. ; He L. ChemCatChem 2019, 11, 1986.
doi: 10.1002/cctc.201802091 |
46 |
Srivastava V. K. ; Eilbracht P. Catal. Commun. 2009, 10, 1791.
doi: 10.1016/j.catcom.2009.05.019 |
47 |
Ali M. ; Gual A. ; Ebeling G. ; Dupont J. ChemSusChem 2016, 9, 2129.
doi: 10.1002/cssc.201600385 |
48 |
Uhe D. A. ; Hölscher M. ; Leitner W. Chem. Eur. J. 2012, 18, 170.
doi: 10.1002/chem.201102785 |
49 |
Ostapowicz T. G. ; Schmitz M. ; Krystof M. ; Klankermayer J. ; Leitner W. Angew. Chem. Int. Ed. 2013, 52, 12119.
doi: 10.1002/anie.201304529 |
50 |
Simonato J. P. J Mol. Catal. A: Chem. 2003, 197, 61.
doi: 10.1016/S1381-1169(02)00676-3 |
51 |
Wu L. ; Liu Q. ; Fleischer I. ; Jackstell R. ; Beller M. Nat. Commun. 2014, 5, 3091.
doi: 10.1038/ncomms4091 |
52 |
Zhang X. ; Shen C. ; Xia C. ; Tian X. ; He L. Green Chem. 2018, 20, 5533.
doi: 10.1039/c8gc02289e |
53 |
Haynes P. ; Slaugh L. H. ; Kohnle J. F. Tetrahedron Lett. 1970, 11, 365.
doi: 10.1016/0040-4039(70)80086-7 |
54 |
Kiyoshi K. ; Heng P. ; Nobuyuki S. ; Yoshimasa T. Chem. Lett. 1977, 6, 1495.
doi: 10.1246/cl.1977.1495 |
55 |
Schreiner S. ; Yu J. Y. ; Vaska L. Inorg. Chim. Acta 1988, 147, 139.
doi: 10.1016/S0020-1693(00)83362-9 |
56 |
Schreiner S. ; Yu J. Y. ; Vaska L. J. Chem. Soc. Chem. Commun. 1988, 602
doi: 10.1039/C39880000602 |
57 |
Jessop P. G. ; Hsiao Y. ; Ikariya T. ; Noyori R. J. Am. Chem. Soc. 1994, 116, 8851.
doi: 10.1021/ja00098a072 |
58 |
Johanssona T. ; Stawinski J. Chem. Commum. 2001, 24, 2654.
doi: 10.1039/B108857M |
59 |
Kröcher O. ; Köppel R. A. ; Baiker A. Chem. Commun. 1997, 453
doi: 10.1039/A608150I |
60 |
Federsel C. ; Boddien A. ; Jackstell R. ; Jennerjahn R. ; Dyson P. J. ; Scopelliti R. ; Laurenczy G. ; Beller M. Angew. Chem. Int. Ed. 2010, 49, 9777.
doi: 10.1002/anie.201004263 |
61 |
Ziebart C. ; Federsel C. ; Anbarasan P. ; Jackstell R. ; Baumann W. ; Spannenberg A. ; Beller M. J. Am. Chem. Soc. 2012, 134, 20701.
doi: 10.1021/ja307924a |
62 |
Federsel C. ; Ziebart C. ; Jackstell R. ; Baumann W. ; Beller M. Chem. Eur. J. 2012, 18, 72.
doi: 10.1002/chem.201101343 |
63 |
Zhang L. ; Han Z. ; Zhao X. ; Wang Z. ; Ding K. Angew. Chem. Int. Ed. 2015, 54, 6186.
doi: 10.1002/anie.201500939 |
64 |
Munshi P. ; Heldebrant D. ; McKoon E. ; Kelly P. ; Tai C. ; Jessop P. Tetrahedron Lett. 2003, 44, 2725.
doi: 10.1016/S0040-4039(03)00384-8 |
65 |
Daw P. ; Chakraborty S. ; Leitus G. ; Diskin-Posner Y. ; Ben-David Y. ; Milstein D. ACS Catal. 2017, 7, 2500.
doi: 10.1021/acscatal.7b00116 |
66 |
Liu H. ; Mei Q. ; Xu Q. ; Song J. ; Liu H. ; Han B. Green Chem. 2017, 19, 196.
doi: 10.1039/C6GC02243J |
67 |
Ke Z. ; Yang Z. ; Liu Z. ; Yu B. ; Zhao Y. ; Guo S. ; Wu Y. ; Liu Z. Org. Lett. 2018, 20, 6622.
doi: 10.1021/acs.orglett.8b02384 |
68 |
Dubey A. ; Nencini L. ; Fayzullin R. R. ; Nervi C. ; Khusnutdinova J. R. ACS Catal. 2017, 7, 3864.
doi: 10.1021/acscatal.7b00943 |
69 |
Jayarathne U. ; Hazari N. ; Bernskoetter W. H. ACS Catal. 2018, 8, 1338.
doi: 10.1021/acscatal.7b03834 |
70 |
Schönherr H. ; Cernak T. Angew. Chem. Int. Ed. 2013, 52, 12256.
doi: 10.1002/anie.201303207 |
71 |
Clarke H. T. ; Gillespie H. B. ; Weisshaus S. Z. J. Am. Chem. Soc. 1933, 55, 4571.
doi: 10.1021/ja01338a041 |
72 |
Gredig S. V. ; Koeppel R. A. ; Baiker A. J. Chem. Soc. Chem. Commun. 1995, 73
doi: 10.1039/C39950000073 |
73 |
Li Y. ; Cui X. ; Dong K. ; Junge K. ; Beller M. ACS Catal. 2017, 7, 1077.
doi: 10.1021/acscatal.6b02715 |
74 |
Beydoun K. ; Stein T. ; Klankermayer J. ; Leitner W. Angew. Chem. Int. Ed. 2013, 52, 9554.
doi: 10.1002/anie.201304656 |
75 |
Bianchini C. ; Meli A. ; Peruzzini M. ; Vizza F. ; Zanobini F. Coord. Chem. Rev. 1992, 120, 193.
doi: 10.1016/0010-8545(92)80051-R |
76 |
Li Y. ; Sorribes I. ; Yan T. ; Junge K. ; Beller M. Angew. Chem. Int. Ed. 2013, 52, 12156.
doi: 10.1002/anie.201306850 |
77 |
Beydoun K. ; Thenert K. ; Streng E. S. ; Brosinski S. ; Leitner W. ; Klankermayer J. ChemCatChem 2016, 8, 135.
doi: 10.1002/cctc.201501116 |
78 |
Yu Bo. ; Zhang H. ; Zhao Y. ; Chen S. ; Xu J. ; Huang C. ; Liu Z. Green Chem. 2013, 15, 95.
doi: 10.1039/C2GC36517K |
79 |
Ke Z. ; Yu B. ; Wang H. ; Xiang J. ; Han J. ; Wu Y. ; Liu Z. ; Yang P. ; Liu Z. Green Chem. 2019, 21, 1695.
doi: 10.1039/C9GC00095J |
80 |
Qian Q. ; Cui M. ; Zhang J. ; Xiang J. ; Song J. ; Yang G. ; Han B. Green Chem. 2018, 20, 206.
doi: 10.1039/C7GC02807E |
81 |
Wang Y. ; Zhang J. ; Qian Q. ; Bediako B. ; Cui M. ; Yang G. ; Yan J. ; Han B. Green Chem. 2019, 21, 589.
doi: 10.1039/c8gc03320j |
82 |
Bediako B. ; Qian Q. ; Zhang J. ; Wang Y. ; Shen X. ; Shi J. ; Cui M. ; Yang G. ; Wang Z. ; Tong S. ; et al Green Chem. 2019, 21, 4152.
doi: 10.1039/C9GC01185D |
83 |
Zhang J. ; Qian Q. ; Cui M. ; Chen C. ; Liu S. ; Han B. Green Chem. 2017, 19, 4396.
doi: 10.1039/C7GC01887H |
84 |
Qian Q. ; Zhang J. ; Cui M. ; Han B. Nat. Commun. 2016, 7, 11481.
doi: 10.1038/ncomms11481 |
85 |
Tominaga K. ; Sasaki Y. ; Watanabe T. ; Saito M. Stud. Surf. Sci. Catal. 1998, 114, 49.
doi: 10.1016/S0167-2991(98)80804-5 |
86 |
Darensbourg D. J. ; Groetsch G. ; Wiegreffe P. ; Rheingold A. L. Inorg. Chem. 1987, 26, 3827.
doi: 10.1021/ic00269a043 |
87 |
Cui M. ; Qian Q. ; Zhang J. ; Chen C. ; Han B. Green Chem. 2017, 19, 3558.
doi: 10.1039/C7GC01391D |
88 |
Wang Y. ; Qian Q. ; Zhang J. ; Bediako B. ; Wang Z. ; Liu H. ; Han B. Nat. Commun. 2019, 10, 5395.
doi: 10.1038/s41467-019-13463-0 |
89 | Liu Z. Acta Phys. -Chim. Sin. 2020, 36, 1912045. |
刘志敏. 物理化学学报, 2020, 36, 1912045.
doi: 10.3866/PKU.WHXB201912045 |
|
90 | Gao Y. ; Liu S. ; Zhao Z. ; Tao H. ; Sun Z. Acta Phys. -Chim. Sin. 2018, 34, 858. |
高云楠; 刘世桢; 赵振清; 陶亨聪; 孙振宇. 物理化学学报, 2018, 34, 858.
doi: 10.3866/PKU.WHXB201802061 |
|
91 |
Nieskens D. ; Ferrari D. ; Liu Y. ; Kolonko R. Catal. Commum 2011, 14, 111.
doi: 10.1016/j.catcom.2011.07.020 |
92 |
Li S. ; Guo H. ; Luo C. ; Zhang H. ; Xiong L. ; Chen X. ; Ma L. Catal. Lett. 2013, 143, 345.
doi: 10.1007/s10562-013-0977-7 |
93 |
Qian Q. ; Cui M. ; He Z. ; Wu C. ; Zhu Q. ; Zhang Z. ; Ma J. ; Yang G. ; Zhang J. ; Han B. Chem. Sci. 2015, 6, 5685.
doi: 10.1039/C5SC02000J |
94 |
Cui M. ; Qian Q. ; He Z. ; Zhang Z. ; Ma J. ; Wu T. ; Yang G. ; Han B. Chem. Sci. 2016, 7, 5205.
doi: 10.1039/C6SC01314G |
95 |
Veibel S. ; Nielsen J. I. Tetrahedron 1967, 23, 1723.
doi: 10.1016/S0040-4020(01)82571-0 |
96 |
Thomas C. ; Süss-Fink G. Coord. Chem. Rev. 2003, 243, 125.
doi: 10.1016/S0010-8545(03)00051-1 |
97 |
Fukuoka A. ; Gotoh N. ; Kobayashi N. ; Hirano M. ; Komiya S. Chem. Lett. 1995, 24, 567.
doi: 10.1246/cl.1995.567 |
98 |
Maeda C. ; Miyazaki Y. ; Ema T. Catal. Sci. Technol. 2014, 4, 1482.
doi: 10.1039/C3CY00993A |
99 |
Li Y. ; Yan T. ; Junge K. ; Beller M. Angew. Chem. Int. Ed. 2014, 53, 10476.
doi: 10.1002/anie.201405779 |
100 |
Shen X. ; Xin Y. ; Liu H. ; Han B. ChemSusChem 2020, (13)
doi: 10.1002/cssc.202001025 |
101 |
Zhang J. ; Qian Q. ; Wang Y. ; Bediako B. ; Yan J. ; Han B. Chem. Sci. 2019, 10, 10640.
doi: 10.1039/c9sc03386f |
102 |
Shen X. ; Meng Q. ; Dong M. ; Xiang J. ; Li S. ; Liu H. ; Han B. ChemSusChem 2019, 12, 514.
doi: 10.1002/cssc.201902404 |
[1] | Zhicheng Liu, Xiaodong Yi, Feixue Gao, Zaiku Xie, Buxing Han, Yuhan Sun, Mingyuan He, Junlin Yang. Green Carbon Science: A Scientific Basis for Achieving 'Dual Carbon' Goal——Academic Summary of the 292nd "Shuang-Qing Forum" [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2112029-0. |
[2] | Ruoning Li, Xue Zhang, Na Xue, Jie Li, Tianhao Wu, Zhen Xu, Yifan Wang, Na Li, Hao Tang, Shimin Hou, Yongfeng Wang. Hierarchical Self-Assembly of Ag-Coordinated Motifs on Ag(111) [J]. Acta Phys. -Chim. Sin., 2022, 38(8): 2011060-. |
[3] | Bichen Zhu, Xiaoyang Hong, Liyong Tang, Qinqin Liu, Hua Tang. Enhanced Photocatalytic CO2 Reduction over 2D/1D BiOBr0.5Cl0.5/WO3 S-Scheme Heterostructure [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2111008-. |
[4] | Rongchen Shen, Lei Hao, Qing Chen, Qiaoqing Zheng, Peng Zhang, Xin Li. P-Doped g-C3N4 Nanosheets with Highly Dispersed Co0.2Ni1.6Fe0.2P Cocatalyst for Efficient Photocatalytic Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2110014-. |
[5] | Yuke Song, Wenfu Xie, Mingfei Shao. Recent Advances in Integrated Electrode for Electrocatalytic Carbon Dioxide Reduction [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2101028-. |
[6] | Chengyu Ye, Xiaofei Yu, Wencui Li, Lei He, Guangping Hao, Anhui Lu. Engineering of Bifunctional Nickel Phosphide@Ni-N-C Catalysts for Selective Electroreduction of CO2-H2O to Syngas [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2004054-. |
[7] | Na Zhao, Jing Peng, Jianping Wang, Maolin Zhai. Novel Carboxy-Functionalized PVP-CdS Nanopopcorns with Homojunctions for Enhanced Photocatalytic Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2004046-. |
[8] | Xinmei Ding, Yanli Liang, Hailong Zhang, Ming Zhao, Jianli Wang, Yaoqiang Chen. Preparation of Reduced Pt-Based Catalysts with High Dispersion and Their Catalytic Performances for NO Oxidation [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2005009-. |
[9] | Zhicong Sun, Ergui Luo, Qinglei Meng, Xian Wang, Junjie Ge, Changpeng Liu, Wei Xing. High-Performance Palladium-Based Catalyst Boosted by Thin-Layered Carbon Nitride for Hydrogen Generation from Formic Acid [J]. Acta Phys. -Chim. Sin., 2022, 38(3): 2003035-. |
[10] | Ying Liu, Xiaofang Liu, Lin Xia, Chaojie Huang, Zhaoxuan Wu, Hui Wang, Yuhan Sun. Methanol Synthesis by COx Hydrogenation over Cu/ZnO/Al2O3 Catalyst via Hydrotalcite-Like Precursors: the Role of CO in the Reactant Mixture [J]. Acta Phys. -Chim. Sin., 2022, 38(3): 2002017-. |
[11] | Xiaoxiong Huang, Yingjie Ma, Linjie Zhi. Ultrathin Nitrogenated Carbon Nanosheets with Single-Atom Nickel as an Efficient Catalyst for Electrochemical CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2011050-. |
[12] | Yadong Du, Xiangtong Meng, Zhen Wang, Xin Zhao, Jieshan Qiu. Graphene-Based Catalysts for CO2 Electroreduction [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2101009-. |
[13] | Hongying Li, Haiming Gong, Zhiliang Jin. In2O3-Modified Three-Dimensional Nanoflower MoSx Form S-scheme Heterojunction for Efficient Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2022, 38(12): 2201037-. |
[14] | Chong Cao, Pei Zhang, Lidong Cao, Mingxin Liu, Yuying Song, Peng Chen, Qiliang Huang, Buxing Han. Experimental and Molecular Dynamic Simulation of Droplet Deposition on Superhydrophobic Plant Leaf Surfaces [J]. Acta Phys. -Chim. Sin., 2022, 38(12): 2207006-. |
[15] | Yuxin Chen, Lijun Wang, Zhibo Yao, Leiduan Hao, Xinyi Tan, Justus Masa, Alex W. Robertson, Zhenyu Sun. Tuning the Coordination Structure of Single Atoms and Their Interaction with the Support for Carbon Dioxide Electroreduction [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2207024-0. |
|