Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (9): 2007054.doi: 10.3866/PKU.WHXB202007054
Special Issue: Fuel Cells
• REVIEW • Previous Articles Next Articles
Mengting Li, Xingqun Zheng, Li Li(), Zidong Wei(
)
Received:
2020-07-21
Accepted:
2020-08-14
Published:
2020-08-19
Contact:
Li Li,Zidong Wei
E-mail:liliracial@cqu.edu.cn;zdwei@cqu.edu.cn
About author:
Email: zdwei@cqu.edu.cn Tel.: +86-23-65678928 (Z.W.)Supported by:
MSC2000:
Mengting Li, Xingqun Zheng, Li Li, Zidong Wei. Research Progress of Hydrogen Oxidation and Hydrogen Evolution Reaction Mechanism in Alkaline Media[J].Acta Phys. -Chim. Sin., 2021, 37(9): 2007054.
Fig 1
(a) HOR/HER specific exchange current density of Pt/C in a PEMFC at 353 K compared to that obtained in 0.1 mol∙L−1 KOH and extrapolated to 353 K. (b) HOR overpotential of Pt/C with different mass activity in KOH (black solid lines and gray dashed lines); this is compared with mass activities measured on Pt/C in a PEMFC at 353 K (red lines) 11. Adapted with permission, Copyright 2011, Electrochemical Society, Inc."
Table 1
The theoretical Tafel slope of the rate-determining step in HOR/HER, mechanism of HOR/HER and corresponding Tafel slope (298 K)."
Rate-determining step (RDS) | Tafel slope/(mV∙dec−1) (theoretical value) | Mechanism | Tafel slope/(mV∙dec−1) | ||
HER | HOR | HER | HOR | ||
Tafel | 30 | 30 | Tafel(RDS)-Volmer | 30 | 30 |
Volmer | 120 | 120 | Tafel-Volmer(RDS) | 118 | 118 |
Heyrovsky | 40 (θH > 0.6) | 120 (θH > 0.6) | Heyrovsky(RDS)-Volmer | 39 | 118 |
120 (θH < 0.6) | 40 (θH < 0.6) | Heyrovsky-Volmer(RDS) | 118 | 39 |
Fig 3
(a) Schematic representation of the HER on Ni(OH)2/Pt(111); (b) comparison between activities for the HER, expressed as overpotential required for a 5 mA∙cm−2 current density, in 0.1 mol∙L−1 HClO4 and 0.1 mol∙L−1 KOH for both bare metal surfaces and Ni(OH)2-modifed surfaces. (b) Adapted with permission 39, Copyright 2012, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim."
Fig 4
(a) HOR polarization curves (black) and CVs (dashed grey and red) for Au(111); (b) HOR polarization curves of Pt/C with 0, 3, 6 and 9 mL doped 5 mmol∙L−1 RuCl3 and Pt1Ru1/C collected in 0.1 mol∙L−1 KOH electrolyte; (c) CO stripping voltammograms collected for Pt/C with various amount of deposited RuCl3 in Ar-saturated 0.1 mol∙L−1 KOH; (d) schematic diagram of Pd/Ni structure (left), and a zoom-in to show the bifunctional catalytic effect of the Pd/Ni surface (right). (a) Adapted with permission 35, Copyright 2013, Nature Publishing Group. (b, c) Adapted with permission 37, Copyright 2017, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. (d) Adapted with permission 44, Copyright 2016, Elsevier BV."
Fig 5
(a) Steady state CVs of Pt collected in different pH electrolytes; (b) exchange current densities (i0) normalized to surface area of H1a (peak potential 0.13 V) as a function of t-ECSA; i0 of HOR/HER on Ir/C samples normalized to t-ECSA as a function of t-ECSA. (a) Adapted with permission 49, Copyright 2015, Nature Publishing Group. (b) Adapted with permission 54, Copyright 2015, American Chemical Society."
Fig 6
CO tripping on Pt/C (a) and PtRu/C (b) in 0.1 mol∙L−1 H2SO4 and 0.1 mol∙L−1 KOH solutions; (c) schematic diagram of the cathode-chimney effect for the HER; (d) schematic diagram of anode-chimney effect for the HOR. (a, b) Adapted with permission 61, Copyright 2015, Royal Society of Chemistry. (c) Adapted with permission 62, Copyright 2019, Elsevier BV. (d) Adapted with permission 63, Copyright 2020, Royal Society of Chemistry."
Fig 7
Adsorption energies of (a) H* and (b) H2O* on different metals surfaces with and without OH*; Gibbs free energy change of HOR elementary reaction steps and OH* formation at varied electrode potentials (U, V vs NHE) on (c) Pt(110) and (d) PtRu(110) with and without OH*. (a–d) Adapted with permission 65, Copyright 2019, American Chemical Society."
Fig 8
(a) A snapshot and (b) time evolution of the work function along the trajectory to determine the potential of zero charge equilibrated; (c) electrostatic potential V(z) of Pt(111) in a vacuum (dashed line) and the averaged potential of the Pt(111) electrode with an ion-free water film (solid line). The charge caused by the water film δV (z) is illustrated in the lower panel. (a, b) Adapted with permission 75, Copyright 2018, American Institute of Physics."
Fig 9
Models of water/Pt(100) interface in QMMD simulation. (a) Explicit model (~6 water layers), (b) explicit + Na+ model (~6 water layers + 1Na) and (c) explicit + implicit model (~3 water layers + implicit solvation). (a–c) Adapted with permission 53, Copyright 2018, American Chemical Society."
1 |
Dresselhaus M. S. ; Thomas I. L. Nature 2001, 414, 332.
doi: 10.1038/35104599 |
2 |
Dincer I. ; Acar C. Int. J. Hydrogen Energy 2015, 40, 11094.
doi: 10.1016/j.ijhydene.2014.12.035 |
3 |
Edwards P. P. ; Kuznetsov V. L. ; David W. I. F. ; Brandon N. P. Energy Policy 2008, 36, 4356.
doi: 10.1016/j.enpol.2008.09.036 |
4 |
Hosseini S. E. ; Wahid M. A. Renew. Sust. Energ. Rev. 2016, 57, 850.
doi: 10.1016/j.rser.2015.12.112 |
5 | Yi B. L. Chinese Battery Industry 2002, 8, 16. |
衣宝廉. 电池工业, 2002, 8, 16. | |
6 | Yang T. Y. ; Cui C. ; Rong H. P. ; Zhang J. T. ; Wang D. S. Acta Phys. -Chim. Sin 2020, 36, 2003047. |
杨天怡; 崔铖; 戎宏盼; 张加涛; 王定胜. 物理化学学报, 2020, 36, 2003047.
doi: 10.3866/PKU.WHXB202003047 |
|
7 |
Juarez F. ; Salmazo D. ; Quaino P. ; Schmickler W. Electrocatalysis 2019, 10, 584.
doi: 10.1007/s12678-019-00546-1 |
8 |
Yang F. L. ; Bao X. ; Li P. ; Wang X. W. ; Cheng G. Z. ; Chen S. L. ; Luo W. Angew. Chem. Int. Ed. 2019, 58, 1.
doi: 10.1002/anie.201908194 |
9 | Chang J. F. ; Xiao Y. ; Luo Z. Y. ; Ge J. J. ; Liu C. P. ; Xing W. Acta Phys. -Chim. Sin 2016, 32, 1556. |
常进法; 肖遥; 罗兆艳; 葛君杰; 刘长鹏; 邢巍. 物理化学学报, 2016, 32, 1556.
doi: 10.3866/PKU.WHXB201604291 |
|
10 | Wang J. ; Wei Z. D. Acta Phys. -Chim. Sin. 2017, 33, 886. |
王俊; 魏子栋. 物理化学学报, 2017, 33, 886.
doi: 10.3866/PKU.WHXB201702092 |
|
11 |
Sheng W. C. ; Gasteiger H. A. ; Shao-Horn Y. J. Electrochem. Soc. 2010, 157, B1529.
doi: 10.1149/1.3483106 |
12 |
Huang J. ; Li P. ; Chen S. L. J. Phys. Chem. C 2019, 123, 17325.
doi: 10.1021/acs.jpcc.9b03639 |
13 |
Tian X. Y. ; Zhao P. C. ; Sheng W. C. Adv. Mater. 2019, 31, e1808066.
doi: 10.1002/adma.201808066 |
14 |
Davydova E. S. ; Mukerjee S. ; Jaouen F. ; Dekel D. R. ACS Catal. 2018, 8, 6665.
doi: 10.1021/acscatal.8b00689 |
15 |
Campos-Roldán C. A. ; Alonso-Vante N. Electrochem. Energy Rev. 2019, 2, 312.
doi: 10.1007/s41918-019-00034-6 |
16 |
Mahmood N. ; Yao Y. D. ; Zhang J. W. ; Pan L. ; Zhang X. W. ; Zou J. J. Adv. Sci. 2018, 5, 1700464.
doi: 10.1002/advs.201700464 |
17 |
Shao Q. ; Wang P. ; Huang X. Adv. Funct. Mater. 2019, 29, 1806419.
doi: 10.1002/adfm.201806419 |
18 |
Morales-Guio C. G. ; Stern L. A. ; Hu X. Chem. Soc. Rev. 2014, 43, 6555.
doi: 10.1039/c3cs60468c |
19 |
Zheng Y. ; Jiao Y. ; Vasileff A. ; Qiao S. Z. Angew. Chem. Int. Ed 2018, 57, 7568.
doi: 10.1002/anie.201710556 |
20 |
Jia Q. Y. ; Liu E. S. ; Jiao L. ; Li J. K. ; Mukerjee S. Curr. Opin. Electrochem. 2018, 12, 209.
doi: 10.1016/j.coelec.2018.11.017 |
21 |
Shinagawa T. ; Garcia-Esparza A. T. ; Takanabe K. Sci. Rep. 2015, 5, 13801.
doi: 10.1038/srep13801 |
22 |
St. John S. ; Atkinson R. W. ; Unocic R. R. ; Zawodzinski T. A. ; Papandrew A. B. J. Phys. Chem. C 2015, 119, 13481.
doi: 10.1021/acs.jpcc.5b03284 |
23 |
Montero M. A. ; Gennero de Chialvo M. R. ; Chialvo A. C. J. Power Sources 2015, 283, 181.
doi: 10.1016/j.jpowsour.2015.02.133 |
24 |
Montero M. A. ; de Chialvo M. R. G. ; Chialvo A. C. J. Electroanal. Chem. 2016, 767, 153.
doi: 10.1016/j.jelechem.2016.02.024 |
25 |
Markovic N. M. ; Grgur B. N. ; Ross P. N. J. Phys. Chem. B 1997, 101, 5405.
doi: 10.1021/jp970930d |
26 |
Voiry D. ; Chhowalla M. ; Gogotsi Y. ; Kotov N. A. ; Li Y. ; Penner R. M. ; Schaak R. E. ; Weiss P. S. ACS Nano 2018, 12, 9635.
doi: 10.1021/acsnano.8b07700 |
27 |
Zheng J. ; Sheng W. C. ; Zhuang Z. B. ; Xu B. J. ; Yan Y. S. Sci. Adv. 2016, 2, e1501602.
doi: 10.1126/sciadv.1501602 |
28 | Haynes, W. M.; Lide, D. R.; Bruno, T. J. CRC Handbook of Chemistry and Physics, 97th.; CRC Press: Boca Raton-London-New York, 2016; pp. 6 (259)–6 (262). |
29 |
Rheinländer P. J. ; Herranz J. ; Durst J. ; Gasteiger H. A. J. Electrochem. Soc. 2014, 161, F1448.
doi: 10.1149/2.0501414jes |
30 |
Zheng J. ; Yan Y. S. ; Xu B. J. J. Electrochem. Soc. 2015, 162, F1470.
doi: 10.1149/2.0501514jes |
31 |
Simon C. ; Hasché F. ; Gasteiger H. A. J. Electrochem. Soc. 2017, 164, F591.
doi: 10.1149/2.0691706jes |
32 |
Popczun E. J. ; Read C. G. ; Roske C. W. ; Lewis N. S. ; Schaak R. E. Angew. Chem. Int. Ed. 2014, 53, 5427.
doi: 10.1002/anie.201402646 |
33 |
Durst J. ; Simon C. ; Hasché F. ; Gasteiger H. A. J. Electrochem. Soc 2014, 162, F190.
doi: 10.1149/2.0981501jes |
34 |
Conway B. E. ; Bai L. J. Electroanal. Chem. 1986, 198, 149.
doi: 10.1016/0022-0728(86)90033-1 |
35 |
Strmcnik D. ; Uchimura M. ; Wang C. ; Subbaraman R. ; Danilovic N. ; van der Vliet D. ; Paulikas A. P. ; Stamenkovic V. R. ; Markovic N. M. Nat. Chem. 2013, 5, 1.
doi: 10.1038/nchem.1574 |
36 |
Subbaraman R. ; Tripkovic D. ; Chang K. C. ; Strmcnik D. ; Paulikas A. P. ; Hirunsit P. ; Chan M. ; Greeley J. ; Stamenkovic V. ; Markovic N. M. Nat. Mater. 2012, 11, 550.
doi: 10.1038/nmat3313 |
37 |
Li J. K. ; Ghoshal S. ; Bates M. K. ; Miller T. E. ; Davies V. ; Stavitski E. ; Attenkofer K. ; Mukerjee S. ; Ma Z. F. ; Jia Q. Y. Angew. Chem. Int. Ed. 2017, 56, 15594.
doi: 10.1002/anie.201708484 |
38 |
Subbaraman R. ; Tripkovic D. ; Strmcnik D. ; Chang K. C. ; Uchimura M. ; Paulikas A. P. ; Stamenkovic V. R. ; Markovic N. M. Science 2011, 334, 1256.
doi: 10.1126/science.1211934 |
39 |
Danilovic N. ; Subbaraman R. ; Strmcnik D. ; Chang K. C. ; Paulikas A. P. ; Stamenkovic V. R. ; Markovic N. M. Angew. Chem. Int. Ed. 2012, 51, 12663.
doi: 10.1002/anie.201204842 |
40 |
Peng L. S. ; Liao M. S. ; Zheng X. Q. ; Nie Y. ; Zhang L. ; Wang M. J. ; Xiang R. ; Wang J. ; Li L. ; Wei Z. D. Chem. Sci. 2020, 11, 2487.
doi: 10.1039/C9SC04603H |
41 |
Durst J. ; Siebel A. ; Simon C. ; Hasché F. ; Herranz J. ; Gasteiger H. A. Energy Environ. Sci. 2014, 7, 2255.
doi: 10.1039/c4ee00440j |
42 | Ledezma-Yanez, I.; Wallace, W. D. Z.; Sebastián-Pascual, P.; Climent, V.; Feliu, J. M.; Koper, M. T. M. Nat. Energy 2017, 2. 1. doi: 10.1038/nenergy.2017.31 |
43 |
Angerstein-Kozlowska H. ; Conway B. E. ; Hamelin A. J. Electroanal. Chem. 1990, 277, 233.
doi: 10.1016/0022-0728(90)85105-E |
44 |
Alesker M. ; Page M. ; Shviro M. ; Paska Y. ; Gershinsky G. ; Dekel D. R. ; Zitoun D. J. Power Sources 2016, 304, 332.
doi: 10.1016/j.jpowsour.2015.11.026 |
45 |
Alia S. M. ; Pivovar B. S. ; Yan Y. S. J. Am. Chem. Soc. 2013, 135, 13473.
doi: 10.1021/ja405598a |
46 |
Ramaswamy N. ; Ghoshal S. ; Bates M. K. ; Jia Q. ; Li J. ; Mukerjee S. Nano Energy 2017, 41, 765.
doi: 10.1016/j.nanoen.2017.07.053 |
47 |
Liu L. ; Liu Y. Y. ; Liu C. G. J. Am. Chem. Soc. 2020, 142, 4985.
doi: 10.1021/jacs.9b13694 |
48 |
Sheng W. C. ; Myint M. ; Chen J. G. ; Yan Y. S. Energy Environ. Sci. 2013, 6, 1509.
doi: 10.1039/c3ee00045a |
49 |
Sheng W. C ; Zhuang Z. B. ; Gao M. R. ; Zheng J. ; Chen J. G. ; Yan Y. S. Nat. Commun. 2015, 6, 5848.
doi: 10.1038/ncomms6848 |
50 |
Rossmeisl J. ; Nørskov J. K. ; Taylor C. D. ; Janik M. J. ; Neurock M. J. Phys. Chem. B 2006, 110, 21833.
doi: 10.1021/jp0631735 |
51 |
van der Niet M. J. T. C. ; Garcia-Araez N. ; Hernández J. ; Feliu J. M. ; Koper M. T. M. Catal. Today 2013, 202, 105.
doi: 10.1016/j.cattod.2012.04.059 |
52 |
Zheng J. ; Nash J. ; Xu B. J. ; Yan Y. S. J. Electrochem. Soc. 2018, 165, H27.
doi: 10.1149/2.0881802jes |
53 |
Cheng T. ; Wang L. ; Merinov B. V. ; Goddard W. A. J. Am. Chem. Soc. 2018, 140, 7787.
doi: 10.1021/jacs.8b04006 |
54 |
Zheng J. ; Zhuang Z. B. ; Xu B. J. ; Yan Y. S. ACS Catal. 2015, 5, 4449.
doi: 10.1021/acscatal.5b00247 |
55 |
Lu S. Q. ; Zhuang Z. B. J. Am. Chem. Soc. 2017, 139, 5156.
doi: 10.1021/jacs.7b00765 |
56 |
Liu E. S. ; Li J. K. ; Jiao L. ; Doan H. T. T. ; Liu Z. Y. ; Zhao Z. P. ; Huang Y. ; Abraham K. M. ; Mukerjee S. ; Jia Q. Y. J. Am. Chem. Soc. 2019, 141, 3232.
doi: 10.1021/jacs.8b13228 |
57 |
Schwämmlein J. N. ; Stühmeier B. M. ; Wagenbauer K. ; Dietz H. ; Tileli V. ; Gasteiger H. A. ; El-Sayed H. A. J. Electrochem. Soc. 2018, 165, H229.
doi: 10.1149/2.0791805jes |
58 |
Han B. C. ; van der Ven A. ; Ceder G. ; Hwang B. J. Phys. Rev. B 2005, 72, 205409.
doi: 10.1103/PhysRevB.72.205409 |
59 |
McCrum I. T. ; Janik M. J. J. Phys. Chem. C 2015, 120, 457.
doi: 10.1021/acs.jpcc.5b10979 |
60 |
Strmcnik D. ; Kodama K. ; van der Vliet D. ; Greeley J. ; Stamenkovic V. R. ; Markovic N. M. Nat. Chem. 2009, 1, 466.
doi: 10.1038/nchem.330 |
61 |
Wang Y. ; Wang G. W. ; Li G. W. ; Huang B. ; Pan J. ; Liu Q. ; Han J. J. ; Xiao L. ; Lu J. T. ; Zhuang L. Energy Environ. Sci. 2015, 8, 177.
doi: 10.1039/c4ee02564d |
62 |
Peng L. S. ; Zheng X. Q. ; Li L. ; Zhang L. ; Yang N. ; Xiong K. ; Chen H. M. ; Li J. ; Wei Z. D. Appl. Catal. B 2019, 245, 122.
doi: 10.1016/j.apcatb.2018.12.035 |
63 |
Jiang J. X. ; Tao S. C. ; He Q. ; Wang J. ; Zhou Y. Y. ; Xie Z. Y. ; Ding W. ; Wei Z. D. J. Mater. Chem. A 2020, 8, 10168.
doi: 10.1039/D0TA02528C |
64 |
Zhou Y. Y. ; Xie Z. Y. ; Jiang J. X. ; Wang J. ; Song X. Y. ; He Q. ; Ding W. ; Wei Z. D. Nat. Catal. 2020, 3, 454.
doi: 10.1038/s41929-020-0446-9 |
65 |
Feng Z. P. ; Li L. ; Zheng X. Q. ; Li J. ; Yang N. ; Ding W. ; Wei Z. D. J. Phys. Chem. C 2019, 123, 23931.
doi: 10.1021/acs.jpcc.9b04731 |
66 |
Greeley J. ; Jaramillo T. F. ; Bonde J. ; Chorkendorff I. B. ; Norskov J. K. Nat. Mater. 2006, 5, 909.
doi: 10.1038/nmat1752 |
67 |
Skúlason E. ; Tripkovic V. ; Bjúrketun M. E. ; Gudmundsdóttir S. D. ; Karlberg G. ; Rossmeisl J. ; Bligaard T. ; Jónsson H. ; Nørskov J. K. J. Phys. Chem. C 2010, 114, 18182.
doi: 10.1021/jp1048887 |
68 |
Qi X. Q. ; Wei Z. D. ; Li L. ; Ji M. B. ; Li L. L. ; Zhang Q. ; Xia M. R. ; Chen S. G. ; Yang L. J. Comput. Theor. Chem. 2012, 979, 96.
doi: 10.1016/j.comptc.2011.10.021 |
69 |
Vasić D. D. ; Pašti I. A. ; Mentus S. V. Int. J. Hydrogen Energy 2013, 38, 5009.
doi: 10.1016/j.ijhydene.2013.02.020 |
70 |
Liang Z. ; Zhong X. L. ; Li T. Q. ; Chen M. ; Feng G. ChemElectroChem 2019, 6, 260.
doi: 10.1002/celc.201800601 |
71 |
Bjorneholm O. ; Hansen M. H. ; Hodgson A. ; Liu L. M. ; Limmer D. T. ; Michaelides A. ; Pedevilla P. ; Rossmeisl J. ; Shen H. ; Tocci G. ; et al Chem. Rev. 2016, 116, 7698.
doi: 10.1021/acs.chemrev.6b00045 |
72 |
Le J. B. ; Iannuzzi M. ; Cuesta A. ; Cheng J. Phys. Rev. Lett. 2017, 119, 016801.
doi: 10.1103/PhysRevLett.119.016801 |
73 |
Kristoffersen H. H. ; Vegge T. ; Hansen H. A. Chem Sci 2018, 9, 6912.
doi: 10.1039/c8sc02495b |
74 |
Le J. B. ; Cuesta A. ; Cheng J. J. Electroanal. Chem. 2018, 819, 87.
doi: 10.1016/j.jelechem.2017.09.002 |
75 |
Sakong S. ; Gross A. J. Chem. Phys. 2018, 149, 084705.
doi: 10.1063/1.5040056 |
76 |
Groß A. ; Sakong S. Curr. Opin. Electrochem. 2019, 14, 1.
doi: 10.1016/j.coelec.2018.09.005 |
77 |
Mogelhoj A. ; Kelkkanen A. K. ; Wikfeldt K. T. ; Schiotz J. ; Mortensen J. J. ; Pettersson L. G. ; Lundqvist B. I. ; Jacobsen K. W. ; Nilsson A. ; Norskov J. K. J. Phys. Chem. B 2011, 115, 14149.
doi: 10.1021/jp2040345 |
78 |
Pedroza L. S. ; Poissier A. ; Fernandez-Serra M. V. J. Chem. Phys 2015, 142, 034706.
doi: 10.1063/1.4905493 |
79 |
Limmer D. T. ; Willard A. P. ; Madden P. ; Chandler D. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 4200.
doi: 10.1073/pnas.1301596110 |
80 |
Cao Z. ; Kumar R. ; Peng Y. ; Voth G. A. J. Phys. Chem. C 2015, 119, 14675.
doi: 10.1021/jp5129244 |
81 |
Limmer D. T. ; Willard A. P. ; Madden P. A. ; Chandler D. J. Phys. Chem. C 2015, 119, 24016.
doi: 10.1021/acs.jpcc.5b08137 |
82 |
Willard A. P. ; Limmer D. T. ; Madden P. A. ; Chandler D. J. Chem. Phys. 2013, 138, 184702.
doi: 10.1063/1.4803503 |
83 |
Schnur S. ; Groß A. New J. Phys. 2009, 11, 125003.
doi: 10.1088/1367-2630/11/12/125003 |
84 | Sundararaman, R.; Goddard, W. A., 3rd; Arias, T. A. J. Chem. Phys. 2017, 146, 114104. doi: 10.1063/1.4978411 |
85 |
Andreussi O. ; Fisicaro G. Int. J. Quantum. Chem. 2019, 119, e25725.
doi: 10.1002/qua.25725 |
86 |
Roudgar A. ; Groß A. Chem. Phys. Lett. 2005, 409, 157.
doi: 10.1016/j.cplett.2005.04.103 |
87 |
Michaelides A. Appl. Phys. A 2006, 85, 415.
doi: 10.1007/s00339-006-3695-9 |
88 |
Skulason E. ; Karlberg G. S. ; Rossmeisl J. ; Bligaard T. ; Greeley J. ; Jonsson H. ; Norskov J. K. Phys. Chem. Chem. Phys. 2007, 9, 3241.
doi: 10.1039/b700099e |
89 |
Hansen M. H. ; Jin C. ; Thygesen K. S. ; Rossmeisl J. J. Phys. Chem. C 2016, 120, 13485.
doi: 10.1021/acs.jpcc.6b00721 |
90 |
Szabová L. ; Camellone M. F. ; Ribeiro F. N. ; Matolín V. ; Tateyama Y. ; Fabris S. J. Phys. Chem. C 2018, 122, 27507.
doi: 10.1021/acs.jpcc.8b09154 |
91 |
Bellarosa L. ; García-Muelas R. ; Revilla-López G. ; López N. ACS Cent. Sci. 2016, 2, 109.
doi: 10.1021/acscentsci.5b00349 |
92 |
Uudsemaa M. ; Tamm T. J. Phys. Chem. A 2003, 107, 9997.
doi: 10.1021/jp0362741 |
93 |
Morawietz T. ; Singraber A. ; Dellago C. ; Behler J. Proc. Natl. Acad. Sci. U.S.A. 2016, 113, 8368.
doi: 10.1073/pnas.1602375113 |
94 |
Lozovoi A. Y. ; Alavi A. ; Kohanoff J. ; Lynden-Bell R. M. J. Chem. Phys. 2001, 115, 1661.
doi: 10.1063/1.4978411 |
95 |
Bonnet N. ; Morishita T. ; Sugino O. ; Otani M. Phys. Rev. Lett. 2012, 109, 266101.
doi: 10.1103/PhysRevLett.109.266101 |
96 |
Bouzid A. ; Pasquarello A. J. Chem. Theory Comput. 2017, 13, 1769.
doi: 10.1021/acs.jctc.6b01232 |
97 |
Bouzid A. ; Pasquarello A. J. Phys. Chem. Lett. 2018, 9, 1880.
doi: 10.1021/acs.jpclett.8b00573 |
98 |
Cheng J. ; Sprik M. Phys. Chem. Chem. Phys. 2012, 14, 11245.
doi: 10.1039/c2cp41652b |
99 |
Mathew K. ; Sundararaman R. ; Letchworth-Weaver K. ; Arias T. A. ; Hennig R. G. J. Chem. Phys. 2014, 140, 084106.
doi: 10.1063/1.4865107 |
100 |
Lamoureux P. S. ; Singh A. R. ; Chan K. ACS Catal. 2019, 9, 6194.
doi: 10.1021/acscatal.9b00268 |
[1] | Ruoning Li, Xue Zhang, Na Xue, Jie Li, Tianhao Wu, Zhen Xu, Yifan Wang, Na Li, Hao Tang, Shimin Hou, Yongfeng Wang. Hierarchical Self-Assembly of Ag-Coordinated Motifs on Ag(111) [J]. Acta Phys. -Chim. Sin., 2022, 38(8): 2011060-. |
[2] | Tonghui Cui, Hangyue Li, Zewei Lyu, Yige Wang, Minfang Han, Zaihong Sun, Kaihua Sun. Identification of Electrode Process in Large-Size Solid Oxide Fuel Cell [J]. Acta Phys. -Chim. Sin., 2022, 38(8): 2011009-. |
[3] | Cheng Ma, Xiangyu Dou, Zeyu Liu, Peilong Liao, Zhiyang Zhu, Kaerdun Liu, Jianbin Huang. Application and Mechanism of a Novel CO2-Oil Miscible Flooding Agent, CAA8-X [J]. Acta Phys. -Chim. Sin., 2022, 38(8): 2012019-. |
[4] | Baihua Cui, Yi Shi, Gen Li, Yanan Chen, Wei Chen, Yida Deng, Wenbin Hu. Challenges and Opportunities for Seawater Electrolysis: A Mini-Review on Advanced Materials in Chlorine-Involved Electrochemistry [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2106010-. |
[5] | Hongwei Yu, Shi Li, Jinlong Li, Shaohua Zhu, Chengzhen Sun. Interfacial Mass Transfer Characteristics and Molecular Mechanism of the Gas-Oil Miscibility Process in Gas Flooding [J]. Acta Phys. -Chim. Sin., 2022, 38(5): 2006061-. |
[6] | Haoran Lu, Yaqing Wei, Run Long. Charge Localization Induced by Nanopore Defects in Monolayer Black Phosphorus for Suppressing Nonradiative Electron-Hole Recombination through Time-Domain Simulation [J]. Acta Phys. -Chim. Sin., 2022, 38(5): 2006064-. |
[7] | Yishun Yang, Min Zhou, Yanxia Xing. Symmetry-Dependent Transport Properties of γ-Graphyne-based Molecular Magnetic Tunnel Junctions [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2003004-. |
[8] | Aidi Han, Xiaohui Yan, Junren Chen, Xiaojing Cheng, Junliang Zhang. Effects of Dispersion Solvents on Proton Conduction Behavior of Ultrathin Nafion Films in the Catalyst Layers of Proton Exchange Membrane Fuel Cells [J]. Acta Phys. -Chim. Sin., 2022, 38(3): 1912052-. |
[9] | Fang Luo, Shuyuan Pan, Zehui Yang. Recent Progress on Electrocatalyst for High-Temperature Polymer Exchange Membrane Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2009087-. |
[10] | Lei Huang, Shahid Zaman, Zhitong Wang, Huiting Niu, Bo You, Bao Yu Xia. Synthesis and Application of Platinum-Based Hollow Nanoframes for Direct Alcohol Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2009035-. |
[11] | Liliang Tian, Weiqi Zhang, Zheng Xie, Kai Peng, Qiang Ma, Qian Xu, Sivakumar Pasupathi, Huaneng Su. Enhanced Performance and Durability of High-Temperature Polymer Electrolyte Membrane Fuel Cell by Incorporating Covalent Organic Framework into Catalyst Layer [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2009049-. |
[12] | Miaomiao Liu, Maomao Yang, XinXin Shu, Jintao Zhang. Design Strategies for Carbon-Based Electrocatalysts and Application to Oxygen Reduction in Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2007072-. |
[13] | Jian Wang, Wei Ding, Zidong Wei. Performance of Polymer Electrolyte Membrane Fuel Cells at Ultra-Low Platinum Loadings [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2009094-. |
[14] | Yanrong Xue, Xingdong Wang, Xiangqian Zhang, Jinjie Fang, Zhiyuan Xu, Yufeng Zhang, Xuerui Liu, Mengyuan Liu, Wei Zhu, Zhongbin Zhuang. Cost-Effective Hydrogen Oxidation Reaction Catalysts for Hydroxide Exchange Membrane Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2009103-. |
[15] | Yufei Bao, Ligang Feng. Formic Acid Electro-Oxidation Catalyzed by PdNi/Graphene Aerogel [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2008031-. |
|