Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (1): 2007058.doi: 10.3866/PKU.WHXB202007058
Special Issue: Lithium Metal Anodes
• ARTICLE • Previous Articles Next Articles
Shijie Yang1,3, Xiangqun Xu2, Xinbing Cheng2,*(), Xinmeng Wang2,4, Jinxiu Chen2,5, Ye Xiao1,3, Hong Yuan1,3,*(
), He Liu1,3, Aibing Chen4, Wancheng Zhu5, Jiaqi Huang1,3, Qiang Zhang2
Received:
2020-07-23
Accepted:
2020-08-31
Published:
2020-09-04
Contact:
Xinbing Cheng,Hong Yuan
E-mail:cxb12@mails.tsinghua.edu.cn;yuanhong@bit.edu.cn
About author:
Yuan Hong. E-mail: yuanhong@bit.edu.cn Supported by:
MSC2000:
Shijie Yang, Xiangqun Xu, Xinbing Cheng, Xinmeng Wang, Jinxiu Chen, Ye Xiao, Hong Yuan, He Liu, Aibing Chen, Wancheng Zhu, Jiaqi Huang, Qiang Zhang. Columnar Lithium Metal Deposits: the Role of Non-Aqueous Electrolyte Additive[J].Acta Phys. -Chim. Sin., 2021, 37(1): 2007058.
Table 1
Main chemical reagent."
Reagent | Parameters | Company |
Li mental | Thickness: 50, 600 μm | China Energy Lithium Co., Ltd. Aladdin |
Cu | Thickness: 9 μm | China Energy Lithium Co., Ltd. Aladdin |
CH3CH2OH | 99.8% | Beijing Chemical Plant Co. LTD |
CH3COCH3 | 99.8% | Beijing Chemical Plant Co. LTD |
1 mol∙L−1 LiPF6-ethylene carbonate : diethyl carbonate (1 : 1 by volume) | 99.8% | DoDoChem |
Fluoroethylene carbonate | 99.8% | DoDoChem |
KAPTON tape | – | E. I. Du Pont Company |
HCl | 36.5% | Beijing Chemical Plant Co. LTD |
1 |
Chen X. R. ; Yao Y. X. ; Yan C. ; Zhang R. ; Cheng X. B. ; Zhang Q. Angew. Chem. Int. Ed. 2020, 132, 7817.
doi: 10.1002/ange.202000375 |
2 |
Fan Y. ; Wang T. ; Legut D. ; Zhang Q. J. Energy Chem. 2019, 39, 160.
doi: 10.1016/j.jechem.2019.01.021 |
3 |
Liu H. ; Cheng X. B. ; Huang J. Q. ; Yuan H. ; Lu Y. ; Yan C. ; Zhu G. L. ; Xu R. ; Zhao C. Z. ; Hou L. P. ; et al ACS Energy Lett. 2020, 5, 833.
doi: 10.1021/acsenergylett.9b02660 |
4 |
Qiao Y. ; Li Q. ; Cheng X. B. ; Liu F. X. ; Yang Y. ; Lu Z. S. ; Zhao J. ; Wu J. W. ; Liu H. ; Yang S. T. ; et al ACS Appl. Mater. Interfaces 2020, 12, 5767.
doi: 10.1021/acsami.9b18315 |
5 |
Shen Y. ; Zhang Y. ; Han S. ; Wang J. ; Peng Z. ; Chen L. Joule 2018, 2, 1674.
doi: 10.1016/j.joule.2018.06.021 |
6 |
Feng Y. Q. ; Zheng Z. J. ; Wang C. Y. ; Yin Y. X. ; Ye H. ; Cao F. F. ; Guo Y. G. Nano Energy 2020, 73, 104731.
doi: 10.1016/j.nanoen.2020.104731 |
7 |
Wan J. ; Xie J. ; Kong X. ; Liu Z. ; Liu K. ; Shi F. ; Pei A. ; Chen H. ; Chen W. ; Chen J. ; et al Nat. Nanotechnol. 2019, 14, 705.
doi: 10.1038/s41565-019-0465-3 |
8 |
Ma Y. Y. ; Chen D. ; Yang Q. L. ; Yin Y. X. ; Bai X. P. ; Zhen S. Y. ; Fan C. ; Sun K. N. J. Energy Chem. 2020, 42, 49.
doi: 10.1016/j.jechem.2019.06.008 |
9 | Liu Y. ; Zheng L. ; Gu W. ; Shen Y. B. ; Chen L. W. Acta Phys. -Chim. Sin. 2021, 37, 2004058. |
刘亚; 郑磊; 谷巍; 沈炎宾; 陈立桅. 物理化学学报, 2021, 37, 2004058.
doi: 10.3866/PKU.WHXB202004058 |
|
10 |
Liang Y. ; Zhao C. Z. ; Yuan H. ; Chen Y. ; Zhang W. ; Huang J. Q. ; Yu D. ; Liu Y. ; Titirici M. M. ; Chueh Y. L. ; et al InfoMat. 2019, 1, 6.
doi: 10.1002/inf2.12000 |
11 |
Kong L. ; Yan C. ; Huang J. Q. ; Zhao M. Q. ; Titirici M. M. ; Xiang R. ; Zhang Q. Energy Environ. Mater. 2018, 1, 100.
doi: 10.1002/eem2.12012 |
12 |
Yan C. ; Cheng X. B. ; Tian Y. ; Chen X. ; Zhang X. Q. ; Li W. J. ; Huang J. Q. ; Zhang Q. Adv. Mater. 2018, 30, 1707629.
doi: 10.1002/adma.201707629 |
13 |
Shi P. ; Li T. ; Zhang R. ; Shen X. ; Cheng X. B. ; Xu R. ; Huang J. Q. ; Chen X. R. ; Liu H. ; Zhang Q. Adv. Mater. 2019, 31, 1807131.
doi: 10.1002/adma.201807131 |
14 |
Xu R. ; Xiao Y. ; Zhang R. ; Cheng X. B. ; Zhao C. Z. ; Zhang X. Q. ; Yan C. ; Zhang Q. ; Huang J. Q. Adv. Mater. 2019, 31, 1808392.
doi: 10.1002/adma.201808392 |
15 |
Tong B. ; Chen X. ; Chen L. ; Zhou Z. ; Peng Z. ACS Appl. Energy Mater. 2018, 1, 4426.
doi: 10.1021/acsaem.8b00821 |
16 |
Ye H. ; Zhang Y. ; Yin Y. X. ; Cao F. F. ; Guo Y. G. ACS Cent. Sci. 2020, 6, 661.
doi: 10.1021/acscentsci.0c00351 |
17 |
Zhang W. ; Wu Q. ; Huang J. ; Fan L. ; Shen Z. ; He Y. ; Feng Q. ; Zhu G. ; Lu Y. Adv. Mater. 2020, 32, 2001740.
doi: 10.1002/adma.202001740 |
18 | Guo F. ; Chen P. ; Kang T. ; Wang Y. L. ; Liu C. H. ; Shen Y. B. ; Lu W. ; Chen L. W. Acta Phys. -Chim. Sin. 2019, 35, 1365. |
郭峰; 陈鹏; 康拓; 王亚龙; 刘承浩; 沈炎宾; 卢威; 陈立桅. 物理化学学报, 2019, 35, 1365.
doi: 10.3866/PKU.WHXB201903008 |
|
19 | Yue X. Y. ; Ma C. ; Bao J. ; Yang S. Y. ; Chen D. ; Wu X. J. ; Zhou Y. N. Acta Phys. -Chim. Sin. 2021, 37, 2005012. |
岳昕阳; 马萃; 包戬; 杨思宇; 陈东; 吴晓京; 周永宁. 物理化学学报, 2021, 37, 2005012.
doi: 10.3866/PKU.WHXB202005012 |
|
20 |
Wang G. ; Xiong X. ; Xie D. ; Fu X. ; Ma X. ; Li Y. ; Liu Y. ; Lin Z. ; Yang C. ; Liu M. Energy Storage Mater. 2019, 23, 701.
doi: 10.1016/j.ensm.2019.02.026 |
21 |
Zhang R. ; Shen X. ; Cheng X. B. ; Zhang Q. Energy Storage Mater. 2019, 23, 556.
doi: 10.1016/j.ensm.2019.03.029 |
22 |
Shi P. ; Cheng X. B. ; Li T. ; Zhang R. ; Liu H. ; Yan C. ; Zhang X. Q. ; Huang J. Q. ; Zhang Q. Adv. Mater. 2019, 31, 1902785.
doi: 10.1002/adma.201902785 |
23 |
Niu C. ; Lee H. ; Chen S. ; Li Q. ; Du J. ; Xu W. ; Zhang J. G. ; Whittingham M. S. ; Xiao J. ; Liu J. Nat. Energy 2019, 4, 551.
doi: 10.1038/s41560-019-0390-6 |
24 |
Hobold G. M. ; Khurram A. ; Gallant B. M. Chem. Mater. 2020, 32, 2341.
doi: 10.1021/acs.chemmater.9b04550 |
25 |
Chen Y. ; Luo Y. ; Zhang H. ; Qu C. ; Zhang H. ; Li X. Small Methods 2019, 3, 1800551.
doi: 10.1002/smtd.201800551 |
26 |
Yao Y. X. ; Zhang X. Q. ; Li B. Q. ; Yan C. ; Chen P. Y. ; Huang J. Q. ; Zhang Q. InfoMat 2020, 2, 379.
doi: 10.1002/inf2.12046 |
27 |
Fan H. ; Gao C. ; Jiang H. ; Dong Q. ; Hong B. ; Lai Y. J. Energy Chem. 2020, 49, 59.
doi: 10.1016/j.jechem.2020.01.013 |
28 |
Liu H. ; Cheng X. B. ; Huang J. Q. ; Kaskel S. ; Chou S. ; Park H. S. ; Zhang Q. ACS Mater. Lett. 2019, 1, 217.
doi: 10.1021/acsmaterialslett.9b00118 |
29 |
Zhang X. Q. ; Cheng X. B. ; Chen X. ; Yan C. ; Zhang Q. Adv. Funct. Mater. 2017, 27, 1605989.
doi: 10.1002/adfm.201605989 |
30 |
Chen W. J. ; Zhao C. X. ; Li B. Q. ; Jin Q. ; Zhang X. Q. ; Yuan T. Q. ; Zhang X. ; Jin Z. ; Kaskel S. ; Zhang Q. Energy Environ. Mater. 2020, 3, 160.
doi: 10.1002/eem2.12073 |
31 |
He Y. ; Zhang Y. ; Yu P. ; Ding F. ; Li X. ; Wang Z. ; Lv Z. ; Wang X. ; Liu Z. ; Huang X. J. Energy Chem. 2020, 45, 1.
doi: 10.1016/j.jechem.2019.09.033 |
32 |
Chen J. X. ; Zhang X. Q. ; Li B. Q. ; Wang X. M. ; Shi P. ; Zhu W. C. ; Chen A. B. ; Jin Z. H. ; Xiang R. ; Huang J. Q. ; Zhang Q. J. Energy Chem. 2020, 47, 128.
doi: 10.1016/j.jechem.2019.11.024 |
33 |
Yang Q. L. ; Li W. L. ; Dong C. ; Ma Y. Y. ; Yin Y. X. ; Wu Q. B. ; Xu Z. T. ; Ma W. ; Fan C. ; Sun K. N. J. Energy Chem. 2020, 42, 83.
doi: 10.1016/j.jechem.2019.06.012 |
34 |
Li C. ; Liu S. ; Shi C. ; Liang G. ; Lu Z. ; Fu R. ; Wu D. Nat. Commun. 2019, 10, 1363.
doi: 10.1038/s41467-019-09211-z |
35 |
Wei Z. ; Ren Y. ; Sokolowski J. ; Zhu X. ; Wu G. InfoMat 2020, 2, 483.
doi: 10.1002/inf2.12097 |
36 |
Liu H. ; Chen X. ; Cheng X. B. ; Li B. Q. ; Zhang R. ; Wang B. ; Chen X. ; Zhang Q. Small Methods 2019, 3, 1800354.
doi: 10.1002/smtd.201800354 |
37 |
Shen X. ; Cheng X. ; Shi P. ; Huang J. ; Zhang X. ; Yan C. ; Li T. ; Zhang Q. J. Energy Chem. 2019, 37, 29.
doi: 10.1016/j.jechem.2018.11.016 |
38 |
Shang Y. ; Chu T. ; Shi B. ; Fu K. Energy Environ. Mater. 2020,
doi: 10.1002/eem2.12099 |
39 |
Lu D. ; Shao Y. ; Lozano T. ; Bennett W. D. ; Graff G. L. ; Polzin B. ; Zhang J. ; Engelhard M. H. ; Saenz N. T. ; Henderson W. A. ; et al Adv. Energy Mater. 2015, 5, 1702322.
doi: 10.1002/aenm.201400993 |
40 |
Wood K. N. ; Kazyak E. ; Chadwick A. F. ; Chen K. H. ; Zhang J. G. ; Thornton K. ; Dasgupta N. P. ACS Cent. Sci. 2016, 2, 790.
doi: 10.1021/acscentsci.6b00260 |
41 |
Yin X. ; Tang W. ; Jung I. D. ; Phua K. C. ; Adams S. ; Lee S. W. ; Zheng G. W. Nano Energy 2018, 50, 659.
doi: 10.1016/j.nanoen.2018.06.003 |
42 |
Yan K. ; Wang J. ; Zhao S. ; Zhou D. ; Sun B. ; Cui Y. ; Wang G. Angew. Chem. Int. Ed. 2019, 58, 11364.
doi: 10.1002/anie.201905251 |
43 |
Rodriguez R. ; Loeffler K. E. ; Edison R. A. ; Stephens R. M. ; Dolocan A. ; Heller A. ; Mullins C. B. ACS Appl. Energy Mater. 2018, 1, 5830.
doi: 10.1021/acsaem.8b01194 |
44 |
Zhang Y. ; Qian J. ; Xu W. ; Russell S. M. ; Chen X. ; Nasybulin E. ; Bhattacharya P. ; Engelhard M. H. ; Mei D. ; Cao R. ; et al Nano Lett. 2014, 14, 6889.
doi: 10.1021/nl5039117 |
45 |
Zhang X. Q. ; Chen X. ; Xu R. ; Cheng X. B. ; Peng H. J. ; Zhang R. ; Huang J. Q. ; Zhang Q. Angew. Chem. Int. Ed. 2017, 56, 14207.
doi: 10.1002/anie.201707093 |
46 |
Qian J. ; Xu W. ; Bhattacharya P. ; Engelhard M. ; Henderson W. A. ; Zhang Y. ; Zhang J. G. Nano Energy 2015, 15, 135.
doi: 10.1016/j.nanoen.2015.04.009 |
47 |
Cheng X. B. ; Zhao M. Q. ; Chen C. ; Pentecost A. ; Maleski K. ; Mathis T. ; Zhang X. Q. ; Zhang Q. ; Jiang J. ; Gogotsi Y. Nat. Commun. 2017, 8, 336.
doi: 10.1038/s41467-017-00519-2 |
48 |
Michan A. L. ; Parimalam B. S. ; Leskes M. ; Kerber R. N. ; Yoon T. ; Grey C. P. ; Lucht B. L. Chem. Mater. 2016, 28, 8149.
doi: 10.1021/acs.chemmater.6b02282 |
49 |
Nie M. ; Demeaux J. ; Young B. T. ; Heskett D. R. ; Chen Y. ; Bose A. ; Woicik J. C. ; Lucht B. L. J. Electrochem. Soc. 2015, 162, A7008.
doi: 10.1149/2.0021513jes |
50 |
Heine J. ; Hilbig P. ; Qi X. ; Niehoff P. ; Winter M. ; Bieker P. J. Electrochem. Soc. 2015, 162, A1094.
doi: 10.1149/2.0011507jes |
51 |
Jurng S. ; Brown Z. L. ; Kim J. ; Lucht B. L. Energy Environ. Sci. 2018, 11, 2600.
doi: 10.1039/c8ee00364e |
52 |
Ko J. ; Yoon Y. S. Ceram. Int. 2019, 45, 30.
doi: 10.1016/j.ceramint.2018.09.287 |
53 |
Lang J. ; Long Y. ; Qu J. ; Luo X. ; Wei H. ; Huang K. ; Zhang H. ; Qi L. ; Zhang Q. ; Li Z. ; Wu H. Energy Storage Mater. 2019, 16, 85.
doi: 10.1016/j.ensm.2018.04.024 |
54 |
Shin H. ; Park J. ; Han S. ; Sastry A. M. ; Lu W. J. Power Sources 2015, 277, 169.
doi: 10.1016/j.jpowsour.2014.11.120 |
55 |
Jones J. ; Anouti M. ; Caillon-Caravanier M. ; Willmann P. ; Lemordant D. Fluid Phase Equilib. 2009, 285, 62.
doi: 10.1016/j.fluid.2009.07.020 |
56 |
He M. ; Guo R. ; Hobold G. M. ; Gao H. ; Gallant B. M. Proc. Natl. Acad. Sci. U.S.A. 2020, 117, 73.
doi: 10.1073/pnas.1911017116 |
57 |
Yang G. ; Li Y. ; Liu S. ; Zhang S. ; Wang Z. ; Chen L. Energy Storage Mater. 2019, 23, 350.
doi: 10.1016/j.ensm.2019.04.041 |
58 |
Lee Y. ; Lee T. K. ; Kim S. ; Lee J. ; Ahn Y. ; Kim K. ; Ma H. ; Park G. ; Lee S. M. ; Kwak S. K. ; Choi N. S. Nano Energy 2020, 67, 104309.
doi: 10.1016/j.nanoen.2019.104309 |
[1] | Hao-Tian Teng, Wen-Tao Wang, Xiao-Feng Han, Xiang Hao, Ruizhi Yang, Jing-Hua Tian. Recent Development and Perspectives of Flexible Zinc-Air Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2107017-0. |
[2] | Zheng Bo, Jing Kong, Huachao Yang, Zhouwei Zheng, Pengpeng Chen, Jianhua Yan, Kefa Cen. Ultra-Low-Temperature Supercapacitor Based on Holey Graphene and Mixed-Solvent Organic Electrolyte [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2005054-. |
[3] | Xinrun Yu, Jun Ma, Chunbo Mou, Guanglei Cui. Percolation Structure Design of Organic-inorganic Composite Electrolyte with High Lithium-Ion Conductivity [J]. Acta Phys. -Chim. Sin., 2022, 38(3): 1912061-. |
[4] | Zixu He, Yawei Chen, Fanyang Huang, Yulin Jie, Xinpeng Li, Ruiguo Cao, Shuhong Jiao. Fluorinated Solvents for Lithium Metal Batteries [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2205005-. |
[5] | Yuanhao Shen, Qingyu Wang, Jie Liu, Cheng Zhong, Wenbin Hu. Spontaneous Reduction and Adsorption of K3[Fe(CN)6] on Zn Anodes in Alkaline Electrolytes: Enabling a Long-Life Zn-Ni Battery [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2204048-0. |
[6] | Liliang Tian, Weiqi Zhang, Zheng Xie, Kai Peng, Qiang Ma, Qian Xu, Sivakumar Pasupathi, Huaneng Su. Enhanced Performance and Durability of High-Temperature Polymer Electrolyte Membrane Fuel Cell by Incorporating Covalent Organic Framework into Catalyst Layer [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2009049-. |
[7] | Jujia Zhang, Jin Zhang, Haining Wang, Yan Xiang, Shanfu Lu. Advancement in Distribution and Control Strategy of Phosphoric Acid in Membrane Electrode Assembly of High-Temperature Polymer Electrolyte Membrane Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2010071-. |
[8] | Yongli Heng, Zhenyi Gu, Jinzhi Guo, Xinglong Wu. Research Progresses on Vanadium-Based Cathode Materials for Aqueous Zinc-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2021, 37(3): 2005013-. |
[9] | Gaolong Zhu, Chenzi Zhao, Hong Yuan, Haoxiong Nan, Bochen Zhao, Lipeng Hou, Chuangxin He, Quanbing Liu, Jiaqi Huang. Liquid Phase Therapy with Localized High-Concentration Electrolytes for Solid-State Li Metal Pouch Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2005003-. |
[10] | Zhida Wang, Yuancheng Feng, Songtao Lu, Rui Wang, Wei Qin, Xiaohong Wu. Improvement in Performance of Three-Dimensional SnLi/Carbon Paper Anode in Lean Electrolyte with In Situ Fluorinated Protection Layer [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2008082-. |
[11] | Guangbin Hua, Yanchen Fan, Qianfan Zhang. Application of Computational Simulation on the Study of Lithium Metal Anodes [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2008089-. |
[12] | Jun Guan, Nianwu Li, Le Yu. Artificial Interphase Layers for Lithium Metal Anode [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2009011-. |
[13] | Chen Wu, Ying Zhou, Xiaolong Zhu, Minzhi Zhan, Hanxi Yang, Jiangfeng Qian. Research Progress on High Concentration Electrolytes for Li Metal Batteries [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2008044-. |
[14] | Yumeng Zhao, Lingxiao Ren, Aoxuan Wang, Jiayan Luo. Composite Anodes for Lithium Metal Batteries [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2008090-. |
[15] | Han Wang, Hanwen An, Hongmei Shan, Lei Zhao, Jiajun Wang. Research Progress on Interfaces of All-Solid-State Batteries [J]. Acta Phys. -Chim. Sin., 2021, 37(11): 2007070-. |
|