Acta Phys. -Chim. Sin. ›› 2020, Vol. 36 ›› Issue (12): 2007066.doi: 10.3866/PKU.WHXB202007066
Special Issue: Neural Interfaces
• REVIEW • Previous Articles Next Articles
Yang Liu1, Xiaojie Duan1,2,*()
Received:
2020-07-25
Accepted:
2020-08-23
Published:
2020-08-27
Contact:
Xiaojie Duan
E-mail:xjduan@pku.edu.cn
Supported by:
MSC2000:
Yang Liu, Xiaojie Duan. Carbon-based Nanomaterials for Neural Electrode Technology[J].Acta Phys. -Chim. Sin., 2020, 36(12): 2007066.
Fig 1
Soft graphene electrodes. (a) Tilt SEM image of a 64-spot porous graphene array. Scale bar, 1 mm. The inset is the SEM image of an individual electrode active site. Scale bar: 100 μm9. Adapted from Ref.9. (b and c) Laser ablation of liquid crystal graphene oxide (LCGO) electrodes and neural activity of feline visual cortex recorded within 20 s of LCGO electrode implantation 12. Adapted from Ref.12. (d) (left) Photograph and (right) optical microscope images of the electrode array consisting of electrode sites based on Au film, ZnO nanowires and poly(3, 4-ethylenedioxythiophene (PEDOT), and interconnection line based on Au/graphene 38. Scale bars, (left) 10 mm and (right) 450 μm. Adapted from Ref.38. (e) Image of 4 × 4 graphene transistor array 42. Adapted from Ref.42. "
Fig 2
Soft carbon nanotubes (CNTs) electrodes. (a) SEM image of a CNT:poly(sodium 4-styrenesulfonate) (PSS)/poly(vinyl alcohol) (PVA) composite electrode with a width of 10 μm 11. Adapted from Ref.11. (b) Two-channel CNT fiber microelectrodes; inset shows a close view of the active site 49. Scale bar, 200 μm. (c) Results of the methamphetamine rotation test 49. (d) Mean waveforms of single units averaged over multiple 40 sample traces detected by CNT fiber electrodes (the shaded area depicts the mean ± SD) 49. Adapted from Ref.49. "
Fig 3
Chronic neural recording with soft CNT fiber electrodes 33. (a) Four-channel CNT fiber microelectrode array. Scale bar, 5 mm. Inset, SEM image of a CNT fiber electrode tip. Scale bar, 10 μm. (b) Mean waveforms of units detected and isolated from day 1 to day 117 postimplantation with an ~15 μm diameter CNT fiber electrodes. Adapted from Ref.33."
Fig 5
Transparent graphene electrodes. (a) Diagram of CLEAR device construction 23. Adapted from Ref.23. (b) Optical evoked potentials recorded by CLEAR device 23. x-scale bars represent 50 ms, y-scale bars represent 100 μV. Adapted from Ref.23. (c) Three different types of transparent graphene multielectrode arrays with different electrode site diameters (100, 150, 200 μm) 58. Adapted from Ref.58. (d) Microscope image of transparent graphene 8-electrode array 14. Adapted from Ref.14. (e) Transparent graphene microelectrode arrays with 16 electrode sites. Each electrode is a 100 μm×100 μm square 26. Scale bar, 500 μm. Adapted from Ref.26. (f) FE-SEM images of the fixed rat cortical neuron cultured on transparent graphene-vertically aligned carbon nanotube hybrid electrodes (TGVH) at 7 days in vitro (DIV) 59. Adapted from Ref.59."
Fig 6
Soft transparent graphene contact lens electrodes (GRACE) 61. (a) Photographs of a GRACE device. Scale bar, 3 mm. Image in the inset demonstrates the high softness of the GRACE. (b) The mfERG responses recorded with a GRACE device. (c) Top, soft and transparent graphene electrode array. Scale bar, 5 mm. Bottom, optical microscopy image showing some of the graphene electrode sites and traces. Scale bar, 150 μm. Adapted from Ref.61. "
Fig 7
Transparent carbon nanotubes electrodes 63. (a) Stretchable transparent CNT electrode array, (b) Light-evoked potentials recorded by the stretchable transparent CNT electrode array under different stimulus intensity and duration. (c) The light-induced artifacts in CNT and Au electrode recording with a recording-site size of 100 μm × 100 μm tested in saline. (d) ECoG recording from a stretchable transparent CNT electrode and two-photon calcium images of the brain region underneath the recording site of the electrode used to record the top traces. Adapted from Ref.63. "
Fig 8
MRI compatible neural electrodes made from carbon nanomaterials. (a) GF bipolar microelectrode assembly 32. Scale bar, 1 cm; inset, 100 μm. Adapted from Ref.32. (b) Representative three serial coronal scans from rostral (left) to caudal (right) of EPI images from rat brains implanted with a GF (top) and PtIr (bottom) bipolar microelectrode, with the middle images depicting the electrode implant sites 32. Adapted from Ref.32. (c) Horizontal sections of the T2-weighted images of a rat implanted contralaterally with a Parylene-C-insulated CNT fiber (red) and PtIr microwire (blue) 33. Scale bar, 1.5 mm (inset). Adapted from Ref.33. "
1 |
Quiroga R. Q. ; Reddy L. ; Kreiman G. ; Koch C. ; Fried I. Nature 2005, 435 (7045), 1102.
doi: 10.1038/nature03687 |
2 |
Jang A. I. ; Wittig J. H. ; Jr. ; Inati S. K. ; Zaghloul K. A. Curr. Biol. 2017, 27 (11), 1700.
doi: 10.1016/j.cub.2017.05.014 |
3 |
Lee K. Y. ; Ratte S. ; Prescott S. A. Elife 2019, 8, e49753.
doi: 10.7554/eLife.49753 |
4 |
Truccolo W. ; Donoghue J. A. ; Hochberg L. R. ; Eskandar E. N. ; Madsen J. R. ; Anderson W. S. ; Brown E. N. ; Halgren E. ; Cash S. S. Nat. Neurosci. 2011, 14 (5), 635.
doi: 10.1038/nn.2782 |
5 |
Fried I. ; Macdonald K. A. ; Wilson C. L. Neuron 1997, 18 (5), 753.
doi: 10.1016/S0896-6273(00)80315-3 |
6 |
Middlebrooks J. C. ; Bierer J. A. ; Snyder R. L. Curr. Opin. Neurobiol. 2005, 15 (4), 488.
doi: 10.1016/j.conb.2005.06.004 |
7 |
Benabid A. L. ; Chabardes S. ; Mitrofanis J. ; Pollak P. Lancet Neurol. 2009, 8 (1), 67.
doi: 10.1016/S1474-4422(08)70291-6 |
8 |
Wolter T. J. Pain Res. 2014, 7, 651.
doi: 10.2147/JPR.S37589 |
9 |
Lu Y. ; Lyu H. ; Richardson A. G. ; Lucas T. H. ; Kuzum D. Sci. Rep. 2016, 6, 33526.
doi: 10.1038/srep33526 |
10 |
Lacour S. P. ; Courtine G. ; Guck J. Nat. Rev. Mater. 2016, 1, 16063.
doi: 10.1038/natrevmats.2016.63 |
11 |
Zhang H. ; Patel P. R. ; Xie Z. ; Swanson S. D. ; Wang X. ; Kotov N. A. ACS Nano 2013, 7 (9), 7619.
doi: 10.1021/nn402074y |
12 |
Apollo N. V. ; Maturana M. I. ; Tong W. ; Nayagam D. A. X. ; Shivdasani M. N. ; Foroughi J. ; Wallace G. G. ; Prawer S. ; Ibbotson M. R. ; Garrett D. J. Adv. Funct. Mater. 2015, 25 (23), 3551.
doi: 10.1002/adfm.201500110 |
13 |
Wang M. ; Mi G. ; Shi D. ; Bassous N. ; Hickey D. ; Webster T. J. Adv. Funct. Mater. 2018, 28 (12), 1700905.
doi: 10.1002/adfm.201700905 |
14 |
Kuzum D. ; Takano H. ; Shim E. ; Reed J. C. ; Juul H. ; Richardson A. G. ; de Vries J. ; Bink H. ; Dichter M. A. ; Lucas T. H. ; et al Nat. Commun. 2014, 5, 5259.
doi: 10.1038/ncomms6259 |
15 |
Baranauskas G. ; Maggiolini E. ; Castagnola E. ; Ansaldo A. ; Mazzoni A. ; Angotzi G. N. ; Vato A. ; Ricci D. ; Panzeri S. ; Fadiga L. J. Neural Eng. 2011, 8 (6), 066013.
doi: 10.1088/1741-2560/8/6/066013 |
16 |
Cogan S. F. Annu. Rev. Biomed. Eng. 2008, 10, 275.
doi: 10.1146/annurev.bioeng.10.061807.160518 |
17 | Xie F. ; Xi Y. ; Xu Q. D. ; Liu J. Q. Acta Phys. -Chim. Sin. 2020, 36, 2003014. |
谢凡; 奚野; 徐庆达; 刘景全. 物理化学学报, 2020, 36, 2003014.
doi: 10.3866/PKU.WHXB202003014 |
|
18 |
Moffitt M. A. ; McIntyre C. C. Clin. Neurophysiol. 2005, 116 (9), 2240.
doi: 10.1016/j.clinph.2005.05.018 |
19 |
Frank J. A. ; Antonini M. J. ; Anikeeva P. Nat. Biotechnol. 2019, 37 (9), 1013.
doi: 10.1038/s41587-019-0198-8 |
20 |
Song E. ; Li J. ; Won S. M. ; Bai W. ; Rogers J. A. Nat. Mater. 2020, 19 (6), 590.
doi: 10.1038/s41563-020-0679-7 |
21 |
Yang X. ; Zhou T. ; Zwang T. J. ; Hong G. ; Zhao Y. ; Viveros R. D. ; Fu T. M. ; Gao T. ; Lieber C. M. Nat. Mater. 2019, 18 (5), 510.
doi: 10.1038/s41563-019-0292-9 |
22 |
Minev I. R. ; Musienko P. ; Hirsch A. ; Barraud Q. ; Wenger N. ; Moraud E. M. ; Gandar J. ; Capogrosso M. ; Milekovic T. ; Asboth L. ; et al Science 2015, 347 (6218), 159.
doi: 10.1126/science.1260318 |
23 |
Park D. W. ; Schendel A. A. ; Mikael S. ; Brodnick S. K. ; Richner T. J. ; Ness J. P. ; Hayat M. R. ; Atry F. ; Frye S. T. ; Pashaie R. ; et al Nat. Commun. 2014, 5, 5258.
doi: 10.1038/ncomms6258 |
24 |
Kim T. ; Cho M. ; Yu K. J. Materials 2018, 11 (7), 1163.
doi: 10.3390/ma11071163 |
25 |
Han X. ; Qian X. ; Bernstein J. G. ; Zhou H. H. ; Franzesi G. T. ; Stern P. ; Bronson R. T. ; Graybiel A. M. ; Desimone R. ; Boyden E. S. Neuron 2009, 62 (2), 191- 8.
doi: 10.1016/j.neuron.2009.03.011 |
26 |
Thunemann M. ; Lu Y. ; Liu X. ; Kilic K. ; Desjardins M. ; Vandenberghe M. ; Sadegh S. ; Saisan P. A. ; Cheng Q. ; Weldy K. L. ; et al Nat. Commun. 2018, 9, 2035.
doi: 10.1038/s41467-018-04457-5 |
27 |
Zhao S. ; Liu X. ; Xu Z. ; Ren H. ; Deng B. ; Tang M. ; Lu L. ; Fu X. ; Peng H. ; Liu Z. ; Duan X. Nano Lett. 2016, 16 (12), 7731.
doi: 10.1021/acs.nanolett.6b03829 |
28 |
Wang X. Y. ; Narita A. ; Müllen K. Nat. Rev. Chem. 2018, 2, 0100.
doi: 10.1038/s41570-017-0100 |
29 |
Zhang M. ; Atkinson K. R. ; Baughman R. H. Science 2004, 306 (5700), 1358.
doi: 10.1126/science.1104276 |
30 |
McCallum G. A. ; Sui X. ; Qiu C. ; Marmerstein J. ; Zheng Y. ; Eggers T. E. ; Hu C. ; Dai L. ; Durand D. M. Sci. Rep. 2017, 7 (1), 11723.
doi: 10.1038/s41598-017-10639-w |
31 |
Guo Y. ; Duan W. ; Ma C. ; Jiang C. ; Xie Y. ; Hao H. ; Wang R. ; Li L. Biomed. Eng. Online 2015, 14, 118.
doi: 10.1186/s12938-015-0113-6 |
32 |
Zhao S. ; Li G. ; Tong C. ; Chen W. ; Wang P. ; Dai J. ; Fu X. ; Xu Z. ; Liu X. ; Lu L. ; et al Nat. Commun. 2020, 11, 1788.
doi: 10.1038/s41467-020-15570-9 |
33 |
Lu L. ; Fu X. ; Liew Y. ; Zhang Y. ; Zhao S. ; Xu Z. ; Zhao J. ; Li D. ; Li Q. ; Stanley G. B. ; Duan X. Nano Lett. 2019, 19 (3), 1577.
doi: 10.1021/acs.nanolett.8b04456 |
34 |
Xiao T. ; Wang Y. ; Wei H. ; Yu P. ; Jiang Y. ; Mao L. Angew. Chem., Int. Ed. 2019, 58 (20), 6616.
doi: 10.1002/anie.201901035 |
35 |
Geim A. K. ; Novoselov K. S. Nat. Mater. 2007, 6, 183.
doi: 10.1038/nmat1849 |
36 |
Lee C. ; Wei X. ; Kysar J. W. ; Hone J. S. Science 2008, 321 (5887), 385.
doi: 10.1126/science.1157996 |
37 |
Bae S. ; Kim H. ; Lee Y. ; Xu X. ; Park J. S. ; Zheng Y. ; Balakrishnan J. ; Lei T. ; Kim H. R. ; Song Y. I. ; et al Nat. Nanotechnol. 2010, 5, 574.
doi: 10.1038/nnano.2010.132 |
38 |
Ryu M. ; Yang J. H. ; Ahn Y. ; Sim M. ; Lee K. H. ; Kim K. ; Lee T. ; Yoo S. J. ; Kim S. Y. ; Moon C. ; et al ACS Appl. Mater. Interfaces 2017, 9 (12), 10577.
doi: 10.1021/acsami.7b02975 |
39 |
Blaschke B. M. ; Lottner M. ; Drieschner S. ; Calia A. B. ; Stoiber K. ; Rousseau L. ; Lissourges G. ; Garrido J. A. 2D Mater. 2016, 3 (2), 25007.
doi: 10.1088/2053-1583/3/2/025007 |
40 |
Hess L. H. ; Jansen M. ; Maybeck V. ; Hauf M. V. ; Seifert M. ; Stutzmann M. ; Sharp I. D. ; Offenhausser A. ; Garrido J. A. Adv. Mater. 2011, 23 (43), 5045.
doi: 10.1016/j.carbon.2018.11.026 |
41 |
Rauti R. ; Musto M. ; Bosi S. ; Prato M. ; Ballerini L. Carbon 2019, 143, 430.
doi: 10.1016/j.carbon.2018.11.026 |
42 |
Blaschke B. M. ; Tort-Colet N. ; Guimerà-Brunet A. ; Weinert J. ; Rousseau L. ; Heimann A. ; Drieschner S. ; Kempski O. ; Villa R. ; Sanchez-Vives M. V. ; Garrido J. A. 2D Mater. 2017, 4, 025040.
doi: 10.1088/2053-1583/aa5eff |
43 |
Peigney A. ; Laurent C. ; Flahaut E. ; Bacsa R. R. ; Rousset A. Carbon 2001, 39 (4), 507.
doi: 10.1016/S0008-6223(00)00155-X |
44 |
Shoval A. ; Adams C. ; David-Pur M. ; Shein M. ; Hanein Y. ; Sernagor E. Front. Neuroeng. 2009, 2, 4.
doi: 10.3389/neuro.16.004.2009 |
45 |
Kim H. i. ; Wang M. ; Lee S. K. ; Kang J. ; Nam J. D. ; Ci L. ; Suhr J. Sci. Rep. 2017, 7, 9512.
doi: 10.1038/s41598-017-10279-0 |
46 |
Wang L. ; Xie S. ; Wang Z. ; Liu F. ; Yang Y. ; Tang C. ; Wu X. ; Liu P. ; Li Y. ; Saiyin H. ; et al Nat. Biomed. Eng. 2020, 4, 159.
doi: 10.1038/s41551-019-0462-8 |
47 |
Yu X. ; Su J. Y. ; Guo J. Y. ; Zhang X. H. ; Li R. H. ; Chai X. Y. ; Chen Y. ; Zhang D. G. ; Wang J. G. ; Sui X. H. ; Durand D. M. J. Neurosci. Methods 2019, 328, 108450.
doi: 10.1016/j.jneumeth.2019.108450 |
48 |
Sanders J. E. ; Stiles C. E. ; Hayes C. L. J. Biomed. Mater. Res. 2000, 52 (1), 231.
doi: 10.1002/1097-4636(200010)52:1<231::AID-JBM29>3.0.CO;2-E |
49 |
Vitale F. ; Summerson S. R. ; Aazhang B. ; Kemere C. ; Pasquali M. ACS Nano 2015, 9 (4), 4465.
doi: 10.1021/acsnano.5b01060 |
50 |
Seo K. J. ; Artoni P. ; Qiang Y. ; Zhong Y. ; Han X. ; Shi Z. ; Yao W. ; Fagiolini M. ; Fang H. Adv. Biosyst. 2019, 3 (3), 1800276.
doi: 10.1002/adbi.201800276 |
51 |
Lind G. ; Linsmeier C. E. ; Thelin J. ; Schouenborg J. J. Neural Eng. 2010, 7 (4), 046005.
doi: 10.1088/1741-2560/7/4/046005 |
52 |
Tien L. W. ; Wu F. ; Tang-Schomer M. D. ; Yoon E. ; Omenetto F. G. ; Kaplan D. L. Adv. Funct. Mater. 2013, 23 (25), 3185.
doi: 10.1002/adfm.201203716 |
53 |
Kim T. I. ; McCall J. G. ; Jung Y. H. ; Huang X. ; Siuda E. R. ; Li Y. ; Song J. ; Song Y. M. ; Pao H. A. ; Kim R. H. ; et al Science 2013, 340 (6129), 211.
doi: 10.1126/science.1232437 |
54 |
Kozai T. D. ; Kipke D. R. J. Neurosci. Methods 2009, 184 (2), 199.
doi: 10.1016/j.jneumeth.2009.08.002 |
55 |
Luan L. ; Wei X. ; Zhao Z. ; Siegel J. J. ; Potnis O. ; Tuppen C. A. ; Lin S. ; Kazmi S. ; Fowler R. A. ; Holloway S. ; et al Sci. Adv. 2017, 3 (2), e1601966.
doi: 10.1126/sciadv.1601966 |
56 |
Vitale F. ; Vercosa D. G. ; Rodriguez A. V. ; Pamulapati S. S. ; Seibt F. ; Lewis E. ; Yan J. S. ; Badhiwala K. ; Adnan M. ; Royer-Carfagni G. ; et al Nano Lett. 2018, 18 (1), 326.
doi: 10.1021/acs.nanolett.7b04184 |
57 |
Park D. W. ; Brodnick S. K. ; Ness J. P. ; Atry F. ; Krugner-Higby L. ; Sandberg A. ; Mikael S. ; Richner T. J. ; Novello J. ; Kim H. ; et al Nat. Protoc. 2016, 11 (11), 2201.
doi: 10.1038/nprot.2016.127 |
58 |
Park D. W. ; Ness J. P. ; Brodnick S. K. ; Esquibel C. ; Novello J. ; Atry F. ; Baek D. H. ; Kim H. ; Bong J. ; Swanson K. I. ; et al ACS Nano 2018, 12 (1), 148.
doi: 10.1021/acsnano.7b04321 |
59 |
Jeong D. W. ; Kim G. H. ; Kim N. Y. ; Lee Z. ; Jung S. D. ; Lee J. O. RSC Adv. 2017, 7 (6), 3273.
doi: 10.1039/c6ra26836f |
60 |
Krakova Y. ; Tajalli H. ; Thongpang S. ; Derafshi Z. ; Ban T. ; Rahmani S. ; Selner A. N. ; Al-Tarouti A. ; Williams J. C. ; Hetling J. R. Doc. Ophthalmol. 2014, 129 (3), 151.
doi: 10.1007/s10633-014-9459-5 |
61 |
Yin R. ; Xu Z. ; Mei M. ; Chen Z. ; Wang K. ; Liu Y. ; Tang T. ; Priydarshi M. K. ; Meng X. ; Zhao S. v. Nat. Commun. 2018, 9, 2334.
doi: 10.1038/s41467-018-04781-w |
62 |
Hecht D. S. ; Hu L. ; Irvin G. Adv. Mater. 2011, 23 (13), 1482.
doi: 10.1002/adma.201003188 |
63 |
Zhang J. ; Liu X. ; Xu W. ; Luo W. ; Li M. ; Chu F. ; Xu L. ; Cao A. ; Guan J. ; Tang S. ; Duan J. Nano Lett. 2018, 18 (5), 2903.
doi: 10.1021/acs.nanolett.8b00087 |
64 |
Pancrazio J. J. Nanomedicine 2008, 3 (6), 823.
doi: 10.2217/17435889.3.6.823 |
65 |
Merrill D. R. ; Bikson M. ; Jefferys J. G. J. Neurosci. Methods 2005, 141 (2), 171.
doi: 10.1016/j.jneumeth.2004.10.020 |
66 |
Lai H. Y. ; Younce J. R. ; Albaugh D. L. ; Kao Y. C. J. ; Shih Y. Y. I. Neuroimage 2014, 84, 11.
doi: 10.1016/j.neuroimage.2013.08.026 |
67 |
Jiang C. Q. ; Hao H. W. ; Li L. M. J. Neural Eng. 2013, 10, 026013.
doi: 10.1088/1741-2560/10/2/026013 |
68 |
Arantes P. R. ; Cardoso E. F. ; Barreiros M. Â. ; Teixeira M. J. ; Goncalves M. R. ; Barbosa E. R. ; Sukwinder S. S. ; Leite C. C. ; Amaro E. ; Jr. Mov. Disord. 2006, 21 (8), 1154.
doi: 10.1002/mds.20912 |
69 |
Dunn J. F. ; Tuor U. I. ; Kmech J. ; Young N. A. ; Henderson A. K. ; Jackson J. C. ; Valentine P. A. ; Teskey G. C. Magn. Reson. Med. 2009, 61 (1), 222.
doi: 10.1002/mrm.21803 |
70 |
Georgi J. C. ; Stippich C. ; Tronnier V. M. ; Heiland S. Magn. Reson. Med. 2004, 51 (2), 380.
doi: 10.1002/mrm.10699 |
71 |
Cui H. ; Vashist S. K. ; Al-Rubeaan K. ; Luong J. H. T. ; Sheu F. S. Chem. Res. Toxicol. 2010, 23 (7), 1131.
doi: 10.1021/tx100050h |
72 |
Bianco A. Angew. Chem., Int. Ed. 2013, 52 (19), 4986.
doi: 10.1002/anie.201209099 |
73 |
Zhang Y. ; Ali S. F. ; Dervishi E. ; Xu Y. ; Li Z. ; Casciano D. ; Biris A. S. ACS Nano 2010, 4 (6), 3181.
doi: 10.1021/nn1007176 |
74 |
Fabbro A. ; Scaini D. ; Leon V. ; Vazquez E. ; Cellot G. ; Privitera G. ; Lombardi L. ; Torrisi F. ; Tomarchio F. ; Bonaccorso F. ; et al ACS Nano 2016, 10 (1), 615.
doi: 10.1021/acsnano.5b05647 |
75 |
Simon-Deckers A. ; Gouget B. ; Mayne-L'Hermite M. ; Herlin-Boime N. ; Reynaud C. ; Carrière M. Toxicology 2008, 253 (1-3), 137.
doi: 10.1016/j.tox.2008.09.007 |
76 |
Belyanskaya L. ; Weigel S. ; Hirsch C. ; Tobler U. ; Krug H. F. ; Wick P. Neurotoxicology 2009, 30 (4), 702.
doi: 10.1016/j.neuro.2009.05.005 |
77 |
Lacerda L. ; Russier J. ; Pastorin G. ; Herrero M. A. ; Venturelli E. ; Dumortier H. ; Al-Jamal K. T. ; Prato M. ; Kostarelos K. ; Bianco A. Biomaterials 2012, 33 (11), 3334.
doi: 10.1016/j.biomaterials.2012.01.024 |
78 |
Mao H. Y. ; Laurent S. ; Chen W. ; Akhavan O. ; Imani M. ; Ashkarran A. A. ; Mahmoudi M. Chem. Rev. 2013, 113 (5), 3407.
doi: 10.1021/cr300335p |
79 |
Chen N. ; Luo B. ; Patil A. C. ; Wang J. ; Gammad G. G. L. ; Yi Z. ; Liu X. ; Yen S. C. ; Ramakrishna S. ; Thakor N. V. ACS Nano 2020, 14 (7), 8059.
doi: 10.1021/acsnano.0c00672 |
80 |
Hu H. ; Ni Y. ; Montana V. ; Haddon R. C. ; Parpura V. Nano Lett. 2004, 4 (3), 507.
doi: 10.1021/nl035193d |
[1] | Ping Wang, Haitao Li, Yanjie Cao, Huogen Yu. Carboxyl-Functionalized Graphene for Highly Efficient H2-Evolution Activity of TiO2 Photocatalyst [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2008047-0. |
[2] | Ya Liu, Lei Zheng, Wei Gu, Yanbin Shen, Liwei Chen. Surface Passivation of Lithium Metal via In situ Polymerization [J]. Acta Phys. -Chim. Sin., 2021, 37(1): 2004058-0. |
[3] | Hui Xiong, Xinwen Xie, Miao Wang, Yaqi Hou, Xu Hou. CVD Grown Carbon Nanotubes on Reticulated Skeleton for Brine Desalination [J]. Acta Physico-Chimica Sinica, 2020, 36(9): 1912008-0. |
[4] | Huifang An, Li Jiang, Feng Li, Ping Wu, Xiaoshu Zhu, Shaohua Wei, Yiming Zhou. Hydrogel-Derived Three-Dimensional Porous Si-CNT@G Nanocomposite with High-Performance Lithium Storage [J]. Acta Physico-Chimica Sinica, 2020, 36(7): 1905034-0. |
[5] | Ting Zhang,Cuicui Li,Wei Wang,Zhaoqi Guo,Aimin Pang,Haixia Ma. Construction of Three-Dimensional Hematite/Graphene with Effective Catalytic Activity for the Thermal Decomposition of CL-20 [J]. Acta Physico-Chimica Sinica, 2020, 36(6): 1905048-0. |
[6] | Yao Chen,George Zheng Chen. New Precursors Derived Activated Carbon and Graphene for Aqueous Supercapacitors with Unequal Electrode Capacitances [J]. Acta Physico-Chimica Sinica, 2020, 36(2): 1904025-0. |
[7] | Jiayao Zhu, Yue Dong, Su Zhang, Zhuangjun Fan. Application of Carbon-/Graphene Quantum Dots for Supercapacitors [J]. Acta Physico-Chimica Sinica, 2020, 36(2): 1903052-0. |
[8] | Feng Wei,Honghui Bi,Shuai Jiao,Xiaojun He. Interconnected Graphene-like Nanosheets for Supercapacitors [J]. Acta Physico-Chimica Sinica, 2020, 36(2): 1903043-0. |
[9] | Ke Xu, Jinfen Wang. 1D and 2D Nanomaterials-based Electronics for Neural Interfaces [J]. Acta Phys. -Chim. Sin., 2020, 36(12): 2003050-0. |
[10] | Chengzhen Sun, Runfeng Zhou, Bofeng Bai. Electrostatic Effect-based Selective Permeation Characteristics of Graphene Nanopores [J]. Acta Phys. -Chim. Sin., 2020, 36(11): 1911044-0. |
[11] | Shuchen Zhang,Na Zhang,Jin Zhang. Controlled Synthesis of Carbon Nanotubes: Past, Present and Future [J]. Acta Physico-Chimica Sinica, 2020, 36(1): 1907021-0. |
[12] | Zhaolong Chen, Peng Gao, Zhongfan Liu. Graphene-Based LED: from Principle to Devices [J]. Acta Physico-Chimica Sinica, 2020, 36(1): 1907004-0. |
[13] | Jiali FANG, Xin CHEN, Chang LI, Yulian WU. Observation of the Gold Nanorods/Graphene Composite Formation and Motion with in situ Liquid Cell Transmission Electron Microscopy [J]. Acta Physico-Chimica Sinica, 2019, 35(8): 808-815. |
[14] | Zhe JIANG,Fei YU,Jie MA. Design of Graphene-based Adsorbents and Its Removal of Antibiotics in Aqueous Solution [J]. Acta Phys. -Chim. Sin., 2019, 35(7): 709-724. |
[15] | Kang YANG,Xiaorui SHUAI,Huachao YANG,Jianhua YAN,Kefa CEN. Electrochemical Performance of Activated Graphene Powder Supercapacitors Using a Room Temperature Ionic Liquid Electrolyte [J]. Acta Phys. -Chim. Sin., 2019, 35(7): 755-765. |
|