Acta Phys. -Chim. Sin. ›› 2022, Vol. 38 ›› Issue (5): 2007088.doi: 10.3866/PKU.WHXB202007088
• ARTICLE • Previous Articles Next Articles
Yue Lu1,2, Yang Ge1,2, Manling Sui1,2,*()
Received:
2020-07-29
Accepted:
2020-09-11
Published:
2020-09-16
Contact:
Manling Sui
E-mail:mlsui@bjut.edu.cn
About author:
Manling Sui, Email: mlsui@bjut.edu.cn; Tel.: +86-10-67396644Supported by:
MSC2000:
Yue Lu, Yang Ge, Manling Sui. Degradation Mechanism of CH3NH3PbI3-based Perovskite Solar Cells under Ultraviolet Illumination[J].Acta Phys. -Chim. Sin., 2022, 38(5): 2007088.
Fig 1
Variations of the optoelectronic performance of organic-inorganic hybrid perovskite solar cells under the illumination of UV light: (a) Normalized photoelectric conversion efficiency (PCE); (b) Normalized open circuit voltage (Voc); (c) Normalized short-circuit current density (Jsc); (d) Normalized fill factor (FF)."
Fig 6
HAADF images of the PSC after ultraviolet light illumination for 20 h: (a) HAADF image of the region near the MAPbI3 grain boundary; (b) Atomic-resolution HAADF image of the grain boundary in (a); (c) Atomic-resolution HAADF image of the region near Au particles; (d) FFT image of the blue square area in (b); (e) FFT image of the purple square area in (b); (f) FFT image of the green square area in (c). The red dashed semicircle and the yellow dashed semicircle in (d–f) represents the MAPbI3 crystal and the PbI2 crystal, respectively."
Fig 7
Elementary distribution and ionic migration mechanism in PSC under the illumination of UV light: (a) The EDS line scan of the cross-sectional sample of PSC, which was treated by UV light for 20 h. Inset shows the HAADF image of the cross-sectional sample of PSC, the green line indicates the EDS line scan position. (b) The migration mechanism of Au and I elements driven by built-in electron filed."
1 |
Kojima A. ; Teshima K. ; Shirai Y. ; Miyasaka T. J. Am. Chem. Soc. 2009, 131, 6050.
doi: 10.1021/ja809598r |
2 | National Renewable Energy Laboratory. Best Research-Cell Efficiency Chart. Available online: https://www.nrel.gov/pv/cell-efficiency.html (accessed 2019). |
3 | Bi F. Z. ; Zheng X. ; Yam C. Y. Acta Phys. -Chim. Sin. 2019, 35, 69. |
毕富珍; 郑晓; 任志勇. 物理化学学报, 2019, 35, 69.
doi: 10.3866/PKU.WHXB201801082 |
|
4 | Ge Y. ; Mou X. L. ; Lu Y. ; Sui M. L. Acta Phys. -Chim. Sin. 2020, 36, 1905039. |
葛杨; 牟许霖; 卢岳; 隋曼龄. 物理化学学报, 2020, 36, 1905039.
doi: 10.3866/PKU.WHXB201905039 |
|
5 |
Aristidou N. ; Eames C. ; Sanchez-Molina I. ; Bu X. N. ; Kosco J. ; Saiful Islam M. ; Haque S. A. Nat. Commun. 2017, 8, 15218.
doi: 10.1038/ncomms15218 |
6 |
Divitini G. ; Cacovich S. ; Matteocci F. ; Cinà L. ; Carlo A. D. ; Ducati C. Nat. Energy 2016, 1, 15012.
doi: 10.1038/nenergy.2015.12 |
7 |
Nie W. Y. ; Blancon J. C. ; Neukirch A. J. ; Appavoo K. ; Tsai H. ; Chhowalla M. ; Alam M. A. ; Sfeir M. Y. ; Katan C. ; Even J. ; et al Nat. Commun. 2016, 7, 11574.
doi: 10.1038/ncomms11574 |
8 | Song P. Q. ; Xie L. Q. ; Shen L. N. ; Liu K. K. ; Liang Y. M. ; Lin K. B. ; Lu J. X. ; Tian C. B. ; Wei Z. H. Acta Phys. -Chim. Sin. 2021, 37, 2004038. |
宋沛泉; 谢立强; 沈莉娜; 刘凯凯; 梁玉明; 林克斌; 卢建勋; 田成波; 魏展画. 物理化学学报, 2021, 37, 2004038.
doi: 10.3866/PKU.WHXB202004038 |
|
9 |
Liang J. ; Zhao P. Y. ; Wang C. X. ; Hu Y. ; Zhu G. Y. ; Ma L. B. ; Liu J. ; Jin Z. J. Am. Chem. Soc. 2017, 139, 14009.
doi: 10.1021/jacs.7b07949 |
10 |
Liang J. ; Liu J. ; Jin Z. Solar RRL 2017, 1, 1700086.
doi: 10.1002/solr.201700086 |
11 |
Liang J. ; Wang C. X. ; Zhao P. Y. ; Lu Z. P. ; Xu Z. R. ; Zhu H. F. ; Zhu G. Y. ; Ma L. B. ; Chen T. ; Tie Z. X. ; et al Nanoscale 2017, 9, 11841.
doi: 10.1039/C7NR03530F |
12 |
Jiang Q. ; Rebollar D. ; Gong J. ; Piacentino E. L. ; Zheng C. ; Xu T. Angew. Chem. Int. Ed. 2015, 54, 7617.
doi: 10.1002/anie.201503038 |
13 |
Tai Q. ; You P. ; Sang H. ; Liu Z. ; Hu C. ; Chan H. L. ; Yan F. Nat. Commun. 2016, 7, 11105.
doi: 10.1038/ncomms11105 |
14 |
Chiang Y. H. ; Li M. H. ; Cheng H. M. ; Shen P. S. ; Chen P. ACS Appl. Mater. Interfaces 2017, 9, 2403.
doi: 10.1021/acsami.6b13206 |
15 |
Zhu W. D. ; Bao C. X. ; Li F. M. ; Yu T. ; Gao H. ; Yi Y. ; Yang J. ; Fu G. ; Zhou X. X. ; Zou Z. G. Nano Energy 2016, 19, 17.
doi: 10.1016/j.nanoen.2015.11.024 |
16 |
Chen Y. ; Chen T. ; Dai L. Adv. Mater. 2015, 27, 1053.
doi: 10.1002/adma.201404147 |
17 |
Lee J. W. ; Kim D. H. ; Kim H. S. ; Seo S. W. ; Cho S. M. ; Park N. G. Adv. Energy Mater. 2015, 5, 1501310.
doi: 10.1002/aenm.201501310 |
18 |
Li Z. ; Yang M. ; Park J. S. ; Wei S. H. ; Berry J. J. ; Zhu K. Chem. Mater. 2015, 28, 284.
doi: 10.1021/acs.chemmater.5b04107 |
19 |
Wu Z. ; Raga S. R. ; Juarez-Perez E. J. ; Yao X. ; Jiang Y. ; Ono L. K. ; Ning Z. ; Tian H. ; Qi Y. Adv. Mater. 2018, 30, 1703670.
doi: 10.1002/adma.201703670 |
20 |
Zhao Y. ; Wei J. ; Li H. ; Yan Y. ; Zhou W. ; Yu D. ; Zhao Q. Nat. Commun. 2016, 7, 10228.
doi: 10.1038/ncomms10228 |
21 |
Wu C. ; Wang K. ; Yan Y. ; Yang D. ; Jiang Y. ; Chi B. ; Liu J. ; Esker A. R. ; Rowe J. ; Morris A. J. ; et al Adv. Funct. Mater. 2019, 29, 1804419.
doi: 10.1002/adfm.201804419 |
22 |
Boyd C. C. ; Cheacharoen R. R. ; Leijtens T. ; McGehee M. D. Chem. Rev. 2019, 119, 5.
doi: 10.1021/acs.chemrev.8b00336 |
23 |
DeQuilettes D. W. ; Zhang W. ; Burlakov V. M. ; Graham D. J. ; Leijtens T. ; Osherov A. ; Bulović V. ; Snaith H. J. ; Ginger D. S. ; Stranks S. D. Nat. Commun. 2016, 7, 11683.
doi: 10.1038/ncomms11683 |
24 |
Kim G. Y. ; Senocrate A. ; Yang T. Y. ; Gregori G. ; Grätzel M. ; Maier J. Nat. Mater. 2018, 17, 445.
doi: 10.1038/s41563-018-0038-0 |
25 |
Tang X. ; Brandl M. ; May B. ; Levchuk I. ; Hou Y. ; Richter M. ; Chen H. W. ; Chen S. ; Kahmann S. ; Osvet A. ; et al Mater. Chem. A 2016, 4, 15896.
doi: 10.1039/C6TA06497C |
26 |
Juarez-Perez E. J. ; Ono L. K. ; Maeda M. ; Jiang Y. ; Hawash Z. ; Qi Y. J. Mater. Chem. A 2018, 6, 9604.
doi: 10.1039/C8TA03501F |
27 |
Bi E. ; Chen H. ; Xie F. ; Wu Y. ; Chen W. ; Su Y. ; Islam A. ; Grätzel M. ; Yang X. D. ; Han L. Nat. Commun. 2017, 8, 15530.
doi: 10.1038/ncomms15330 |
28 |
Nickel N. H. ; Lang F. ; Brus V. V. ; Shargaieva O. ; Rappich J. Adv. Electron. Mater. 2017, 3, 1700158.
doi: 10.1002/aelm.201700158 |
29 |
Fu F. ; Pisoni S. ; Jeangros Q. ; Sastre-Pellicer J. ; Kawecki M. ; Paracchino A. ; Moser T. ; Werner J. ; Andres C. ; Duchêne L. ; et al Energy Environ. Sci. 2019, 12, 3074.
doi: 10.1039/C9EE02043H |
30 |
Bella F. ; Griffini G. ; Correa-Baena J. P. ; Saracco G. ; Grätzel M. ; Hagfeldt A. ; Turri S. ; Gerbaldi C. Science 2016, 354, 203.
doi: 10.1126/science.aah4046 |
31 |
Krishnan U. ; Kaur M. ; Kumar M. ; Kumar A. J. Photon. Energy 2019, 9, 021001.
doi: 10.1117/1.JPE.9.021001 |
32 |
Hang P. ; Xie J. ; Li G. ; Wang Y. ; Fang D. ; Yao Y. ; Xie D. Y. ; Cui C. ; Yan K. Y. ; Xu J. B. ; et al iScience 2019, 21, 217.
doi: 10.1016/j.isci.2019.10.021 |
33 |
Lee S. W. ; Kim S. ; Bae S. ; Cho K. ; Chung T. ; Mundt L. E. ; Lee S. ; Park S. ; Park H. ; Schubert M. C. ; et al Sci. Rep. 2016, 6, 38150.
doi: 10.1038/srep38150 |
34 |
Leijtens T. ; Eperon G. E. ; Pathak S. ; Abate A. ; Lee M. M. ; Snaith H. J. Nat. Commun. 2013, 4, 3885.
doi: 10.1038/ncomms3885 |
35 |
Sun Y. ; Fang X. ; Ma Z. ; Xu L. ; Lu Y. ; Yu Q. ; Yuan N. Y. ; Ding J. J. Mater. Chem. C 2017, 5, 8682.
doi: 10.1039/C7TC02603J |
36 |
Yue L. ; Yan B. ; Attridge M. ; Wang Z. Sol. Energy 2016, 124, 143.
doi: 10.1016/j.solener.2015.11.028 |
37 |
Green M. A. ; Ho-Baillie A. ; Snaith H. J. Nat. Photonics 2014, 8, 506.
doi: 10.1038/nphoton.2014.134 |
38 |
Eames C. ; Frost J. M. ; Barnes P. R. ; O'regan B. C. ; Walsh A. ; Islam M. S. Nat. Commun. 2015, 6, 8497.
doi: 10.1038/ncomms8497 |
39 |
Meloni S. ; Moehl T. ; Tress W. ; Franckevičius M. ; Saliba M. ; Lee Y. H. ; Gao P. ; Nazeeruddin M. K. ; Zakeeruddin S. M. ; Rothlisberger U. ; et al Nat. Commun. 2016, 7, 10334.
doi: 10.1038/ncomms10334 |
40 |
Azpiroz J. M. ; Mosconi E. ; Bisquert J. ; De Angelis F. Energy Environ. Sci. 2015, 8, 2118.
doi: 10.1039/C5EE01265A |
41 |
Ito S. ; Tanaka S. ; Manabe K. ; Nishino H. J. Phys. Chem. C 2014, 118, 16995.
doi: 10.1021/jp500449z |
42 |
Jiang Q. ; Zhang L. ; Wang H. ; Yang X. ; Meng J. ; Liu H. ; Yin Z. G. ; Wu J. L. ; Zhang X. W. ; You J. Nat. Energy 2016, 2, 16177.
doi: 10.1038/nenergy.2016.177 |
43 | Wang Y. F. ; Liu J. H. ; Yu M. ; Zhong J. Y. ; Zhou Q. S. ; Qiu J. M. ; Zhang X. L. Acta Phys. -Chim. Sin. 2021, 37, 2006030. |
王云飞; 刘建华; 于美; 钟锦岩; 周琪森; 邱俊明; 张晓亮. 物理化学学报, 2021, 37, 2006030.
doi: 10.3866/PKU.WHXB202006030 |
|
44 |
Ompong D. ; Singh J. Org. Electron. 2018, 63, 104.
doi: 10.1016/j.orgel.2018.09.006 |
45 | Williams D. B. ; Carter C. B. The Transmission Electron Microscope Boston, MA, USA: Springer, 1996, pp. 3- 17. |
46 | Zhao Z. ; Lu Y. ; Zhang Z. H. ; Sui M. L. Acta Phys. -Chim. Sin. 2019, 35, 539. |
赵喆; 卢岳; 张振华; 隋曼龄. 物理化学学报, 2019, 35, 539.
doi: 10.3866/PKU.WHXB201806012 |
|
47 | Wu S. ; Chen R. ; Zhang S. ; Babu B. H. ; Yue Y. ; Zhu H. ; Yang Z. C. ; Chen C. L. ; Chen W. T. ; Huang Y. Q. ; et al Nat. Commun. 2019, 10, 1161. |
48 |
Domanski K. ; Correa-Baena J. P. ; Mine N. ; Nazeeruddin M. K. ; Abate A. ; Saliba M. ; Tress W. ; Hagfeldt A. ; Grätzel M. ACS Nano 2016, 10, 6306.
doi: 10.1021/acsnano.6b02613 |
49 |
Cacovich S. ; Cinà L. ; Matteocci F. ; Divitini G. ; Midgley P. A. ; Di Carlo A. ; Ducati C. Nanoscale 2017, 9, 4700.
doi: 10.1039/C7NR00784A |
50 |
Jiang C. S. ; Yang M. ; Zhou Y. ; To B. ; Nanayakkara S. U. ; Luther J. M. ; Zhou W. L. ; Berry J. J. ; van de Lagemaat J. ; Padture N. P. ; et al Nat. Commun. 2015, 6, 8397.
doi: 10.1038/ncomms9397 |
51 |
Wang S. ; Yuan W. ; Meng Y. S. ACS Appl. Mater. Inter. 2015, 7, 24791.
doi: 10.1021/acsami.5b07703 |
52 |
Nan G. ; Zhang X. ; Lu G. J. Phys. Chem. Lett. 2019, 10, 7774.
doi: 10.1021/acs.jpclett.9b03413 |
53 |
Liu L. ; Huang S. ; Lu Y. ; Liu P. ; Zhao Y. ; Shi C. ; Zhang S. Y. ; Wu J. F. ; Zhong H. Z. ; Sui M. L. ; et al Adv. Mater. 2018, 30, 1800544.
doi: 10.1002/adma.201800544 |
[1] | Guoguang Xu, Qi Wang, Yi Su, Meinan Liu, Qingwen Li, Yuegang Zhang. Revealing Electrochemical Sodiation Mechanism of Orthogonal-Nb2O5 Nanosheets by In Situ Transmission Electron Microscopy [J]. Acta Phys. -Chim. Sin., 2022, 38(8): 2009073-. |
[2] | Wusong Zha, Lianping Zhang, Long Wen, Jiachen Kang, Qun Luo, Qin Chen, Shangfeng Yang, Chang-Qi Ma. Controllable Formation of PbI2 and PbI2(DMSO) Nano Domains in Perovskite Films through Precursor Solvent Engineering [J]. Acta Phys. -Chim. Sin., 2022, 38(3): 2003022-. |
[3] | Peiquan Song, Liqiang Xie, Lina Shen, Kaikai Liu, Yuming Liang, Kebin Lin, Jianxun Lu, Chengbo Tian, Zhanhua Wei. Stable Perovskite Solar Cells Using Compact Tin Oxide Layer Deposited through Electrophoresis [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2004038-. |
[4] | Jionghua Wu, Yiming Li, Jiangjian Shi, Huijue Wu, Yanhong Luo, Dongmei Li, Qingbo Meng. UV Photodetectors Based on High Quality CsPbCl3 Film Prepared by a Two-Step Diffusion Method [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2004041-. |
[5] | Guiying Xu, Rongming Xue, Moyao Zhang, Yaowen Li, Yongfang Li. Synthesis of Pyrazine-based Hole Transport Layer and Its Application in p-i-n Planar Perovskite Solar Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2008050-. |
[6] | Yunfei Wang, Jianhua Liu, Mei Yu, Jinyan Zhong, Qisen Zhou, Junming Qiu, Xiaoliang Zhang. SnO2 Surface Halogenation to Improve Photovoltaic Performance of Perovskite Solar Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(3): 2006030-. |
[7] | Yang Ge, Xulin Mu, Yue Lu, Manling Sui. Photoinduced Degradation of Lead Halide Perovskite Thin Films in Air [J]. Acta Physico-Chimica Sinica, 2020, 36(8): 1905039-. |
[8] | Xing Chen, He Tian, Ze Zhang. Periodic Misfit Dislocation and Electron Aggregation at (010) PbTiO3/SrTiO3 Heterointerface [J]. Acta Physico-Chimica Sinica, 2020, 36(11): 1906019-. |
[9] | Rui CHEN,Wei WANG,Tongle BU,Zhiliang KU,Jie ZHONG,Yong PENG,Shengqiang XIAO,Wei YOU,Fuzhi HUANG,Yibing CHENG,Zhengyi FU. Low-Cost Fullerene Derivative as an Efficient Electron Transport Layer for Planar Perovskite Solar Cells [J]. Acta Phys. -Chim. Sin., 2019, 35(4): 401-407. |
[10] | Ganxing DONG,Chuanhong JIN. Probing the Controlled Oxidative Etching of Palladium Nanorods by Liquid Cell Transmission Electron Microscopy [J]. Acta Phys. -Chim. Sin., 2019, 35(1): 15-21. |
[11] | Zhijuan HUANG,Zhinong YU,Yan LI,Jizheng WANG. ZnO Ultraviolet Photodetector Modified with Graphdiyne [J]. Acta Phys. -Chim. Sin., 2018, 34(9): 1088-1094. |
[12] | Peng HUANG,Ligang YUAN,Yaowen LI,Yi ZHOU,Bo SONG. L-3, 4-dihydroxyphenylalanine and Dimethyl Sulfoxide Codoped PEDOT:PSS as a Hole Transfer Layer: towards High-Performance Planar p-i-n Perovskite Solar Cells [J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1264-1271. |
[13] | Li-Gang XU, Wei QIU, Run-Feng CHEN, Hong-Mei ZHANG, Wei HUANG. Application of ZnO Electrode Buffer Layer in Perovskite Solar Cells [J]. Acta Physico-Chimica Sinica, 2018, 34(1): 36-48. |
[14] | Dan-Hui LÜ,Dan-Cheng ZHU,Chuan-Hong JIN. Preferential Substitution of Selenium along the Grain Boundaries in Monolayer MoS2(1-x)Se2x Alloy [J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1514-1519. |
[15] | Qian ZHU,Chao-Tun CAO,Chen-Zhong CAO. Extension and Application of Excited-State Constants of meta-Substituents [J]. Acta Phys. -Chim. Sin., 2017, 33(4): 729-735. |
|