Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (8): 2008010.doi: 10.3866/PKU.WHXB202008010
Special Issue: Two-Dimensional Photocatalytic Materials
• REVIEW • Previous Articles Next Articles
Kaining Li1, Mengxi Zhang1, Xiaoyu Ou1, Ruina Li1, Qin Li1, Jiajie Fan2, Kangle Lv1,*()
Received:
2020-08-04
Accepted:
2020-08-31
Published:
2020-09-07
Contact:
Kangle Lv
E-mail:lvkangle@mail.scuec.edu.cn
About author:
Kangle Lv, Email: lvkangle@mail.scuec.edu.cn; Tel.: +86-27-67841369Supported by:
MSC2000:
Kaining Li, Mengxi Zhang, Xiaoyu Ou, Ruina Li, Qin Li, Jiajie Fan, Kangle Lv. Strategies for the Fabrication of 2D Carbon Nitride Nanosheets[J].Acta Phys. -Chim. Sin., 2021, 37(8): 2008010.
Table 1
Advantages and disadvantages of the preparation method for g-C3N4 nanosheets."
Exfoliated strategies and preparation methods | Advantages | Disadvantages | Scope of application | Ref. |
Thermal oxidation etching | Easy to operate | High energy consumption; low yield | Photocatalysis electrocatalysis | |
Ultrasound-assisted method | The obtained nanosheets can inherit the structural characteristics of the bulk C3N4 and have fewer defects. | Time consumption | Photocatalysis; electrocatalysis energy storage; bioimaging | |
Chemical exfoliation | The preparation time is relatively short; the obtained samples can be highly dispersed; easy to control the surface charge properties by adjusting the pH value. | Inevitably introduce organic solvents or strong acids; require additional work for removal | Photocatalysis; photosynthesis; Electrocatalysis biomedicine | |
Mechanical method | High exfoliated efficiency; simultaneous exfoliation and modification can be achieved | Only obtain small size nanosheets | Photocatalysis; biosensing | |
Template method | Controllable morphology; relatively high yield | Additional additives may affect g-C3N4 polymerization; contain unavoidable template removal process | Photocatalysis; energy storage |
Fig 2
Schematic diagram of the structures of the bulk g-C3N4 and the g-C3N4 nanosheets (a), TEM image (b) and AFM image (c) of g-C3N4 nanosheets, The photocatalytic hydrogen production from water containing 10% (volume fraction) triethanolamine scavenger over the as-prepared samples with Pt-depositon under UV-Visible light (d) and visible light (e) irradiation. Adapted from Adv. Funct. Mater. Journal, Wiley publisher 40. UV-Visible absorption spectra (f) band gap structure (g) of bulk g-C3N4 and samples treated at different temperatures. Adapted from Appl. Surf. Sci. journal, Elsevier publisher 39. (h) Preparation process of foam-like holey ultrathin g-C3N4 nanosheets. Adapted from Adv. Energy Mater. journal, Wiley publisher 53."
Fig 3
(a) Schematic of liquid ultrasonic-exfoliation method for g-C3N4 nanosheets. Adapted from J. Am. Chem. Soc. journal, ACS publisher 41. (b) Photocatalytic hydrogen evolution rates of: ⅰ) g-C3N4 nanosheets by liquid ultrasonic-exfoliation method, ⅱ) g-C3N4 nanosheets prepared by thermal exfoliation, ⅲ) highly ordered mesoporous g-C3N4, and ⅳ) bulk g-C3N4, (c) impedance diagram of bulk g-C3N4 and g-C3N4 nanosheets. Adapted from Adv. Mater. journal, Wiley publisher 54. AFM image (d) and corresponding cross-sectional profile (e) of C3N4 nanosheet. Adapted from Appl. Catal. B journal, Elsevier publisher 57. (f) Schematic diagram of the GVL-exfoliation process from the bulk g-C3N4 to g-C3N4 nanosheets, (g) UV-visible absorption spectra of the g-C3N4 nanosheets and the bulk g-C3N4. Adapted from Green Chem. journal, RSC publisher 58."
Fig 4
(a) Schematic diagram of chemical exfoliation for g-C3N4 nanosheets. Adapted from J. Mater. Chem. A journal, RSC publisher 43. (b) Zeta potentials and photographs (inset) of g-C3N4 nanosheets colloids at various pH values. Adapted from Chem. Commun. journal, RSC publisher 59. AFM image (c) and corresponding height profile (d) of protonated porous graphitic carbon nitride nanosheets (P-PCNNS), photocatalytic activity for H2 production (e) and CO2 conversion (f) CNNS represents g-C3N4 nanosheets exfoliated by liquid ultrasonic-exfoliation method, and BCN represents bulk g-C3N4. Adapted from Small journal, Wiley publisher 60."
Fig 5
(a) Schematic of the physical exfoliation of bulk GCN by ball milling to prepare g-C3N4 nanosheets. Adapted from Nano Res. journal, Springer Nature publisher 47. (b) Exfoliation and modification process of g-C3N4 via noncovalent π-π stacking interaction Adapted from J. Am. Chem. Soc. journal, ACS publisher 48. (c) LSV polarization curves and (d) corresponding Tafel plots of g-C3N4. Adapted from Angew. Chem. Int. Ed. journal, Wiley publisher 31."
Fig 6
SEM image (a) and TEM image (b) of g-C3N4 nanosheets, (c) schematic of the synthesis process of the bulk and nanosheets of g-C3N4. Adapted from J. Mater. Chem. A journal, RSC publisher 50. (d) Schematic for preparing high-crystalline g-C3N4 nanosheets (HC-CN), (e) photocatalytic hydrogen production rate of bulk g-C3N4 and HC-CN photocatalysts under visible-light irradiation, (f) Time-resolved fluorescence decay spectra and photocurrent responses data(insert) of bulk g-C3N4 and HC-CN. Adapted from ACS Energy Lett. journal, ACS publisher 51."
Table 2
Preparation methods and properties of g-C3N4 nanosheets."
Sample | Precursor of bulk g-C3N4 | Exfoliation method | Thickness (nm) | Surface area (m2·g-1) | Yield (compared to bulk g-C3N4) | Ref. |
g-C3N4 nanosheets | Dicyandiamide | Thermal oxidation etching | ≈ 2 | 306 | 6% | |
Porous g-C3N4 nanosheets | Thiourea | Thermal exfoliation | 16 | 151 | 8% | |
Foam-Like holey ultrathin g-C3N4 nanosheets | Melamine | Long-time thermal oxidation etching | 9.2 | 277.98 | - | |
Ultrathin g-C3N4 nanosheets | Melamine | Sonication(in aqueous solution for 16 h) | ≈ 2.5 | - | - | |
g-C3N4 nanosheets | Commercial bulk g-C3N4 | Sonication (in isopropanol for 10 h) | ≈ 2 | 384 | - | |
Monolayer g-C3N4 nanosheet | Melamine | Sonication (in mixed solvent for 10 h) | 0.38 | 59.4 | - | |
Tri-s-triazine-based crystalline C3N4 nanosheets | Melamine | Sonication (in isopropanol for 15 h) | ≈ 3.6 | 203 | - | |
Few-layer g-C3N4 nanosheets | Melamine | Sonication (in γ-valerolactone for 24 h) | ≈ 2 | - | - | |
Single atomic layer g-C3N4 nanosheet | Dicyandiamide | Chemical exfoliation method(H2SO4) | ≈ 0.4 | 205.8 | - | |
Amphoteric g-C3N4 nanosheets | Melamine | Chemical exfoliation method(H2SO4) | ≈ 9 | - | - | |
g-C3N4 nanosheets | Melamine | Chemical exfoliation method(HNO3) | ≈ 1.1 | - | - | |
Protonated porous g-C3N4 nanosheets | Dicyandiamide | Chemical exfoliation method(H3PO4) | ≈ 1 | 55.4 | - | |
Ultrathing-C3N4 nanoplatelets | Melamine | Ball milling | 0.35-0.7 | 97 | 15% | |
g-C3N4 nanosheets | Dicyandiamide | Ball milling | 1.5-20 | 63.62 | - | |
g-C3N4 nanosheets | Dicyandiamide | Soft-template | 3.1 | 52.9 | - | |
High-crystalline g-C3N4 nanosheets | Dicyandiamide | Template method | - | 39.24 | - |
1 |
Novoselov K. S. ; Geim A. K. ; Morozov S. V. ; Jiang D. ; Zhang Y. ; Dubonos S. V. ; Grigorieva I. V. ; Firsov A. A. Science 2004, 306, 666.
doi: 10.1126/science.1102896 |
2 |
Li Q. ; Li X. ; Wageh S. ; Al-Ghamdi A. A. ; Yu J. Adv. Energy Mater. 2015, 5, 1500010.
doi: 10.1002/aenm.201500010 |
3 |
Wang J. ; Jin X. ; Li C. ; Wang W. ; Wu H. ; Guo S. Chem. Eng. J. 2019, 370, 831.
doi: 10.1016/j.cej.2019.03.229 |
4 |
Zhao H. ; Ding R. ; Zhao X. ; Li Y. ; Qu L. ; Pei H. ; Yildirimer L. ; Wu Z. ; Zhang W. Drug Discov. Today 2017, 22, 1302.
doi: 10.1016/j.drudis.2017.04.002 |
5 |
Anasori B. ; Lukatskaya M. R. ; Gogotsi Y. Nat. Rev. Mater. 2017, 2, 16098.
doi: 10.1038/natrevmats.2016.98 |
6 |
Li K. ; Zhang S. ; Li Y. ; Fan J. ; Lv K. Chin. J. Catal. 2021, 42, 3.
doi: 10.1016/s1872-2067(20)63630-0 |
7 | Lv K. ; Li K. ; Li Z. ; Huang W. ; Li Q. ; Shen Q. J. Xuzhou Instit. Technol. (Nat. Sci. Ed.) 2019, 34, 18. |
吕康乐; 李开宁; 李志鹏; 黄蔚欣; 李覃; 沈群. 徐州工程学院学报(自然科学版), 2019, 34, 18.
doi: 10.15873/j.cnki.jxit.000314 |
|
8 |
Hu W. ; Han G. ; Liu Y. ; Dong B. ; Chai Y. ; Liu Y. ; Liu C. Int. J. Hydrog. Energy 2015, 40, 6552.
doi: 10.1016/j.ijhydene.2015.03.150 |
9 |
Ning M. Q. ; Lu M. M. ; Li J. B. ; Chen Z. ; Dou Y. K. ; Wang C. Z. ; Rehman F. ; Cao M. S. ; Jin H. B. Nanoscale 2015, 7, 15734.
doi: 10.1039/c5nr04670j |
10 |
Krishnamoorthy K. ; Pazhamalai P. ; Kim S. J. Energy Environ. Sci. 2018, 11, 1595.
doi: 10.1039/c8ee00160j |
11 |
Pazhamalai P. ; Krishnamoorthy K. ; Sahoo S. ; Mariappan V. K. ; Kim S. J. ACS Appl. Mater. Interfaces 2019, 11, 624.
doi: 10.1021/acsami.8b15323 |
12 |
Ong W. J. ; Tan L. L. ; Ng Y. H. ; Yong S. T. ; Chai S. P. Chem. Rev. 2016, 116, 7159.
doi: 10.1021/acs.chemrev.6b00075 |
13 |
Zhang J. ; Chen Y. ; Wang X. Energy Environ. Sci. 2015, 8, 3092.
doi: 10.1039/c5ee01895a |
14 |
Low J. ; Cao S. ; Yu J. ; Wageh S. Chem. Commun. 2014, 50, 10768.
doi: 10.1039/c4cc02553a |
15 |
Dong X. ; Cheng F. J. Mater. Chem. A 2015, 3, 23642.
doi: 10.1039/c5ta07374j |
16 |
Panneri S. ; Ganguly P. ; Nair B. N. ; Mohamed A. A. ; Warrier K. G. ; Hareesh U. N. Environ. Sci. Pollut. Res. Int. 2017, 24, 8609.
doi: 10.1007/s11356-017-8538-z |
17 |
Han Q. ; Wang B. ; Zhao Y. ; Hu C. ; Qu L. Angew. Chem. Int. Ed. 2015, 54, 11433.
doi: 10.1002/anie.201504985 |
18 |
Yu Y. ; Yan W. ; Wang X. ; Li P. ; Gao W. ; Zou H. ; Wu S. ; Ding K. Adv. Mater. 2018, 30, 1705060.
doi: 10.1002/adma.201705060 |
19 |
Yang C. ; Zhang S. ; Huang Y. ; Lv K. ; Fang S. ; Wu X. ; Li Q. ; Fan J. Appl. Surf. Sci. 2020, 505, 144654.
doi: 10.1016/j.apsusc.2019.144654 |
20 |
Cheng J. ; Hu Z. ; Lv K. ; Wu X. ; Li Q. ; Li Y. ; Li X. ; Sun J. Appl. Catal. B 2018, 232, 330.
doi: 10.1016/j.apcatb.2018.03.066 |
21 |
Liu M. ; Wageh S. ; Al-Ghamdi A. A. ; Xia P. ; Cheng B. ; Zhang L. ; Yu J. Chem. Commun. 2019, 55, 14023.
doi: 10.1039/c9cc07647f |
22 |
Sun Z. ; Wang H. ; Wu Z. ; Wang L. Catal. Today 2018, 300, 160.
doi: 10.1016/j.cattod.2017.05.033 |
23 |
Li C. ; Yu S. ; Zhang X. ; Wang Y. ; Liu C. ; Chen G. ; Dong H. J. Colloid Interface Sci. 2019, 538, 462.
doi: 10.1016/j.jcis.2018.12.009 |
24 |
Zheng Q. ; Durkin D. P. ; Elenewski J. E. ; Sun Y. ; Banek N. A. ; Hua L. ; Chen H. ; Wagner M. J. ; Zhang W. ; Shuai D. Environ. Sci. Technol. 2016, 50, 12938.
doi: 10.1021/acs.est.6b02579 |
25 |
Fang S. ; Xia Y. ; Lv K. ; Li Q. ; Sun J. ; Li M. Appl. Catal. B 2016, 185, 225.
doi: 10.1016/j.apcatb.2015.12.025 |
26 |
Liao J. ; Cui W. ; Li J. ; Sheng J. ; Wang H. ; Dong X. A. ; Chen P. ; Jiang G. ; Wang Z. ; Dong F. Chem. Eng. J. 2020, 379, 122282.
doi: 10.1016/j.cej.2019.122282 |
27 |
Liu S. H. ; Lin W. X. J. Hazard. Mater. 2019, 368, 468.
doi: 10.1016/j.jhazmat.2019.01.082 |
28 |
Duan Y. ; Li X. ; Lv K. ; Zhao L. ; Liu Y. Appl. Surf. Sci. 2019, 492, 166.
doi: 10.1016/j.apsusc.2019.06.125 |
29 |
Li Y. ; Gu M. ; Shi T. ; Cui W. ; Zhang X. ; Dong F. ; Cheng J. ; Fan J. ; Lv K. Appl. Catal. B 2020, 262, 118281.
doi: 10.1016/j.apcatb.2019.118281 |
30 |
Han X. ; Zhang W. ; Ma X. ; Zhong C. ; Zhao N. ; Hu W. ; Deng Y. Adv. Mater. 2019, 31, e1808281.
doi: 10.1002/adma.201808281 |
31 |
Zhuang Z. ; Li Y. ; Li Z. ; Lv F. ; Lang Z. ; Zhao K. ; Zhou L. ; Moskaleva L. ; Guo S. ; Mai L. Angew. Chem. Int. Ed. 2018, 57, 496.
doi: 10.1002/anie.201708748 |
32 |
Wang S. ; He P. ; Jia L. ; He M. ; Zhang T. ; Dong F. ; Liu M. ; Liu H. ; Zhang Y. ; Li C. ; et al Appl. Catal. B 2019, 243, 463.
doi: 10.1016/j.apcatb.2018.10.071 |
33 |
Zheng Y. ; Jiao Y. ; Zhu Y. ; Cai Q. ; Vasileff A. ; Li L. H. ; Han Y. ; Chen Y. ; Qiao S. Z. J. Am. Chem. Soc. 2017, 139, 3336.
doi: 10.1021/jacs.6b13100 |
34 |
Sarkar S. ; Sumukh S. S. ; Roy K. ; Kamboj N. ; Purkait T. ; Das M. ; Dey R. S. J. Colloid Interface Sci. 2020, 558, 182.
doi: 10.1016/j.jcis.2019.09.107 |
35 |
Pieta I. S. ; Rathi A. ; Pieta P. ; Nowakowski R. ; Hołdynski M. ; Pisarek M. ; Kaminska A. ; Gawande M. B. ; Zboril R. Appl. Catal. B 2019, 244, 272.
doi: 10.1016/j.apcatb.2018.10.072 |
36 |
Cheng J. ; Hu Z. ; Li Q. ; Li X. ; Fang S. ; Wu X. ; Li M. ; Ding Y. ; Liu B. ; Yang C. ; et al Appl. Catal. B 2019, 245, 197.
doi: 10.1016/j.apcatb.2018.12.044 |
37 | Qin Z. ; Wu J. ; Li B. ; Su T. ; Ji H. Acta Phys. -Chim. Sin. 2021, 37, 2005027. |
秦祖赠; 吴靖; 李斌; 苏通明; 纪红兵. 物理化学学报, 2021, 37, 2005027.
doi: 10.3866/PKU.WHXB202005027 |
|
38 |
Hong Y. ; Li C. ; Li D. ; Fang Z. ; Luo B. ; Yan X. ; Shen H. ; Mao B. ; Shi W. Nanoscale 2017, 9, 14103.
doi: 10.1039/c7nr05155g |
39 |
Dong F. ; Li Y. ; Wang Z. ; Ho W. Appl. Surf. Sci. 2015, 358, 393.
doi: 10.1016/j.apsusc.2015.04.034 |
40 |
Niu P. ; Zhang L. ; Liu G. ; Cheng H. Adv. Funct. Mater. 2012, 22, 4763.
doi: 10.1002/adfm.201200922 |
41 |
Zhang X. ; Xie X. ; Wang H. ; Zhang J. ; Pan B. ; Xie Y. J. Am. Chem. Soc. 2013, 135, 18.
doi: 10.1021/ja308249k |
42 |
Zhang J. ; Li J. ; Wang W. ; Zhang X. ; Tan X. ; Chu W. ; Guo Y. Adv. Energy Mater. 2018, 8, 1702839.
doi: 10.1002/aenm.201702839 |
43 |
Xu J. ; Zhang L. ; Shi R. ; Zhu Y. J. Mater. Chem. A 2013, 1, 14766.
doi: 10.1039/c3ta13188b |
44 |
Lin L. S. ; Cong Z. X. ; Li J. ; Ke K. M. ; Guo S. S. ; Yang H. H. ; Chen G. N. J. Mater. Chem. B 2014, 2, 1031.
doi: 10.1039/c3tb21479f |
45 |
Du X. ; Zou G. ; Wang Z. ; Wang X. Nanoscale 2015, 7, 8701.
doi: 10.1039/c5nr00665a |
46 |
Kwon N. H. ; Shin S. ; Jin X. ; Jung Y. ; Hwang G. ; Kim H. ; Hwang S. Appl. Catal. B 2020, 277, 119191.
doi: 10.1016/j.apcatb.2020.119191 |
47 |
Han Q. ; Zhao F. ; Hu C. ; Lv L. ; Zhang Z. ; Chen N. ; Qu L. Nano Res. 2015, 8, 1718.
doi: 10.1007/s12274-014-0675-9 |
48 |
Ji J. ; Wen J. ; Shen Y. ; Lv Y. ; Chen Y. ; Liu S. ; Ma H. ; Zhang Y. J. Am. Chem. Soc. 2017, 139, 11698.
doi: 10.1021/jacs.7b06708 |
49 |
Wu M. ; Yan J. M. ; Tang X. N. ; Zhao M. ; Jiang Q. ChemSusChem 2014, 7, 2654.
doi: 10.1002/cssc.201402180 |
50 |
Lu X. ; Xu K. ; Chen P. ; Jia K. ; Liu S. ; Wu C. J. Mater. Chem. A 2014, 2, 18924.
doi: 10.1039/c4ta04487h |
51 |
Xing W. ; Tu W. ; Han Z. ; Hu Y. ; Meng Q. ; Chen G. ACS Energy Lett. 2018, 3, 514.
doi: 10.1021/acsenergylett.7b01328 |
52 |
Zhang J. ; Zhang M. ; Yang C. ; Wang X. Adv. Mater. 2014, 26, 4121.
doi: 10.1002/adma.201400573 |
53 |
Li Y. ; Jin R. ; Xing Y. ; Li J. ; Song S. ; Liu X. ; Li M. ; Jin R. Adv. Energy Mater. 2016, 6, 1601273.
doi: 10.1002/aenm.201601273 |
54 |
Yang S. ; Gong Y. ; Zhang J. ; Zhan L. ; Ma L. ; Fang Z. ; Vajtai R. ; Wang X. ; Ajayan P. M. Adv. Mater. 2013, 25, 2452.
doi: 10.1002/adma.201204453 |
55 |
Ou H. ; Lin L. ; Zheng Y. ; Yang P. ; Fang Y. ; Wang X. Adv. Mater. 2017, 29, 1700008.
doi: 10.1002/adma.201700008 |
56 |
Hernandez Y. ; Nicolosi V. ; Lotya M. ; Blighe F. M. ; Sun Z. ; De S. ; McGovern I. T. ; Holland B. ; Byrne M. ; Gun'Ko Y.K. ; et al Nat. Nanotechnol. 2008, 3, 563.
doi: 10.1038/nnano.2008.215 |
57 |
Lin Q. ; Li L. ; Liang S. ; Liu M. ; Bi J. ; Wu L. Appl. Catal. B 2015, 163, 135.
doi: 10.1016/j.apcatb.2014.07.053 |
58 |
Xue Z. ; Liu F. ; Jiang J. ; Wang J. ; Mu T. Green Chem. 2017, 19, 5041.
doi: 10.1039/c7gc02583a |
59 |
Cheng F. ; Wang H. ; Dong X. Chem. Commun. 2015, 51, 7176.
doi: 10.1039/c5cc01035g |
60 |
Shi L. ; Chang K. ; Zhang H. ; Hai X. ; Yang L. ; Wang T. ; Ye J. Small 2016, 12, 4431.
doi: 10.1002/smll.201601668 |
61 |
Song T. ; Zhang P. ; Wang T. ; Ali A. ; Zeng H. Appl. Surf. Sci. 2019, 464, 195.
doi: 10.1016/j.apsusc.2018.09.062 |
62 |
Xu J. ; Wang H. ; Zhang C. ; Yang X. ; Cao S. ; Yu J. ; Shalom M. Angew. Chem. Int. Ed. 2017, 56, 8426.
doi: 10.1002/anie.201611946 |
63 |
Han Q. ; Wang B. ; Gao J. ; Cheng Z. ; Zhao Y. ; Zhang Z. ; Qu L. ACS Nano 2016, 10, 2745.
doi: 10.1021/acsnano.5b07831 |
64 |
Hong Y. ; Li C. ; Fang Z. ; Luo B. ; Shi W. Carbon 2017, 121, 463.
doi: 10.1016/j.carbon.2017.06.020 |
65 |
Wu X. ; Wang X. ; Wang F. ; Yu H. Appl. Catal. B 2019, 247, 70.
doi: 10.1016/j.apcatb.2019.01.088 |
66 |
Wu X. ; Gao D. ; Yu H. ; Yu J. Nanoscale 2019, 11, 9608.
doi: 10.1039/c9nr00887j |
[1] | Yue Huang, Feifei Mei, Jinfeng Zhang, Kai Dai, Graham Dawson. Construction of 1D/2D W18O49/Porous g-C3N4 S-Scheme Heterojunction with Enhanced Photocatalytic H2 Evolution [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2108028-. |
[2] | Bichen Zhu, Xiaoyang Hong, Liyong Tang, Qinqin Liu, Hua Tang. Enhanced Photocatalytic CO2 Reduction over 2D/1D BiOBr0.5Cl0.5/WO3 S-Scheme Heterostructure [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2111008-. |
[3] | Liang Zhou, Yunfeng Li, Yongkang Zhang, Liewei Qiu, Yan Xing. A 0D/2D Bi4V2O11/g-C3N4 S-Scheme Heterojunction with Rapid Interfacial Charges Migration for Photocatalytic Antibiotic Degradation [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2112027-. |
[4] | Wenliang Wang, Haochun Zhang, Yigang Chen, Haifeng Shi. Efficient Degradation of Tetracycline via Coupling of Photocatalysis and Photo-Fenton Processes over a 2D/2D α-Fe2O3/g-C3N4 S-Scheme Heterojunction Catalyst [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2201008-. |
[5] | Rongchen Shen, Lei Hao, Qing Chen, Qiaoqing Zheng, Peng Zhang, Xin Li. P-Doped g-C3N4 Nanosheets with Highly Dispersed Co0.2Ni1.6Fe0.2P Cocatalyst for Efficient Photocatalytic Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2110014-. |
[6] | Zhuang Xiong, Yidong Hou, Rusheng Yuan, Zhengxin Ding, Wee-Jun Ong, Sibo Wang. Hollow NiCo2S4 Nanospheres as a Cocatalyst to Support ZnIn2S4 Nanosheets for Visible-Light-Driven Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2111021-. |
[7] | Hongyu Liu, Gang Meng, Zanhong Deng, Meng Li, Junqing Chang, Tiantian Dai, Xiaodong Fang. Progress in Research on VOC Molecule Recognition by Semiconductor Sensors [J]. Acta Phys. -Chim. Sin., 2022, 38(5): 2008018-. |
[8] | Zhicong Sun, Ergui Luo, Qinglei Meng, Xian Wang, Junjie Ge, Changpeng Liu, Wei Xing. High-Performance Palladium-Based Catalyst Boosted by Thin-Layered Carbon Nitride for Hydrogen Generation from Formic Acid [J]. Acta Phys. -Chim. Sin., 2022, 38(3): 2003035-. |
[9] | Hongying Li, Haiming Gong, Zhiliang Jin. In2O3-Modified Three-Dimensional Nanoflower MoSx Form S-scheme Heterojunction for Efficient Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2022, 38(12): 2201037-. |
[10] | Kelin He, Rongchen Shen, Lei Hao, Youji Li, Peng Zhang, Jizhou Jiang, Xin Li. Advances in Nanostructured Silicon Carbide Photocatalysts [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2201021-. |
[11] | Wei Wang, Yu Huang, Zhenyu Wang. Defect Engineering in Two-Dimensional Graphitic Carbon Nitride and Application to Photocatalytic Air Purification [J]. Acta Phys. -Chim. Sin., 2021, 37(8): 2011073-. |
[12] | Han Li, Fang Li, Jiaguo Yu, Shaowen Cao. 2D/2D FeNi-LDH/g-C3N4 Hybrid Photocatalyst for Enhanced CO2 Photoreduction [J]. Acta Phys. -Chim. Sin., 2021, 37(8): 2010073-. |
[13] | Yunfeng Li, Min Zhang, Liang Zhou, Sijia Yang, Zhansheng Wu, Ma Yuhua. Recent Advances in Surface-Modified g-C3N4-Based Photocatalysts for H2 Production and CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2009030-. |
[14] | Xingang Fei, Haiyan Tan, Bei Cheng, Bicheng Zhu, Liuyang Zhang. 2D/2D Black Phosphorus/g-C3N4 S-Scheme Heterojunction Photocatalysts for CO2 Reduction Investigated using DFT Calculations [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2010027-. |
[15] | Zejian Wang, Jiajia Hong, Sue-Faye Ng, Wen Liu, Junjie Huang, Pengfei Chen, Wee-Jun Ong. Recent Progress of Perovskite Oxide in Emerging Photocatalysis Landscape: Water Splitting, CO2 Reduction, and N2 Fixation [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2011033-. |
|