Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (9): 2008017.doi: 10.3866/PKU.WHXB202008017
Special Issue: Fuel Cells
• ARTICLE • Previous Articles Next Articles
Hongsa Han, Yanqing Wang, Yunlong Zhang, Yuanyuan Cong, Jiaqi Qin, Rui Gao, Chunxiao Chai, Yujiang Song()
Received:
2020-08-06
Accepted:
2020-09-02
Published:
2020-09-04
Contact:
Yujiang Song
E-mail:yjsong@dlut.edu.cn
Supported by:
MSC2000:
Hongsa Han, Yanqing Wang, Yunlong Zhang, Yuanyuan Cong, Jiaqi Qin, Rui Gao, Chunxiao Chai, Yujiang Song. Oxygen Reduction Reaction Electrocatalysts Derived from Metalloporphyrin-Modified Meso-/Macroporous Polyaniline[J].Acta Phys. -Chim. Sin., 2021, 37(9): 2008017.
Table 1
Synthetic parameters of porous FeP/PANI electrocatalysts."
Electrocatalysts | FeP Loadings (%) | SiO2 Diameters (nm) | Pyrolysis Temperatures (℃) |
20%FeP/PANI-18-600 | 20 | 18 | 600 |
20%FeP/PANI-18-700 | 20 | 18 | 700 |
20%FeP/PANI-18-800 | 20 | 18 | 800 |
20%FeP/PANI-18-900 | 20 | 18 | 900 |
0%FeP/PANI-18-700 | – | 18 | 700 |
10%FeP/PANI-18-700 | 10 | 18 | 700 |
30%FeP/PANI-18-700 | 30 | 18 | 700 |
40%FeP/PANI-18-700 | 40 | 18 | 700 |
50%FeP/PANI-18-700 | 50 | 18 | 700 |
40%FeP/PANI-80-700 | 40 | 80 | 700 |
40%FeP/PANI-180-700 | 40 | 180 | 700 |
Fig 5
(a) Nitrogen adsorption/desorption isotherms of 40%FeP/PANI-D-700 electrocatalysts synthesized without template and with SiO2 templates at different diameters of 18–180 nm; (b) corresponding pore size distribution of 40%FeP/PANI-D-700 electrocatalysts; (c) Raman spectra of 40%FeP/PANI-D-700 electrocatalysts; (d) XRD patterns of 40%FeP/PANI-18-700 electrocatalyst, carbon, and Fe2O3."
Fig 7
(a) ORR polarization curves of 20%FeP/PANI-18-T electrocatalysts obtained at different pyrolysis temperatures; (b) ORR polarization curves of X%FeP/PANI-18-700 with different FeP loadings; (c) ORR polarization curves of 40%FeP/PANI-D-700 electrocatalysts synthesized without template and with SiO2 templates (18–180 nm in average diameters); (d) three-dimensional diagram of E1/2 of X%FeP/PANI-D-700 electrocatalysts obtained at 700 ℃."
Table 2
ORR activity of non-precious metal/metal-free porous electrocatalysts in 0.1 mol·L?1 KOH aqueous solution."
Electrocatalysts | E1/2(V vs. RHE) | Loadings on RDE (mg?cm?2) | References |
CoFe/SNC-25 | 0.843 | 0.34 | Appl. Catal. B 2020, 269, 118771 |
Fe-NHPC-8 | 0.850 | 0.26 | J. Power Sources 2020, 448, 227443 |
S@CM-1000 | 0.760 | 0.60 | Carbon 2020, 156, 514 |
N-Co-Mo-GF/CNT | 0.830 | 0.20 | ACS Catal. 2020, 10, 4647 |
Co, N-PCL | 0.846 | 0.20 | Appl. Catal. B 2019, 246, 322 |
Fe3C@P-PCFs | 0.802 | 0.46 | J. Mater. Chem. A 2019, 7, 17923 |
Co/N-PCNF | 0.835 | 0.29 | ACS Appl. Mater. Interfaces 2019, 11, 1384 |
N/E-HPC-900 | 0.850 | 0.26 | Adv. Mater. 2019, 31, 1900341 |
NSCF3c248 | 0.810 | 0.20 | Small 2018, 14, 1803500 |
CF-K-A1100 | 0.835 | 0.40 | Small 2018, 14, 1800563 |
N, F-Carbon-1000 | 0.840 | 0.25 | ACS Appl. Mater. Interfaces 2017, 9, 32859 |
NPCN-900 | 0.780 | 0.20 | Carbon 2017, 122, 64 |
N-GRW | 0.840 | 0.60 | Sci. Adv. 2016, 2, e1501122 |
40%FeP/PANI-18-700 | 0.843 | 0.60 | This work |
Fig 8
(a) HO2? yield and (b) electron transfer number n of 40%FeP/PANI-D-700 electrocatalysts synthesized without template and with SiO2 templates (18–180 nm in average diameters); (c) accelerated durability test of 40%FeP/PANI-18-700 and commercial Pt/C electrocatalysts in O2-saturated 0.1 mol·L?1 KOH aqueous solution; (d) polarization and power density curves of a HEMFC fabricated with 40%FeP/PANI-18-700 as cathode electrocatalyst."
1 |
Gür T. M. Energy Environ. Sci. 2018, 11 (10), 2696.
doi: 10.1039/c8ee01419a |
2 |
Wan C. ; Duan X. ; Huang Y. Adv. Energy Mater. 2020, 10 (14), 1903815.
doi: 10.1002/aenm.201903815 |
3 | Lü Y. ; Song Y. J. ; Liu H. Y. ; Li H. Q. Acta Phys. -Chim. Sin. 2017, 33 (2), 283. |
吕洋; 宋玉江; 刘会园; 李焕巧. 物理化学学报, 2017, 33 (2), 283.
doi: 10.3866/PKU.WHXB201611071 |
|
4 |
Ouyang C. ; Wang X. Inorg. Chem. Front. 2020, 7 (1), 28.
doi: 10.1039/c9qi00962k |
5 | Wang J. ; Wei Z. D. Acta Phys. -Chim. Sin. 2017, 33 (5), 886. |
王俊; 魏子栋. 物理化学学报, 2017, 33 (5), 886.
doi: 10.3866/PKU.WHXB201702092 |
|
6 |
Quílez-Bermejo J. ; MorallónE. ; Cazorla-Amorós D. Carbon 2020, 165, 434.
doi: 10.1016/j.carbon.2020.04.068 |
7 |
Liu D. ; Dai L. ; Lin X. ; Chen J. F. ; Zhang J. ; Feng X. ; Müllen K. ; Zhu X. ; Dai S. Adv. Mater. 2019, 31 (13), 1804863.
doi: 10.1002/adma.201804863 |
8 |
Gong K. ; Du F. ; Xia Z. ; Durstock M. ; Dai L. Science 2009, 323 (5915), 760.
doi: 10.1126/science.1168049 |
9 |
Lin Z. ; Waller G. ; Liu Y. ; Liu M. ; Wong C. P. Nano Energy 2013, 2 (2), 241.
doi: 10.1016/j.nanoen.2012.09.002 |
10 |
Liang H. W. ; Wu Z. Y. ; Chen L. F. ; Li C. ; Yun S. H. Nano Energy 2015, 11 (11), 366.
doi: 10.1016/j.nanoen.2014.11.008 |
11 |
Yang M. ; Liu Y. ; Chen H. ; Yang D. ; Li H. ACS Appl. Mater. Interfaces 2016, 8 (42), 28615.
doi: 10.1021/acsami.6b09811 |
12 |
Yang L. ; Shui J. ; Du L. ; Shao Y. ; Liu J. ; Dai L. ; Hu Z. Adv Mater. 2019, 31 (13), e1804799.
doi: 10.1002/adma.201804799 |
13 |
Paul R. ; Du F. ; Dai L. ; Ding Y. ; Wang L. Z. ; Wei F. ; Roy A. Adv. Mater. 2019, 31 (13), 1805598.
doi: 10.1002/adma.201805598 |
14 |
Jasinski R. Nature 1964, 201 (4925), 1212.
doi: 10.1038/2011212a0 |
15 |
Cheng N. ; Kemna C. ; Goubert-Renaudin S. ; Wieckowski A. Electrocatalysis 2012, 3 (3-4), 238.
doi: 10.1007/s12678-012-0083-4 |
16 |
Kumar A. ; Zhang Y. ; Liu W. ; Sun X. Coordin. Chem. Rev. 2020, 402, 213047.
doi: 10.1016/j.ccr.2019.213047 |
17 |
Zhang Q. ; Wang J. ; Yu P. ; Song F. ; Yin X. ; Chen R. ; Nie H. ; Zhang X. ; Yang W. Carbon 2018, 132, 85.
doi: 10.1016/j.carbon.2018.02.019 |
18 |
Zhu C. ; Li H. ; Fu S. ; Du D. ; Lin Y. Chem. Soc. Rev. 2016, 45 (3), 517.
doi: 10.1039/c5cs00670h |
19 |
Li J. ; Zhu X. ; Wang J. ; Rui Z. ; Zhang S. ; Li Y. ; Ding R. ; He. W. ; Liu J. ; Zou Z. ACS Appl. Nano Mater. 2020, 3 (1), 742.
doi: 10.1021/acsanm.9b02260 |
20 |
Wang C. ; Wang F. ; Liu Z. ; Zhao Y. ; Liu Y. ; Yue Q. ; Zhu H. ; Deng Y. ; Wu Y. ; Zhao D. Nano Energy 2017, 41, 674.
doi: 10.1016/j.nanoen.2017.10.025 |
21 |
Kang N. ; Park J. H. ; Jin M. ; Park N. ; Lee S. M. ; Kim H. J. ; Kim J. M. ; Son S. U. J. Am. Chem. Soc. 2013, 135 (51), 19115.
doi: 10.1021/ja411263h |
22 |
Lv Y. ; Liu H. ; Li J. ; Chen J. ; Song Y. J. Electroanal. Chem. 2020, 870, 114172.
doi: 10.1016/j.jelechem.2020.114172 |
23 |
Li J. ; Liu J. X. ; Gao X. ; Goldsmith B. R. ; Cong Y. ; Zhai Z. ; Miao S. ; Jiang Q. ; Dou Y. ; Wang J. ; Shi Q. ; et al J. Catal. 2019, 378, 113.
doi: 10.1016/j.jcat.2019.08.018 |
24 |
Jang J. ; Ha J. ; Lim B. Chem. Commun. 2006, 15, 1622.
doi: 10.1039/b600167j |
25 |
Primeau N. ; Vautey C. ; Langlet M. Thin Solid Films 1997, 310 (1-2), 47.
doi: 10.1016/S0040-6090(97)00340-4 |
26 |
Hofman R. ; Westheim J. G. F. ; Pouwel I. ; Fransen T. ; Gellings P. J. Surf. Interface Anal. 2017, 24 (1), 1.
doi: 10.1002/(SICI)1096-9918(199601)24:13.0.CO;2-I |
27 |
Nabid M. R. ; Sedghi R. ; Jamaat P. R. ; Safari N. ; Entezami A. A. J. Appl. Polym. Sci. 2006, 102 (3), 2929.
doi: 10.1002/app.24034 |
28 |
Nabid M. R. ; Zamiraei Z. ; Sedghi R. ; Safari N. React. Funct. Polym. 2009, 69 (5), 319.
doi: 10.1016/j.reactfunctpolym.2009.02.003 |
29 |
Pachfule P. ; Shinde D. ; Majumder M. ; Xu Q. Nat. Chem. 2016, 8 (7), 718.
doi: 10.1038/NCHEM.2515 |
30 |
Lyon L. A. ; Keating C. D. ; Fox A. P. ; Baker B. E. ; Natan M. J. Anal. Chem. 1998, 70 (12), 341.
doi: 10.1021/a1980021p |
31 |
Xu Z. ; Zhou Z. ; Li B. ; Wang G. ; Leu P. W. J. Phys. Chem. C 2020, 124 (16), 8689.
doi: 10.1021/acs.jpcc.9b11090 |
32 |
Li J. ; Song Y. ; Zhang G. ; Liu H. ; Wang Y. ; Sun S. ; Guo X. Adv. Funct. Mater. 2017, 27 (3), 1604356.
doi: 10.1002/adfm.201604356 |
33 |
Wei Q. ; Zhang G. ; Yang X. ; Chenitz R. ; Banham D. ; Yang L. ; Ye S. ; Knights S. ; Sun S. ACS Appl. Mater. Interfaces 2017, 9 (42), 36944.
doi: 10.1021/acsami.7b12666 |
34 | Peng S. ; Guo H. L. ; Kang X. F. Acta Phys. -Chim. Sin. 2014, 30 (9), 1778. |
彭三; 郭慧林; 亢晓峰. 物理化学学报, 2014, 30 (9), 1778.
doi: 10.3866/PKU.WHXB201407112 |
|
35 |
Guo D. ; Shibuya R. ; Akiba C. ; Saji S. ; Kondo T. ; Nakamura J. Science 2016, 351 (6271), 361.
doi: 10.1126/science.aad0832 |
36 | Zhou Y. ; Cheng Q. Q. ; Huang Q. H. ; Zou Z. Q. ; Yan L. M. ; Yang H. Acta Phys. -Chim. Sin. 2017, 33 (7), 1429. |
周扬; 程庆庆; 黄庆红; 邹志青; 严六明; 杨辉. 物理化学学报, 2017, 33 (7), 1429.
doi: 10.3866/PKU.WHXB201704131 |
|
37 |
Xie Y ; Tang C. ; Hao Z. ; Lv Y. ; Yang R. ; Wei X. ; Deng W. ; Wang A. ; Yi B. ; Song Y. Faraday Discuss 2014, 176, 393.
doi: 10.1039/c4fd00121d |
38 |
Li C. ; Zhou E. ; Yu Z. ; Liu H. ; Xiong M. Appl. Catal. B 2020, 269, 118771.
doi: 10.1016/j.apcatb.2020.118771 |
39 |
Tian P. ; Zang J. ; Song S. ; Zhou S. ; Gao H. ; Xu H. ; Tian X. ; Wang Y. J. Power Sources 2020, 448, 227443.
doi: 10.1016/j.jpowsour.2019.227443 |
40 |
Yang J. ; Xiang F. ; Guo H. ; Wang L. ; Niu X. Carbon 2020, 156, 514.
doi: 10.1016/j.carbon.2019.09.087 |
41 |
Tavakkoli M. ; Flahaut E. ; Peljo P. ; Sainio J. ; Davodi F. ; Lobiak E. V. ; Mustonen K. ; Kauppinen E. I. ACS Catal. 2020, 10 (8), 4647.
doi: 10.1021/acscatal.0c00352 |
42 |
Park H. ; Oh S. ; Lee S. ; Choi S. ; Oh M. Appl. Catal. B 2019, 246, 322.
doi: 10.1016/j.apcatb.2019.01.083 |
43 |
Li M. ; Liu Y. ; Han L. ; Xiao J. ; Zeng X. ; Zhang C. ; Xu M. ; Dong P. ; Zhang Y. J. Mater. Chem. A 2019, 7 (30), 17923.
doi: 10.1039/c9ta04388h |
44 |
Chen S. ; Zheng Y. ; Zhang B. ; Feng Y. ; Zhu J. ; Xu J. ; Zhang C. ; Feng W. ; Liu T. ACS Appl. Mater. Interfaces 2019, 11 (1), 1384.
doi: 10.1021/acsami.8b16920 |
45 |
Peng X. ; Zhang L. ; Chen Z. ; Zhong L. ; Zhao D. ; Chi X. ; Zhao X. ; Li L. ; Lu X. ; Leng K. ; et al Adv. Mater. 2019, 31 (16), e1900341.
doi: 10.1002/adma.201900341 |
46 |
Mahmood A. ; Tabassum H. ; Zhao R. ; Guo W. ; Aftab W. ; Liang Z. ; Sun Z. ; Zou R. Small 2018, 14 (49), e1803500.
doi: 10.1002/smll.201803500 |
47 |
Zhu J. ; Li W. ; Li S. ; Zhang J. ; Zhou H. ; Zhang C. ; Zhang J. ; Mu S. Small 2018, 14 (21), e1800563.
doi: 10.1002/smll.201800563 |
48 |
Lv Y. ; Yang L. ; Cao D. ACS Appl. Mater. Interfaces 2017, 9 (38), 32859.
doi: 10.1021/acsami.7b11371 |
49 |
Jiang H. ; Wang Y. ; Hao J. ; Liu Y. ; Li W. ; Li J. Carbon 2017, 122, 64.
doi: 10.1016/j.carbon.2017.06.043 |
50 |
Yang H. B. ; Miao J. ; Hung S. F. ; Chen J. ; Tao H. B. ; Wang X. ; Zhang L. Sci. Adv. 2016, 2 (4), e1501122.
doi: 10.1126/sciadv.1501122 |
51 | Li L. ; Chen S. Y. ; Wei G. H. ; Zhang J. L. Acta Phys. -Chim. Sin. 2021, 37, 1911011. |
李琳; 沈水云; 魏光华; 章俊良. 物理化学学报, 2021, 37, 1911011.
doi: 10.3866/PKU.WHXB201911011 |
|
52 |
Xia W. ; Mahmood A. ; Liang Z. ; Zou R. ; Guo S. Angew. Chem. Int. Edit. 2016, 55 (8), 2650.
doi: 10.1002/anie.201504830 |
53 | Yang X. D. ; Chen C. ; Zhou Z. Y. ; Sun S. G. Acta Phys. -Chim. Sin. 2019, 35 (5), 472. |
杨晓冬; 陈驰; 周志有; 孙世刚. 物理化学学报, 2019, 35 (5), 472.
doi: 10.3866/PKU.WHXB201806131 |
[1] | Liang Ding, Tang Tang, Jin-Song Hu. Recent Progress in Proton-Exchange Membrane Fuel Cells Based on Metal-Nitrogen-Carbon Catalysts [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2010048-0. |
[2] | Jiashun Liang, Xuan Liu, Qing Li. Principles, Strategies, and Approaches for Designing Highly Durable Platinum-based Catalysts for Proton Exchange Membrane Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2010072-0. |
[3] | Zhengrong Li, Tao Shen, Yezhou Hu, Ke Chen, Yun Lu, Deli Wang. Progress on Ordered Intermetallic Electrocatalysts for Fuel Cells Application [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2010029-0. |
[4] | Miaomiao Liu, Maomao Yang, XinXin Shu, Jintao Zhang. Design Strategies for Carbon-Based Electrocatalysts and Application to Oxygen Reduction in Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2007072-0. |
[5] | Zengqiang Gao, Congyong Wang, Junjun Li, Yating Zhu, Zhicheng Zhang, Wenping Hu. Conductive Metal-Organic Frameworks for Electrocatalysis:Achievements, Challenges, and Opportunities [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2010025-0. |
[6] | Yao Xiao, Yu Pei, Yifan Hu, Ruguang Ma, Deyi Wang, Jiacheng Wang. Co2P@P-Doped 3D Porous Carbon for Bifunctional Oxygen Electrocatalysis [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2009051-0. |
[7] | Lin Li, Shuiyun Shen, Guanghua Wei, Junliang Zhang. Electrocatalytic Activity of Hemin-Derived Hollow Non-Precious Metal Catalyst for Oxygen Reduction Reaction [J]. Acta Phys. -Chim. Sin., 2021, 37(3): 1911011-0. |
[8] | Xiaolong Tang,Shenghui Zhang,Jing Yu,Chunxiao Lü,Yuqing Chi,Junwei Sun,Yu Song,Ding Yuan,Zhaoli Ma,Lixue Zhang. Preparation of Platinum Catalysts on Porous Titanium Nitride Supports by Atomic Layer Deposition and Their Catalytic Performance for Oxygen Reduction Reaction [J]. Acta Physico-Chimica Sinica, 2020, 36(7): 1906070-0. |
[9] | Feng Wei,Honghui Bi,Shuai Jiao,Xiaojun He. Interconnected Graphene-like Nanosheets for Supercapacitors [J]. Acta Physico-Chimica Sinica, 2020, 36(2): 1903043-0. |
[10] | Qianqian WANG, Dajun LIU, Xingquan HE. Metal-Organic Framework-Derived Fe-N-C Nanohybrids as Highly-Efficient Oxygen Reduction Catalysts [J]. Acta Physico-Chimica Sinica, 2019, 35(7): 740-748. |
[11] | Xiaodong YANG,Chi CHEN,Zhiyou ZHOU,Shigang SUN. Advances in Active Site Structure of Carbon-Based Non-Precious Metal Catalysts for Oxygen Reduction Reaction [J]. Acta Phys. -Chim. Sin., 2019, 35(5): 472-485. |
[12] | Chufeng ZHANG,Zhewei CHEN,Yuebin LIAN,Yujie CHEN,Qin LI,Yindong GU,Yongtao LU,Zhao DENG,Yang PENG. Copper-based Conductive Metal Organic Framework In-situ Grown on Copper Foam as a Bifunctional Electrocatalyst [J]. Acta Physico-Chimica Sinica, 2019, 35(12): 1404-1411. |
[13] | Mingchuan LUO, Yingjun SUN, Yingnan QIN, Yong YANG, Dong WU, Shaojun GUO. Boosting Oxygen Reduction Catalysis by Tuning the Dimensionality of Pt-based Nanostructures [J]. Acta Physico-Chimica Sinica, 2018, 34(4): 361-376. |
[14] | Hui-Hui QIAN,Xiao HAN,Yan ZHAO,Yu-Qin SU. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells [J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1822-1827. |
[15] | Chi CHEN,Xue ZHANG,Zhi-You ZHOU,Xin-Sheng ZHANG,Shi-Gang SUN. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations [J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1875-1883. |
|