Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (5): 2008043.doi: 10.3866/PKU.WHXB202008043
Special Issue: CO2 Reduction
• REVIEW • Previous Articles Next Articles
Jin Wu, Jing Liu, Wu Xia, Ying-Yi Ren, Feng Wang()
Received:
2020-08-16
Accepted:
2020-09-07
Published:
2020-09-10
Contact:
Feng Wang
E-mail:wangfengchem@hust.edu.cn
About author:
Feng Wang. Email: wangfengchem@hust.edu.cnSupported by:
MSC2000:
Jin Wu, Jing Liu, Wu Xia, Ying-Yi Ren, Feng Wang. Advances on Photocatalytic CO2 Reduction Based on CdS and CdSe Nano-Semiconductors[J].Acta Phys. -Chim. Sin., 2021, 37(5): 2008043.
Table 1
Photocatalytic CO2 reduction systems based on CdS or CdSe nano-semiconductors."
Entry | Photocatalyst | Cocatalyst | SED | Solvent | Main Product | Selectivity | Efficiencya | Ref. |
1 | CdS | – | TEA | DMF | CO | – | – | |
2 | CdS | – | 2-propanol | CH3CN/CH2Cl2 | HCOOH | 80% | – | |
3 | CdS | – | CH3OH | CH3OH | HCOOCH3 | – | 3951.9 μmol∙g−1∙h−1 | |
4 | CdS | – | – | H2O | CH3OH | – | 144.5 μmol∙g−1∙h−1 | |
5 | CdS | – | TEOA | H2O | CO | – | 1.6 μmol∙g−1∙h−1 | |
6 | CdSe | – | TEA | DMF | CO | 95% | 7.9 × 105 μmol∙g−1∙h−1 | |
7 | CdSe/CdS | – | TEA | DMF | CO | 96% | 4.1 × 105 μmol∙g−1∙h−1 | |
8 | rGO/CdS | – | – | H2O vapor | CH4 | – | 2.5 μmol∙g−1∙h−1 | |
9 | CdS/TiO2 | – | – | H2O | CH3OH | – | 31.9 μmol∙g−1∙h−1 | |
10 | CdS QDs (doping Ni2+) | – | TEOA | H2O | CO | 100% | 35b | |
11 | CdSe/TiO2 | – | – | H2O | CH4 | – | 0.6 μmol∙g−1∙h−1 | |
12 | CdSe/ZIF-8 | – | TEOA | CH3CN | CO | – | 3.5 μmol∙g−1∙h−1 | |
13 | CdS | Co-bipy | TEOA | CH3CN | CO | 87% | 844 μmol∙g−1∙h−1 | |
14 | CdS | C1 | TEOA | CH3CN/H2O | CO | 80% | 46.5 μmol∙g−1∙h−1 | |
15 | CdS | C2 | TEOA | CH3CN/H2O | CO | 3.9% | 0.40 ± 0.02 b | |
16 | CdS | C3 | TEOA | CH3CN/H2O | CO | 10.2% | 1.07 ± 0.17 b | |
17 | CdS | C4 | TEOA | CH3CN/H2O | CO | 92.2% | 5.11 ± 0.10 b | |
18 | CdS | C5 | TEOA | H2O | CO | 95% | 1380b | |
19 | CdS | C6 | TEOA | CH3CN/H2O | CO | 97% | 7.5 μmol∙g−1∙h−1 | |
20 | CdS/Bi2S3 | C6 | TEOA | CH3CN/H2O | CO | – | 1.9 × 103 μmol∙g−1∙h−1 | |
21 | CdS/UiO-bpy/Co | – | TEOA | CH3CN | CO | 85% | 235 μmol∙g−1∙h−1 |
1 |
Cowan A. J. ; Durrant J. R. Chem. Soc. Rev. 2013, 42, 2281.
doi: 10.1039/c2cs35305a |
2 |
Fresno F. ; Portela R. ; Suarezc S. ; Coronado M. J. J. Mater. Chem. A. 2014, 2, 2863.
doi: 10.1039/c3ta13793g |
3 |
Yu J. ; Low J. ; Xiao W. ; Zhou P. ; Jaroniec M. J. Am. Chem. Soc. 2014, 136, 8839.
doi: 10.1021/ja5044787 |
4 |
Li X. ; Wen J. ; Low J. ; Fang Y. ; Yu J. Sci. China Mater. 2014, 57, 70.
doi: 10.1007/s40843-014-0003-1 |
5 | Liu Z. Acta Phys. -Chim. Sin. 2020, 36, 1912045. |
刘志敏. 物理化学学报, 2020, 36, 1912045.
doi: 10.3866/PKU.WHXB201912045 |
|
6 |
Praus P. ; Kozak O. ; Koci K. ; Panacek A. ; Dvorsky R. J. J. Colloid. Interf. Sci. 2011, 360, 574.
doi: 10.1016/j.jcis.2011.05.004 |
7 |
Beigi A. A. ; Fatemi S. ; Salehi S. J J. CO2 Util. 2014, 7, 23.
doi: 10.1016/j.jcou.2014.06.003 |
8 |
Nie R. ; Ma W. ; Dong Y. ; Xu Y. ; Wang J. ; Wang J. ; Jing H. ChemCatChem 2018, 10, 3342.
doi: 10.1002/cctc.201800190 |
9 | Gao Y. ; Liu S. ; Zhao Z. ; Tao H. ; Sun Z. Acta Phys. -Chim. Sin. 2018, 34, 858. |
高云楠; 刘世桢; 赵振清; 陶亨聪; 孙振宇. 物理化学学报, 2018, 34, 858.
doi: 10.3866/PKU.WHXB201802061 |
|
10 |
Liu X. ; Inagaki S. ; Gong J. Angew. Chem. Int. Ed. 2016, 55, 14924.
doi: 10.1002/anie.201600395 |
11 |
Windle C. D. ; Perutz R. N. Coordin. Chem. Rev. 2012, 256, 2562.
doi: 10.1016/j.ccr.2012.03.010 |
12 |
Wu J. ; Huang Y. ; Ye W. ; Li Y. Adv. Sci. 2017, 4, 1700194.
doi: 10.1002/advs.201700194 |
13 |
Yui T. ; Tamaki Y. ; Sekizawa K. ; Ishitani O. Top. Curr. Chem. 2011, 303, 151.
doi: 10.1007/128_2011_139 |
14 |
Maeda K. Adv. Mater. 2019, 31, 1808205.
doi: 10.1002/adma.201808205 |
15 |
Akhundi A. ; Habibi-Yangjeh A. ; Abitorabi M. ; Pouran S. R. Catal. Rev. 2019, 61, 595.
doi: 10.1080/01614940.2019.1654224 |
16 |
Zhu C. -Y. ; Huang Y. -C. ; Hu J. -C. ; Wang F. J. Photochem. Photobiol. A. 2018, 38, 175.
doi: 10.1016/j.jphotochem.2017.09.056 |
17 |
Hu J. -C. ; Gui M. -X. ; Xia W. ; Wu J. J. Mater. Chem. A. 2019, 7, 10475.
doi: 10.1039/c9ta00949c |
18 | Pan Z. M. ; Liu M. H. ; Niu P. P. ; Guo F. S. ; Fu X. Z. ; Wang X. C. Acta Phys. -Chim. Sin. 2020, 36 (1), 1906014. |
潘志明; 刘明辉; 牛萍萍; 郭芳松; 付贤智; 王心晨. 物理化学学报, 2020, 36 (1), 1906014.
doi: 10.3866/PKU.WHXB201906014 |
|
19 | Zhou L. ; Zhang X. H. ; Lin L. ; Li P. ; Shao K. J. ; Li C. Z. ; He T. Acta Phys.-Chim. Sin. 2017, 33 (9), 1884. |
周亮; 张雪华; 林琳; 李盼; 邵坤娟; 李春忠; 贺涛. 物理化学学报, 2017, 33 (9), 1884.
doi: 10.3866/PKU.WHXB201705084 |
|
20 |
Hu J. -C. ; Sun S. ; Li M. -D. ; Xia W. ; Wu J. ; Liu H. ; Wang F. Chem. Commun. 2019, 55, 14490.
doi: 10.1039/c9cc08512b |
21 |
Xu C. ; Anusuyadevi P. R. ; Aymonier C. ; Luque R. ; Marre S. Chem. Soc. Rev. 2019, 48, 3868.
doi: 10.1039/c9cs00102f |
22 |
Li Q. ; Li X. ; Wageh S. ; Al-Ghamdi A. A. ; Yu J. Adv. Energy Mater. 2015, 5, 1500010.
doi: 10.1002/aenm.201500010 |
23 |
Li X. -B. ; Tung C. -H. ; Wu L.-Z. Angew. Chem. Int. Ed. 2019, 58, 10804.
doi: 10.1002/anie.201901267 |
24 |
Yuan Y.-J. ; Chen A. ; Yu Z. -T. ; Zou Z. -G. J. Mater. Chem. A 2018, 6, 11606.
doi: 10.1039/c8ta00671g |
25 |
Fujiwara H. ; Hosokawa H. ; Murakoshi K. ; Wada Y. ; Yanagida S. J. Phys. Chem. B. 1997, 101, 8270.
doi: 10.1021/jp971621q |
26 |
Liu B. -J. ; Torimoto T. ; Yoneyama H. J. Photochem. Photobiol. A. 1998, 113, 93.
doi: 10.1016/S1010-6030(97)00318-3 |
27 |
Yang X. ; Xin W. ; Yin X. ; Shao X. J. Wuhan Univ. Technol. 2018, 1, 78.
doi: 10.1007/s11595-018-1789-9 |
28 |
Kandy M. M. ; Gaikar V. G. Mater. Res. Bull. 2018, 102, 440.
doi: 10.1016/j.materresbull.2018.02.054 |
29 |
Chai Y. ; Lu J. ; Li L. ; Li D. ; Li M. ; Liang J. Catal. Sci. Technol. 2018, 10, 2697.
doi: 10.1039/C8CY00274F |
30 |
Brus L. J.Phys. Chem. 1986, 90, 2555.
doi: 10.1021/j100403a003 |
31 |
Wang L. G. ; Pennycook S. J. ; Pantelides S. T. Phys. Rev. Lett. 2002, 89, 075506.
doi: 10.1103/PhysRevLett.89.075506 |
32 |
Sheng H. ; Oh M. H. ; Osowiecki W. T. ; Kim W. ; Alivisatos A. P. ; Frei H. J. Am. Chem. Soc. 2018, 140, 4363.
doi: 10.1021/jacs.8b00271 |
33 |
Xia W. ; Wu J. ; Hu J. -C. ; Sun S. ; Li M. ; Liu H. ; Lan M. ; Tung C. -H. ; Wu L. -Z. ; Wang F. ChemSusChem 2019, 12, 4617.
doi: 10.1002/cssc.201901633 |
34 |
Guo Q. ; Liang F. ; Li X. -B. ; Gao Y. -J. ; Huang M. -Y. ; Wang Y. ; Xia S. -G. ; Gao X. -Y. ; Gan Q. -C. ; Lin Z. -S. ; et al Chem 2019, 5, 2605.
doi: 10.1016/j.chempr.2019.06.019 |
35 |
Koci K. ; Praus P. ; Edelmannová M. ; Ambrožová N. ; Troppová I. ; Fridrichová D. ; Słowik G. ; Ryczkowski J. J.Nanosci. Nanotechnol. 2017, 17, 4041.
doi: 10.1166/jnn.2017.13093 |
36 |
Ijaz S. ; Ehsan M. F. ; Ashiq M. N. ; Karamat N. ; He T. Appl. Surf. Sci. 2016, 390, 550.
doi: 10.1016/j.apsusc.2016.08.098 |
37 |
Benedetti J. E. ; Bernardo D. R. ; Morais A. ; Bettini J. ; Nogueira A. F. RSC Adv. 2015, 5, 33914.
doi: 10.1039/c4ra15605f |
38 |
Ijaz S. ; Ehsan M. F. ; Ashiq M. N. ; Karamt N. ; Najam-ul-Haq M. ; He T. Mater. Des. 2016, 107, 178.
doi: 10.1016/j.matdes.2016.06.031 |
39 |
Park H. ; Ou H. -H. ; Kang U. ; Choi J. ; Hoffmann M. R. Catal. Today 2016, 266, 153.
doi: 10.1016/j.cattod.2015.09.017 |
40 |
Wei Y. ; Jiao J. ; Zhao Z. ; Liu J. ; Li J. ; Jiang G. ; Wang Y. ; Duan A. Appl. Catal. B- Environ. 2015, 179, 422.
doi: 10.1016/j.apcatb.2015.05.041 |
41 |
Yu J. ; Jin J. ; Cheng B. ; Jaroniec M. J. Mater. Chem. A. 2014, 2, 3407.
doi: 10.1039/c3ta14493c |
42 |
Li X. ; Liu H. ; Luo D. ; Li J. ; Huang Y. ; Li H. ; Fang Y. ; Xu Y. ; Zhu L. Chem. Eng.J. 2012, 180, 151.
doi: 10.1016/j.cej.2011.11.029 |
43 |
Wang J. ; Xia T. ; Wang L. ; Zheng X. ; Qi Z. ; Gao C. ; Zhu J. ; Li Z. ; Xu H. ; Xiong Y. Angew. Chem. Int. Ed. 2018, 57, 16447.
doi: 10.1002/anie.201810550 |
44 |
Wang C. ; Thompson R. L. ; Baltrus J. ; Matranga J. J. Phys. Chem. Lett. 2010, 1, 48.
doi: 10.1021/jz9000032 |
45 |
Peng H.-J. ; Zheng P. -Q. ; Chao H. -Y. ; Jiang L. ; Qiao Z.-P. RSC Adv. 2020, 10, 551.
doi: 10.1039/c9ra08801f |
46 |
Wang F. ChemSusChem 2017, 10, 4393.
doi: 10.1002/cssc.201701385 |
47 |
Chai Z. G. ; Li Q. ; Xu D. X. RSC Adv. 2014, 4, 44991.
doi: 10.1039/c4ra08848d |
48 |
Lin J. L. ; Qin B. ; Fang Z. X. Catal. Lett. 2019, 149, 25.
doi: 10.1007/s10562-018-2586-y |
49 |
Kuehnel M. F. ; Orchard K. L. ; Dalle K. E. ; Reisner E. J. Am. Chem. Soc. 2017, 139, 7217.
doi: 10.1021/jacs.7b00369 |
50 |
Kuehnel M. F. ; Sahm C. D. ; Neri G. ; Lee J. R. ; Orchard K. L. ; Cowan A. J. ; Reisner E. Chem. Sci. 2018, 9, 2501.
doi: 10.1039/c7sc04429a |
51 |
Huang J. ; Gatty M. G. ; Xu B. ; Pati P. B. ; Etman A. S. ; Tian L. ; Sun J. L. ; Tian H. N. Dalton Trans. 2018, 47, 10775.
doi: 10.1039/c8dt01631c |
52 |
Suzuki T. M. ; Yoshino S. N. ; Takayama T. ; Iwase A. ; Kudo A. ; Morikawa T. Chem. Commun. 2018, 54, 10199.
doi: 10.1039/c8cc05505j |
53 |
Bao Y. P. ; Wang J. ; Wang Q. ; Cui X. F. ; Long R. ; Li Z. Q. Nanoscale 2020, 12, 2507.
doi: 10.1039/c9nr09321d |
54 |
Lian S. C. ; Kodaimati M. S. ; Dolzhnikov D. S. ; Calzada R. ; Weiss E. A. J. Am. Chem. Soc. 2017, 139, 8931.
doi: 10.1021/jacs.7b03134 |
55 |
Lian S. C. ; Kodaimati M. S. ; Weiss E. A. ACS Nano 2018, 12, 568.
doi: 10.1021/acsnano.7b07377 |
56 |
Bi Q. -Q. ; Wang J. -W. ; Lv J. -X. ; Wang J. ; Zhang W. ; Lu T.-B. ACS Catal. 2018, 8, 11815.
doi: 10.1021/acscatal.8b03457 |
57 |
Li P. ; Hou C. C. ; Zhang X. H. ; Chen Y. ; He T. Appl. Surf. Sci. 2018, 459, 292.
doi: 10.1016/j.apsusc.2018.08.002 |
58 |
Li P. ; Zhang X. ; Hou C. ; Chen Y. ; He T. Appl. Catal. B-Environ. 2018, 238, 656.
doi: 10.1016/j.apcatb.2018.07.066 |
59 |
Chen C. J. ; Wu T. B. ; Wu H. H. ; Liu H. Z. ; Qian Q. L. ; Liu Z. M. ; Yang G. Y. ; Han B. X. Chem. Sci. 2018, 9, 8890.
doi: 10.1039/c8sc02809e |
60 |
Gui M. -X. ; Wu J. ; Hu J. -C. ; Xia W. ; Liu H. ; Feng N. ; Li W. ; Wang F. J.Photochem. Photobiol. A. 2020, 401, 112742.
doi: 10.1016/j.jphotochem.2020.112742 |
61 |
Fu J. ; Yu J. ; Jiang C. ; Cheng B. Adv. Energy Mater. 2018, 8, 1701503.
doi: 10.1002/aenm.201701503 |
62 |
Yin S. ; Han J. ; Zhou T. ; Xu R. Catal. Sci. Technol. 2015, 5, 5048.
doi: 10.1039/c5cy00938c |
63 |
He F. ; Wang Z. ; Li Y. ; Peng S. ; Liu B. Appl. Catal. B-Environ. 2020, 269, 118828.
doi: 10.1016/j.apcatb.2020.118828 |
[1] | Xingang Fei, Haiyan Tan, Bei Cheng, Bicheng Zhu, Liuyang Zhang. 2D/2D Black Phosphorus/g-C3N4 S-Scheme Heterojunction Photocatalysts for CO2 Reduction Investigated using DFT Calculations [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2010027-0. |
[2] | Yunfeng Li, Min Zhang, Liang Zhou, Sijia Yang, Zhansheng Wu, Ma Yuhua. Recent Advances in Surface-Modified g-C3N4-Based Photocatalysts for H2 Production and CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2009030-0. |
[3] | Frits Mathias Dautzenberg, Yong Lu, Bin Xu. Controlling the Global Mean Temperature by Decarbonization [J]. Acta Phys. -Chim. Sin., 2021, 37(5): 2008066-0. |
[4] | Xinjiang Cui, Feng Shi. Selective Conversion of CO2 by Single-Site Catalysts [J]. Acta Phys. -Chim. Sin., 2021, 37(5): 2006080-0. |
[5] | Shuhua Duan,Shufeng Wu,Lei Wang,Houde She,Jingwei Huang,Qizhao Wang. Rod-Shaped Metal Organic Framework Structured PCN-222(Cu)/TiO2 Composites for Efficient Photocatalytic CO2 Reduction [J]. Acta Physico-Chimica Sinica, 2020, 36(3): 1905086-0. |
[6] | Hanlin Lyu, Bing Hu, Guoliang Liu, Xinlin Hong, Lin Zhuang. Inverse Decoration of ZnO on Small-Sized Cu/Sio2 with Controllable Cu-ZnO Interaction for CO2 Hydrogenation to Produce Methanol [J]. Acta Physico-Chimica Sinica, 2020, 36(11): 1911008-0. |
[7] | Zhiming Pan,Minghui Liu,Pingping Niu,Fangsong Guo,Xianzhi Fu,Xinchen Wang. Photocatalytic CO2 Reduction Using Ni2P Nanosheets [J]. Acta Physico-Chimica Sinica, 2020, 36(1): 1906014-0. |
[8] | Hui NING,Wenhang WANG,Qinhu MAO,Shirui ZHENG,Zhongxue YANG,Qingshan ZHAO,Mingbo WU. Catalytic Electroreduction of CO2 to C2H4 Using Cu2O Supported on 1-Octyl-3-methylimidazole Functionalized Graphite Sheets [J]. Acta Phys. -Chim. Sin., 2018, 34(8): 938-944. |
[9] | Quan QUAN,Shun-Ji XIE,Ye WANG,Yi-Jun XU. Photoelectrochemical Reduction of CO2 Over Graphene-Based Composites:Basic Principle, Recent Progress, and Future Perspective [J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2404-2423. |
[10] | Qing-Gong ZHU,Xiao-Fu SUN,Xin-Chen KANG,Jun MA,Qing-Li QIAN,Bu-Xing HAN. Cu2S on Cu Foam as Highly Efficient Electrocatalyst for Reduction of CO2 to Formic Acid [J]. Acta Phys. -Chim. Sin., 2016, 32(1): 261-266. |
[11] | ZHANG Jing-Bo, LI Pan, YANG Hui, ZHAO Fei-Yan, TANG Guang-Shi, SUN Li-Na, LIN Yuan. Preparation of a Highly Efficient PbS Electrode and Its Application in Quantum Dots-Sensitized Solar Cells [J]. Acta Phys. -Chim. Sin., 2014, 30(8): 1495-1500. |
|