Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (5): 2008043.doi: 10.3866/PKU.WHXB202008043
Special Issue: CO2 Reduction
• REVIEW • Previous Articles Next Articles
Jin Wu, Jing Liu, Wu Xia, Ying-Yi Ren, Feng Wang()
Received:
2020-08-16
Accepted:
2020-09-07
Published:
2020-09-10
Contact:
Feng Wang
E-mail:wangfengchem@hust.edu.cn
About author:
Feng Wang. Email: wangfengchem@hust.edu.cnSupported by:
MSC2000:
Jin Wu, Jing Liu, Wu Xia, Ying-Yi Ren, Feng Wang. Advances on Photocatalytic CO2 Reduction Based on CdS and CdSe Nano-Semiconductors[J].Acta Phys. -Chim. Sin., 2021, 37(5): 2008043.
Table 1
Photocatalytic CO2 reduction systems based on CdS or CdSe nano-semiconductors."
Entry | Photocatalyst | Cocatalyst | SED | Solvent | Main Product | Selectivity | Efficiencya | Ref. |
1 | CdS | – | TEA | DMF | CO | – | – | |
2 | CdS | – | 2-propanol | CH3CN/CH2Cl2 | HCOOH | 80% | – | |
3 | CdS | – | CH3OH | CH3OH | HCOOCH3 | – | 3951.9 μmol∙g−1∙h−1 | |
4 | CdS | – | – | H2O | CH3OH | – | 144.5 μmol∙g−1∙h−1 | |
5 | CdS | – | TEOA | H2O | CO | – | 1.6 μmol∙g−1∙h−1 | |
6 | CdSe | – | TEA | DMF | CO | 95% | 7.9 × 105 μmol∙g−1∙h−1 | |
7 | CdSe/CdS | – | TEA | DMF | CO | 96% | 4.1 × 105 μmol∙g−1∙h−1 | |
8 | rGO/CdS | – | – | H2O vapor | CH4 | – | 2.5 μmol∙g−1∙h−1 | |
9 | CdS/TiO2 | – | – | H2O | CH3OH | – | 31.9 μmol∙g−1∙h−1 | |
10 | CdS QDs (doping Ni2+) | – | TEOA | H2O | CO | 100% | 35b | |
11 | CdSe/TiO2 | – | – | H2O | CH4 | – | 0.6 μmol∙g−1∙h−1 | |
12 | CdSe/ZIF-8 | – | TEOA | CH3CN | CO | – | 3.5 μmol∙g−1∙h−1 | |
13 | CdS | Co-bipy | TEOA | CH3CN | CO | 87% | 844 μmol∙g−1∙h−1 | |
14 | CdS | C1 | TEOA | CH3CN/H2O | CO | 80% | 46.5 μmol∙g−1∙h−1 | |
15 | CdS | C2 | TEOA | CH3CN/H2O | CO | 3.9% | 0.40 ± 0.02 b | |
16 | CdS | C3 | TEOA | CH3CN/H2O | CO | 10.2% | 1.07 ± 0.17 b | |
17 | CdS | C4 | TEOA | CH3CN/H2O | CO | 92.2% | 5.11 ± 0.10 b | |
18 | CdS | C5 | TEOA | H2O | CO | 95% | 1380b | |
19 | CdS | C6 | TEOA | CH3CN/H2O | CO | 97% | 7.5 μmol∙g−1∙h−1 | |
20 | CdS/Bi2S3 | C6 | TEOA | CH3CN/H2O | CO | – | 1.9 × 103 μmol∙g−1∙h−1 | |
21 | CdS/UiO-bpy/Co | – | TEOA | CH3CN | CO | 85% | 235 μmol∙g−1∙h−1 |
1 |
Cowan A. J. ; Durrant J. R. Chem. Soc. Rev. 2013, 42, 2281.
doi: 10.1039/c2cs35305a |
2 |
Fresno F. ; Portela R. ; Suarezc S. ; Coronado M. J. J. Mater. Chem. A. 2014, 2, 2863.
doi: 10.1039/c3ta13793g |
3 |
Yu J. ; Low J. ; Xiao W. ; Zhou P. ; Jaroniec M. J. Am. Chem. Soc. 2014, 136, 8839.
doi: 10.1021/ja5044787 |
4 |
Li X. ; Wen J. ; Low J. ; Fang Y. ; Yu J. Sci. China Mater. 2014, 57, 70.
doi: 10.1007/s40843-014-0003-1 |
5 | Liu Z. Acta Phys. -Chim. Sin. 2020, 36, 1912045. |
刘志敏. 物理化学学报, 2020, 36, 1912045.
doi: 10.3866/PKU.WHXB201912045 |
|
6 |
Praus P. ; Kozak O. ; Koci K. ; Panacek A. ; Dvorsky R. J. J. Colloid. Interf. Sci. 2011, 360, 574.
doi: 10.1016/j.jcis.2011.05.004 |
7 |
Beigi A. A. ; Fatemi S. ; Salehi S. J J. CO2 Util. 2014, 7, 23.
doi: 10.1016/j.jcou.2014.06.003 |
8 |
Nie R. ; Ma W. ; Dong Y. ; Xu Y. ; Wang J. ; Wang J. ; Jing H. ChemCatChem 2018, 10, 3342.
doi: 10.1002/cctc.201800190 |
9 | Gao Y. ; Liu S. ; Zhao Z. ; Tao H. ; Sun Z. Acta Phys. -Chim. Sin. 2018, 34, 858. |
高云楠; 刘世桢; 赵振清; 陶亨聪; 孙振宇. 物理化学学报, 2018, 34, 858.
doi: 10.3866/PKU.WHXB201802061 |
|
10 |
Liu X. ; Inagaki S. ; Gong J. Angew. Chem. Int. Ed. 2016, 55, 14924.
doi: 10.1002/anie.201600395 |
11 |
Windle C. D. ; Perutz R. N. Coordin. Chem. Rev. 2012, 256, 2562.
doi: 10.1016/j.ccr.2012.03.010 |
12 |
Wu J. ; Huang Y. ; Ye W. ; Li Y. Adv. Sci. 2017, 4, 1700194.
doi: 10.1002/advs.201700194 |
13 |
Yui T. ; Tamaki Y. ; Sekizawa K. ; Ishitani O. Top. Curr. Chem. 2011, 303, 151.
doi: 10.1007/128_2011_139 |
14 |
Maeda K. Adv. Mater. 2019, 31, 1808205.
doi: 10.1002/adma.201808205 |
15 |
Akhundi A. ; Habibi-Yangjeh A. ; Abitorabi M. ; Pouran S. R. Catal. Rev. 2019, 61, 595.
doi: 10.1080/01614940.2019.1654224 |
16 |
Zhu C. -Y. ; Huang Y. -C. ; Hu J. -C. ; Wang F. J. Photochem. Photobiol. A. 2018, 38, 175.
doi: 10.1016/j.jphotochem.2017.09.056 |
17 |
Hu J. -C. ; Gui M. -X. ; Xia W. ; Wu J. J. Mater. Chem. A. 2019, 7, 10475.
doi: 10.1039/c9ta00949c |
18 | Pan Z. M. ; Liu M. H. ; Niu P. P. ; Guo F. S. ; Fu X. Z. ; Wang X. C. Acta Phys. -Chim. Sin. 2020, 36 (1), 1906014. |
潘志明; 刘明辉; 牛萍萍; 郭芳松; 付贤智; 王心晨. 物理化学学报, 2020, 36 (1), 1906014.
doi: 10.3866/PKU.WHXB201906014 |
|
19 | Zhou L. ; Zhang X. H. ; Lin L. ; Li P. ; Shao K. J. ; Li C. Z. ; He T. Acta Phys.-Chim. Sin. 2017, 33 (9), 1884. |
周亮; 张雪华; 林琳; 李盼; 邵坤娟; 李春忠; 贺涛. 物理化学学报, 2017, 33 (9), 1884.
doi: 10.3866/PKU.WHXB201705084 |
|
20 |
Hu J. -C. ; Sun S. ; Li M. -D. ; Xia W. ; Wu J. ; Liu H. ; Wang F. Chem. Commun. 2019, 55, 14490.
doi: 10.1039/c9cc08512b |
21 |
Xu C. ; Anusuyadevi P. R. ; Aymonier C. ; Luque R. ; Marre S. Chem. Soc. Rev. 2019, 48, 3868.
doi: 10.1039/c9cs00102f |
22 |
Li Q. ; Li X. ; Wageh S. ; Al-Ghamdi A. A. ; Yu J. Adv. Energy Mater. 2015, 5, 1500010.
doi: 10.1002/aenm.201500010 |
23 |
Li X. -B. ; Tung C. -H. ; Wu L.-Z. Angew. Chem. Int. Ed. 2019, 58, 10804.
doi: 10.1002/anie.201901267 |
24 |
Yuan Y.-J. ; Chen A. ; Yu Z. -T. ; Zou Z. -G. J. Mater. Chem. A 2018, 6, 11606.
doi: 10.1039/c8ta00671g |
25 |
Fujiwara H. ; Hosokawa H. ; Murakoshi K. ; Wada Y. ; Yanagida S. J. Phys. Chem. B. 1997, 101, 8270.
doi: 10.1021/jp971621q |
26 |
Liu B. -J. ; Torimoto T. ; Yoneyama H. J. Photochem. Photobiol. A. 1998, 113, 93.
doi: 10.1016/S1010-6030(97)00318-3 |
27 |
Yang X. ; Xin W. ; Yin X. ; Shao X. J. Wuhan Univ. Technol. 2018, 1, 78.
doi: 10.1007/s11595-018-1789-9 |
28 |
Kandy M. M. ; Gaikar V. G. Mater. Res. Bull. 2018, 102, 440.
doi: 10.1016/j.materresbull.2018.02.054 |
29 |
Chai Y. ; Lu J. ; Li L. ; Li D. ; Li M. ; Liang J. Catal. Sci. Technol. 2018, 10, 2697.
doi: 10.1039/C8CY00274F |
30 |
Brus L. J.Phys. Chem. 1986, 90, 2555.
doi: 10.1021/j100403a003 |
31 |
Wang L. G. ; Pennycook S. J. ; Pantelides S. T. Phys. Rev. Lett. 2002, 89, 075506.
doi: 10.1103/PhysRevLett.89.075506 |
32 |
Sheng H. ; Oh M. H. ; Osowiecki W. T. ; Kim W. ; Alivisatos A. P. ; Frei H. J. Am. Chem. Soc. 2018, 140, 4363.
doi: 10.1021/jacs.8b00271 |
33 |
Xia W. ; Wu J. ; Hu J. -C. ; Sun S. ; Li M. ; Liu H. ; Lan M. ; Tung C. -H. ; Wu L. -Z. ; Wang F. ChemSusChem 2019, 12, 4617.
doi: 10.1002/cssc.201901633 |
34 |
Guo Q. ; Liang F. ; Li X. -B. ; Gao Y. -J. ; Huang M. -Y. ; Wang Y. ; Xia S. -G. ; Gao X. -Y. ; Gan Q. -C. ; Lin Z. -S. ; et al Chem 2019, 5, 2605.
doi: 10.1016/j.chempr.2019.06.019 |
35 |
Koci K. ; Praus P. ; Edelmannová M. ; Ambrožová N. ; Troppová I. ; Fridrichová D. ; Słowik G. ; Ryczkowski J. J.Nanosci. Nanotechnol. 2017, 17, 4041.
doi: 10.1166/jnn.2017.13093 |
36 |
Ijaz S. ; Ehsan M. F. ; Ashiq M. N. ; Karamat N. ; He T. Appl. Surf. Sci. 2016, 390, 550.
doi: 10.1016/j.apsusc.2016.08.098 |
37 |
Benedetti J. E. ; Bernardo D. R. ; Morais A. ; Bettini J. ; Nogueira A. F. RSC Adv. 2015, 5, 33914.
doi: 10.1039/c4ra15605f |
38 |
Ijaz S. ; Ehsan M. F. ; Ashiq M. N. ; Karamt N. ; Najam-ul-Haq M. ; He T. Mater. Des. 2016, 107, 178.
doi: 10.1016/j.matdes.2016.06.031 |
39 |
Park H. ; Ou H. -H. ; Kang U. ; Choi J. ; Hoffmann M. R. Catal. Today 2016, 266, 153.
doi: 10.1016/j.cattod.2015.09.017 |
40 |
Wei Y. ; Jiao J. ; Zhao Z. ; Liu J. ; Li J. ; Jiang G. ; Wang Y. ; Duan A. Appl. Catal. B- Environ. 2015, 179, 422.
doi: 10.1016/j.apcatb.2015.05.041 |
41 |
Yu J. ; Jin J. ; Cheng B. ; Jaroniec M. J. Mater. Chem. A. 2014, 2, 3407.
doi: 10.1039/c3ta14493c |
42 |
Li X. ; Liu H. ; Luo D. ; Li J. ; Huang Y. ; Li H. ; Fang Y. ; Xu Y. ; Zhu L. Chem. Eng.J. 2012, 180, 151.
doi: 10.1016/j.cej.2011.11.029 |
43 |
Wang J. ; Xia T. ; Wang L. ; Zheng X. ; Qi Z. ; Gao C. ; Zhu J. ; Li Z. ; Xu H. ; Xiong Y. Angew. Chem. Int. Ed. 2018, 57, 16447.
doi: 10.1002/anie.201810550 |
44 |
Wang C. ; Thompson R. L. ; Baltrus J. ; Matranga J. J. Phys. Chem. Lett. 2010, 1, 48.
doi: 10.1021/jz9000032 |
45 |
Peng H.-J. ; Zheng P. -Q. ; Chao H. -Y. ; Jiang L. ; Qiao Z.-P. RSC Adv. 2020, 10, 551.
doi: 10.1039/c9ra08801f |
46 |
Wang F. ChemSusChem 2017, 10, 4393.
doi: 10.1002/cssc.201701385 |
47 |
Chai Z. G. ; Li Q. ; Xu D. X. RSC Adv. 2014, 4, 44991.
doi: 10.1039/c4ra08848d |
48 |
Lin J. L. ; Qin B. ; Fang Z. X. Catal. Lett. 2019, 149, 25.
doi: 10.1007/s10562-018-2586-y |
49 |
Kuehnel M. F. ; Orchard K. L. ; Dalle K. E. ; Reisner E. J. Am. Chem. Soc. 2017, 139, 7217.
doi: 10.1021/jacs.7b00369 |
50 |
Kuehnel M. F. ; Sahm C. D. ; Neri G. ; Lee J. R. ; Orchard K. L. ; Cowan A. J. ; Reisner E. Chem. Sci. 2018, 9, 2501.
doi: 10.1039/c7sc04429a |
51 |
Huang J. ; Gatty M. G. ; Xu B. ; Pati P. B. ; Etman A. S. ; Tian L. ; Sun J. L. ; Tian H. N. Dalton Trans. 2018, 47, 10775.
doi: 10.1039/c8dt01631c |
52 |
Suzuki T. M. ; Yoshino S. N. ; Takayama T. ; Iwase A. ; Kudo A. ; Morikawa T. Chem. Commun. 2018, 54, 10199.
doi: 10.1039/c8cc05505j |
53 |
Bao Y. P. ; Wang J. ; Wang Q. ; Cui X. F. ; Long R. ; Li Z. Q. Nanoscale 2020, 12, 2507.
doi: 10.1039/c9nr09321d |
54 |
Lian S. C. ; Kodaimati M. S. ; Dolzhnikov D. S. ; Calzada R. ; Weiss E. A. J. Am. Chem. Soc. 2017, 139, 8931.
doi: 10.1021/jacs.7b03134 |
55 |
Lian S. C. ; Kodaimati M. S. ; Weiss E. A. ACS Nano 2018, 12, 568.
doi: 10.1021/acsnano.7b07377 |
56 |
Bi Q. -Q. ; Wang J. -W. ; Lv J. -X. ; Wang J. ; Zhang W. ; Lu T.-B. ACS Catal. 2018, 8, 11815.
doi: 10.1021/acscatal.8b03457 |
57 |
Li P. ; Hou C. C. ; Zhang X. H. ; Chen Y. ; He T. Appl. Surf. Sci. 2018, 459, 292.
doi: 10.1016/j.apsusc.2018.08.002 |
58 |
Li P. ; Zhang X. ; Hou C. ; Chen Y. ; He T. Appl. Catal. B-Environ. 2018, 238, 656.
doi: 10.1016/j.apcatb.2018.07.066 |
59 |
Chen C. J. ; Wu T. B. ; Wu H. H. ; Liu H. Z. ; Qian Q. L. ; Liu Z. M. ; Yang G. Y. ; Han B. X. Chem. Sci. 2018, 9, 8890.
doi: 10.1039/c8sc02809e |
60 |
Gui M. -X. ; Wu J. ; Hu J. -C. ; Xia W. ; Liu H. ; Feng N. ; Li W. ; Wang F. J.Photochem. Photobiol. A. 2020, 401, 112742.
doi: 10.1016/j.jphotochem.2020.112742 |
61 |
Fu J. ; Yu J. ; Jiang C. ; Cheng B. Adv. Energy Mater. 2018, 8, 1701503.
doi: 10.1002/aenm.201701503 |
62 |
Yin S. ; Han J. ; Zhou T. ; Xu R. Catal. Sci. Technol. 2015, 5, 5048.
doi: 10.1039/c5cy00938c |
63 |
He F. ; Wang Z. ; Li Y. ; Peng S. ; Liu B. Appl. Catal. B-Environ. 2020, 269, 118828.
doi: 10.1016/j.apcatb.2020.118828 |
[1] | Bichen Zhu, Xiaoyang Hong, Liyong Tang, Qinqin Liu, Hua Tang. Enhanced Photocatalytic CO2 Reduction over 2D/1D BiOBr0.5Cl0.5/WO3 S-Scheme Heterostructure [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2111008-. |
[2] | Xiaoxiong Huang, Yingjie Ma, Linjie Zhi. Ultrathin Nitrogenated Carbon Nanosheets with Single-Atom Nickel as an Efficient Catalyst for Electrochemical CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2011050-. |
[3] | Yongxia Shi, Man Hou, Junjun Li, Li Li, Zhicheng Zhang. Cu-Based Tandem Catalysts for Electrochemical CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2206020-. |
[4] | Kelin He, Rongchen Shen, Lei Hao, Youji Li, Peng Zhang, Jizhou Jiang, Xin Li. Advances in Nanostructured Silicon Carbide Photocatalysts [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2201021-. |
[5] | Yuxin Chen, Lijun Wang, Zhibo Yao, Leiduan Hao, Xinyi Tan, Justus Masa, Alex W. Robertson, Zhenyu Sun. Tuning the Coordination Structure of Single Atoms and Their Interaction with the Support for Carbon Dioxide Electroreduction [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2207024-0. |
[6] | Leiduan Hao, Zhenyu Sun. Metal Oxide-Based Materials for Electrochemical CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2009033-. |
[7] | Xingang Fei, Haiyan Tan, Bei Cheng, Bicheng Zhu, Liuyang Zhang. 2D/2D Black Phosphorus/g-C3N4 S-Scheme Heterojunction Photocatalysts for CO2 Reduction Investigated using DFT Calculations [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2010027-. |
[8] | Yunfeng Li, Min Zhang, Liang Zhou, Sijia Yang, Zhansheng Wu, Ma Yuhua. Recent Advances in Surface-Modified g-C3N4-Based Photocatalysts for H2 Production and CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2009030-. |
[9] | Xinjiang Cui, Feng Shi. Selective Conversion of CO2 by Single-Site Catalysts [J]. Acta Phys. -Chim. Sin., 2021, 37(5): 2006080-. |
[10] | Frits Mathias Dautzenberg, Yong Lu, Bin Xu. Controlling the Global Mean Temperature by Decarbonization [J]. Acta Phys. -Chim. Sin., 2021, 37(5): 2008066-. |
[11] | Huidong Jin, Likun Xiong, Xiang Zhang, Yuebin Lian, Si Chen, Yongtao Lu, Zhao Deng, Yang Peng. Cu-Based Catalyst Derived from Nitrogen-Containing Metal Organic Frameworks for Electroreduction of CO2 [J]. Acta Phys. -Chim. Sin., 2021, 37(11): 2006017-. |
[12] | Shuhua Duan,Shufeng Wu,Lei Wang,Houde She,Jingwei Huang,Qizhao Wang. Rod-Shaped Metal Organic Framework Structured PCN-222(Cu)/TiO2 Composites for Efficient Photocatalytic CO2 Reduction [J]. Acta Physico-Chimica Sinica, 2020, 36(3): 1905086-. |
[13] | Hanlin Lyu, Bing Hu, Guoliang Liu, Xinlin Hong, Lin Zhuang. Inverse Decoration of ZnO on Small-Sized Cu/Sio2 with Controllable Cu-ZnO Interaction for CO2 Hydrogenation to Produce Methanol [J]. Acta Physico-Chimica Sinica, 2020, 36(11): 1911008-. |
[14] | Zhiming Pan,Minghui Liu,Pingping Niu,Fangsong Guo,Xianzhi Fu,Xinchen Wang. Photocatalytic CO2 Reduction Using Ni2P Nanosheets [J]. Acta Physico-Chimica Sinica, 2020, 36(1): 1906014-. |
[15] | Hui NING,Wenhang WANG,Qinhu MAO,Shirui ZHENG,Zhongxue YANG,Qingshan ZHAO,Mingbo WU. Catalytic Electroreduction of CO2 to C2H4 Using Cu2O Supported on 1-Octyl-3-methylimidazole Functionalized Graphite Sheets [J]. Acta Phys. -Chim. Sin., 2018, 34(8): 938-944. |
|