Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (4): 2008050.doi: 10.3866/PKU.WHXB202008050
Special Issue: Metal Halide Perovskite Optoelectronic Material and Device
• ARTICLE • Previous Articles Next Articles
Guiying Xu1, Rongming Xue1, Moyao Zhang1, Yaowen Li1,*(), Yongfang Li1,2
Received:
2020-08-19
Accepted:
2020-09-23
Published:
2020-10-09
Contact:
Yaowen Li
E-mail:ywli@suda.edu.cn
About author:
Yaowen Li, Email: ywli@suda.edu.cnSupported by:
MSC2000:
Guiying Xu, Rongming Xue, Moyao Zhang, Yaowen Li, Yongfang Li. Synthesis of Pyrazine-based Hole Transport Layer and Its Application in p-i-n Planar Perovskite Solar Cells[J].Acta Phys. -Chim. Sin., 2021, 37(4): 2008050.
Fig 4
(a) J–V curves of pero-SCs based on PT-TPA and Si-OMeTPA as HTLs, reverse scan: 1.2 V → −0.2 V, Forward scan: −0.2 V → 1.2 V, scan rate 200 mV ∙s−1; (b) maximal steady-state photocurrent output of champion devices at maximum power point; (c) EQE curves of pero-SCs based on PT-TPA and Si-OMeTPA. (d) t he PCE statistical histograms of 20 individual devices using the two HTLs."
Fig 5
(a) Steady-state PL spectra and (b) TRPL decay transient spectra of perovskite films prepared on glass, PT-TPA, or Si-OMeTPA HTLs; (c) light intensity dependence of Voc for pero-SCs based on PT-TPA and Si-OMeTPA HTLs; (d) stability of pero-SCs based on PT-TPA and Si-OMeTPA HTLs in ambient atmosphere with 40%–60% RH."
1 |
Kojima A. ; Teshima K. ; Shirai Y. ; Miyasaka T. J. Am. Chem. Soc. 2009, 131, 6050.
doi: 10.1021/ja809598r |
2 |
Olaleru S. A. ; Kirui J. K. ; Wamwangi D. ; Roro K. T. ; Mwakikunga B. Sol. Energy 2020, 196, 295.
doi: 10.1016/j.solener.2019.12.025 |
3 |
Park N. G. ACS Energy Lett. 2019, 4, 2983.
doi: 10.1021/acsenergylett.9b02442 |
4 |
Zheng X. ; Hou Y. ; Bao C. ; Yin J. ; Yuan F. ; Huang Z. ; Song K. ; Liu J. ; Troughton J. ; Gasparini N. ; et al Nat. Energy 2020, 5, 131.
doi: 10.1038/s41560-019-0538-4 |
5 |
Yang D. ; Sano T. ; Yaguchi Y. ; Sun H. ; Sasabe H. ; Kido J. Adv. Funct. Mater. 2019, 29, 1970074.
doi: 10.1002/adfm.201970074 |
6 | Xue, R.; Zhang, M.; Luo, D.; Chen, W.; Zhu, R.; Yang, Y. M.; Li, Y.; Li, Y. Sci. China Chem. 2020, doi: 10.1007/s11426-020-9741-1 |
7 |
Jia X. ; Zuo C. ; Tao S. ; Sun K. ; Zhao Y. ; Yang S. ; Cheng M. ; Wang M. ; Yuan Y. ; Yang J. ; et al Science Bulletin 2019, 64, 1532.
doi: 10.1016/j.scib.2019.08.017 |
8 |
Cheng M. ; Zuo C. ; Wu Y. ; Li Z. ; Xu B. ; Hua Y. ; Ding L. Science Bulletin 2020, 65 (15), 1237.
doi: 10.1016/j.scib.2020.04.021 |
9 |
Sathiyan G. ; Syed. A. A. ; Chen C. ; Wu C. ; Tao L. ; Ding X. ; Miao Y. ; Li G. ; Cheng M. Ding L. Nano Energy 2020, 72, 104673.
doi: 10.1016/j.nanoen.2020.104673 |
10 |
Bi C. ; Wang Q. ; Shao Y. ; Yuan Y. ; Xiao Z. ; Huang J. Nat. Commun. 2015, 6, 7747.
doi: 10.1038/ncomms8747 |
11 |
Huang C. ; Fu W. ; Li C. Z. ; Zhang Z. ; Qiu W. ; Shi M. ; Heremans P. ; Jen A. K. Y. ; Chen H. J. Am. Chem. Soc. 2016, 138, 2528.
doi: 10.1021/jacs.6b00039 |
12 | Zhang J. ; He Y. ; Min J. Acta Phys. -Chim. Sin. 2018, 34, 1221. |
张婧; 何有军; 闵杰. 物理化学学报, 2018, 34, 1221.
doi: 10.3866/PKU.WHXB201803231 |
|
13 |
Xu L. ; Chen X. ; Jin J. ; Liu W. ; Dong B. ; Bai X. ; Song H. ; Reiss P. Nano Energy 2019, 63, 103860.
doi: 10.1016/j.nanoen.2019.103860 |
14 |
Son M. K. ; Steier L. ; Schreier M. ; Mayer M. T. ; Luo J. ; Grätzel M. Energy Environ. Sci. 2017, 10, 912.
doi: 10.1039/C6EE03613A |
15 |
Zhao D. ; Sexton M. ; Park H. Y. ; Baure G. ; Nino J. C. ; So F. Adv. Energy Mater. 2015, 5, 1401855.
doi: 10.1002/aenm.201500436 |
16 |
Li X. ; Liu X. ; Wang X. ; Zhao L. ; Jiu T. ; Fang J. J. Mater. Chem. A 2015, 3, 15024.
doi: 10.1039/C5TA04712A |
17 |
Meng L. ; You J. ; Guo T. F. ; Yang Y. Acc. Chem. Res. 2016, 49, 155.
doi: 10.1021/acs.accounts.5b00404 |
18 |
Jeon N. J. ; Noh J. H. ; Kim Y. C. ; Yang W. S. ; Ryu S. ; Seok S. I. Nat. Mater. 2014, 13, 897.
doi: 10.1038/nmat4014 |
19 |
Wang Y. K. ; Yuan Z. C. ; Shi G. Z. ; Li Y. X. ; Li Q. ; Hui F. ; Sun B. Q. ; Jiang Z. ; Liao L. Adv. Funct. Mater. 2016, 26, 1375.
doi: 10.1002/adfm.201504245 |
20 |
Labban A. E. ; Chen H. ; Kirkus M. ; Barbe J. ; Del Gobbo S. ; Neophytou M. ; McCulloch I. ; Eid J. Adv. Energy Mater. 2016, 6, 1502101.
doi: 10.1002/aenm.201502101 |
21 |
Chen H. ; Fu W. ; Huang C. ; Zhang Z. ; Li S. ; Ding F. ; Shi M. ; Li C. Z. ; Jen A. K. Y. ; Chen H. Adv. Energy Mater. 2017, 7, 1700012.
doi: 10.1002/aenm.201700012 |
22 |
Xue R. ; Zhang M. ; Xu G. ; Zhang J. ; Chen W. ; Chen H. ; Yang M. ; Cui C. ; Li Y. ; Li Y. J. Mater. Chem. A 2018, 6, 404.
doi: 10.1039/C7TA09716F |
23 |
Lin H. ; Chen S. ; Hu H. ; Zhang L. ; Ma T. ; Lai J. Y. L. ; Li Z. ; Qin A. ; Huang X. ; Tang B. ; Yan H. Adv. Mater. 2016, 28, 8546.
doi: 10.1002/adma.201600997 |
24 |
Liu Y. ; Lai J. Y. L. ; Chen S. ; Li Y. ; Jiang K. ; Zhao J. ; Li Z. ; Hu H. ; Ma T. ; Lin H. ; et al J. Mater. Chem. A 2015, 3, 13632.
doi: 10.1039/C5TA03093E |
25 |
Liu Y. ; Mu C. ; Jiang K. ; Zhao J. ; Li Y. ; Zhang L. ; Li Z. ; Lai J. ; Hu H. ; Ma T. ; et al Adv. Mater. 2015, 27, 1015.
doi: 10.1002/adma.201404152 |
26 |
Xu L. ; Zhang Q. Sci. China Mater. 2017, 60, 1093.
doi: 10.1007/s40843-016-5170-2 |
27 |
Zhu Y. ; Champion R. ; Jenekhe S. Macromolecules 2006, 39, 8712.
doi: 10.1021/ma061861g |
28 |
Zhou E. ; Cong J. ; Yamakawa S. ; Wei Q. ; Nakamura M. ; Tajima K. ; Yang C. ; Hashimoto K. Macromolecules 2010, 43, 2873.
doi: 10.1021/ma100039q |
29 |
Chen M. ; Nie H. ; Song B. ; Li L. ; Sun J. Z. ; Qin A. ; Tang B. Z. J. Mater. Chem. C 2016, 4, 2901.
doi: 10.1039/C5TC03299G |
30 |
Liu F. ; Wu F. ; Tu Z. ; Liao Q. ; Gong Y. ; Zhu L. ; Li Q. ; Li Z. Adv. Funct. Mater. 2019, 29, 1901296.
doi: 10.1002/adfm.201901296 |
31 |
Zhang D. ; Xu P. ; Wu T. ; Ou Y. ; Yang X. ; Sun A. ; Cui B. ; Sun H. ; Hua Y. J. Mater. Chem. A 2019, 7, 5221.
doi: 10.1039/C8TA12139G |
32 |
Hua Y. ; Chen S. ; Zhang D. ; Xu P. ; Sun A. ; Ou Y. ; Wu T. ; Sun H. ; Cui B. ; Zhu X. J. Mater. Chem. A 2019, 7, 10200.
doi: 10.1039/C9TA01731C |
33 |
Zhao Y. ; Xu G. ; Guo X. ; Xia Y. ; Cui C. ; Zhang M. ; Song B. ; Li Y. ; Li Y. J. Mater. Chem. A 2015, 3, 17991.
doi: 10.1039/C5TA03801D |
34 |
Zhang P. ; Li C. ; Li Y. ; Yang X. ; Chen L. ; Xu B. ; Tian W. ; Tu Y. Chem. Commun. 2013, 49, 4917.
doi: 10.1039/C3CC41321G |
35 |
Deepa M. ; Salado M. ; Calio L. ; Kazim S. ; Shivaprasad S. M. ; Ahmad S. Phys. Chem. Chem. Phys. 2017, 19, 4069.
doi: 10.1039/C6CP08022G |
36 |
Saliba M. ; Matsui T. ; Seo J. Y. ; Domanski K. ; Correa-Baena J. P. ; Nazeeruddin M. K. ; Zakeeruddin S. M. ; Tress W. ; Abate A. ; Hagfeldt A. ; Grätzel M. Energy Environ. Sci. 2016, 9, 1989.
doi: 10.1039/C5EE03874J |
37 |
Ge Q. Q. ; Shao J. Y. ; Ding J. ; Deng L. Y. ; Zhou W. K. ; Chen Y. X. ; Ma J. Y. ; Wan L. J. ; Yao J. ; Hu J. S. ; Zhong Y. W. Angew. Chem. Int. Ed. 2018, 57, 10959.
doi: 10.1002/anie.201806392 |
38 |
Luo D. ; Yang W. ; Wang Z. ; Sadhanala A. ; Hu Q. ; Su R. ; Shivanna R. ; Trindade G. F. ; Watts J. F. ; Xu Z. ; et al Science 2018, 360, 1442.
doi: 10.1126/science.aap9282 |
39 |
Tu Y. ; Yang X. ; Su R. ; Luo D. ; Cao Y. ; Zhao L. ; Liu T. ; Yang W. ; Zhang Y. ; Xu Z. ; et al Adv. Mater. 2018, 30, 1805085.
doi: 10.1002/adma.201805085 |
40 |
Li Y. ; Zhao Y. ; Chen Q. ; Yang Y. ; Liu Y. ; Hong Z. ; Liu Z. ; Hsieh Y. T. ; Meng L. ; Li Y. ; Yang Y. J. Am. Chem. Soc. 2015, 137, 15540.
doi: 10.1021/jacs.5b10614 |
41 |
Cowan S. R. ; Roy A. ; Heeger A. J. Phys. Rev. B 2010, 82, 245207.
doi: 10.1103/PhysRevB.82.245207 |
42 |
Mandoc M. M. ; Kooistra F. B. ; Hummelen J. C. ; Boer B. d. ; Blom P. W. M. Appl. Phys. Lett. 2007, 91, 263505d.
doi: 10.1063/1.2821368 |
43 | Liu, X.; Yu, Z.; Wang, T.; Chiu, K.; Lin, F.; Gong, H.; Ding, L.; Cheng, Y. Adv. Energy Mater. 2020, 2001958. doi: 10.1002/aenm.202001958 |
[1] | Hantao Sun, Jianhui Liao, Shimin Hou. Single-Molecule Field-Effect Transistors with Graphene Electrodes and Covalent Pyrazine Linkers [J]. Acta Phys. -Chim. Sin., 2021, 37(10): 1906027-. |
[2] | WEI Chuan-Dong, GE Guo-Ping, LI Chun-Yan, LEI Ke-Wei, LIANG Hong-Ze, YU Gang, LIU Zhi-Wei. Crystal Structure and Photophysical Properties of an Iridium(Ⅲ) Pyrazine Complex [J]. Acta Phys. -Chim. Sin., 2015, 31(1): 17-22. |
[3] | MEI Qun-Bo, WENG Jie-Na, TONG Bi-Hai, TIAN Ru-Qiang, JIANG Yuan-Zhi, HUA Qing-Fang, HUANG Wei. Progress in the Application of Diazine Compounds in Optoelectronic Functional Materials [J]. Acta Phys. -Chim. Sin., 2014, 30(4): 589-607. |
[4] | YU Xiao-Hang, GE Guo-Ping, ZHANG Guo-Lin, GUO Hai-Qing. Synthesis and Photoluminescence of Iridium(III) Diazine Complex Modified with a Carbazyl Group [J]. Acta Phys. -Chim. Sin., 2010, 26(04): 1184-1190. |
[5] | AN Shi-yan; XU Shan-dong; ZENG Qing-dao; TAN Zhong-yin; WANG Chen; WAN Li-jun; BAI Chun-li. The Self-assembly Structure of Pyrazine Derivative on Highly Oriented Pyrolytic Graphite [J]. Acta Phys. -Chim. Sin., 2005, 21(08): 925-928. |
[6] | ZHOU Jian-Hua; MA Wan-Yong; JIANG Hai-Hui; ZHANG Ji-Ming; WANG Shao-Kun; GU Yue-Shu. QCT Calculation Study of Collisional Energy Transfer of Highly Vibrationally Excited Pyrazine [J]. Acta Phys. -Chim. Sin., 2005, 21(04): 388-391. |
[7] | Zhang Guo-Lin;Liu Ze-Hua;Guo Hai-Qing. Synthesis and Phosphorescence of a New Iridium (III) Pyrazine Complex [J]. Acta Phys. -Chim. Sin., 2003, 19(10): 889-891. |
[8] | Li Ze-Min,Wu Shi-Kang. A Study on the Molecular Conformation of Styryl Pyrazine Compounds [J]. Acta Phys. -Chim. Sin., 1997, 13(01): 5-10. |
[9] | Li Ze-Min,Wu Shi-Kang. Study on Photophysical Behaviors of Styryl Pyrazine Derivatives [J]. Acta Phys. -Chim. Sin., 1996, 12(05): 418-422. |
[10] | Li Ze-Min,Wu Shi-Kang. The Effect of Steric Hindrance on the Photophysical Behavior of Substituted Styryl Pyrazine Derivatives [J]. Acta Phys. -Chim. Sin., 1995, 11(06): 558-563. |
|